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Abstract In this paper, the problem of periodic solutions is studied for singular Liénard equations 

ẍ(t) + f(x(t))ẋ(t) + φ(t)xμ(t) = h(t), 

where f: (0, +∞) → R  is continuous and has a singularity at the origin, μ  is a positive constant. By using a 

continuation theorem of coincidence degree theory, a new result on the existence of positive periodic solutions is 

obtained. The interesting thing is that the sign of weight φ(t) is allowed to change for t ∈ [0, T]. 
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1. Introduction 

In this paper, we are concerned with the existence of positive T −periodic solutions for the equations  

      ẍ(t) + f(x(t))ẋ(t) + φ(t)xμ(t) = h(t) ,                                           (1.1) 

where f ∈ C((0, +∞), R), φ is T −Periodic function with φ in L([0, T], R), μ is a positive constant. In this 

equation, the function f(x) has a singularity at x = 0, i. e., lim
x→0+

f(x) = +∞. Besides this, the sign of φ(t) is 

allowed to change. The equations of this type arise in modelling of important problems appearing in many 

physical contexts (see [1]-[5] and the references therein). 

In the past years, under the conditions of φ(t) ≥ 0 and α(t) ≥ 0 for a. e. t ∈ [0, T], the problem of existence 

of periodic solutions to the equation without friction term  

ẍ(t) + φ(t)x(t) −
α(t)

xμ
= h(t) 

has been extensively studied by [6]-[10]. Beginning with the paper of Habets-Sanchez [11], many 

researchers in [12]-[15] have considered the classical Liénard equation with a singularity of repulsive type 

ẍ(t) + f(x(t))ẋ(t) + φ(t)x(t) −
α(t)

xμ
= h(t). 

In these papers, apart from the function φ(t) satisfies φ(t) ≥ 0 for a.e. t ∈ [0, T], f(x) being continuous on 

[0, +∞) is needed. For the recent development of this area, we refer readers to the literature [16]-[19]. But 

up to our knowledge, few papers have considered the case where f(x) has a singularity at x = 0, and the sign 

of φ(t) is indefinite. The reason for this is that, in such situation, the equation may have no a priori estimates. 

Throughout this paper, let CT = {x ∈ C(R, R): x(t + T) = x(t) for all t ∈ R} with the norm defined by 

|x|∞ = max
𝑥∈[0,𝑇]

|𝑥(𝑡)|  , and CT
1 = {x ∈ C1(R, R): x(t + T) = x(t)for all t ∈ R}  with the norm defined by 

∥ x ∥CT
= max { |x|∞, |ẋ|∞}.  For any T − periodic solution y(t)  with y ∈ L([0, T], R),  y+(t)  and y−(t)  is 

denoted by max{y(t), 0} and min{y(t), 0}, respectively, and y̅ =
1

T
∫ y(s)ds.

T

0
 Clearly, y(t) = y+(t) − y−(t) 

for all t ∈ R, and y̅ = y+̅̅ ̅ − y−̅̅ ̅. 

2. Preliminary lemmas 

Lemma 2.1. [20] Assume that there exist positive constants m0, m1 and M∗ with 0 < m0 < m1, such that the 

following conditions hold. 

1. For any λ ∈ (0,1], each possible positive T −periodic solution μ to the equation 

ü(t) + λf(u(t))u̇(t) + λφ(t)uμ(t) = λh(t)             (2.1) 

satisfies the inequalities m0 < u(t) < m1 and |u̇(t)| < M∗, for all t ∈ [0, T]. 
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2. The inequality 

(h̅ − φ̅m0
μ

)(h̅ − φ̅m1
μ

) < 0 

holds. 

Then, equation (1.1) has at least one T −periodic solution u such that m0 < u(t) < m1  for all t ∈ [0, T].  

Lemma 2.2. Let u: [0, ω] → R be an arbitrary absolutely continuous function with u(0) = u(ω). Then the 

inequality 

(max
[0,T]

𝑢(𝑡) − min
[0,T]

𝑢(𝑡))2 ≤
ω

4
∫ |u̇(s)|2ds

ω

4

 

holds. 

Now, we embed equation (1.1) into the following equations family with a parameter λ ∈ (0,1] 

ẍ(t) + λf(x(t))ẋ(t) + λφ(t)xμ(t) = λh(t), λ ∈ (0,1]. 

Let 

D = {x ∈ CT
1 : ẍ(t) + λf(x(t))ẋ(t) + λφ(t)xμ(t) = λh(t), λ ∈ (0,1]; x(t) > 0, ∀t ∈ [0, T]}, 

      F(x) = ∫ f(s)ds
x

1
, G(x) = F(x) + xμTφ−̅̅ ̅̅ , x ∈ (0, +∞),            (2.2) 

where f(x) and μ are determined in (1.1). 

Lemma 2.3. Assume φ̅ > 0, then for each u ∈ D, there are constants ξ1, ξ2 ∈ [0, T] such that  

u(ξ1) ≤ (
h̅

φ̅
)

1

μ
≔ η                                                                         (2.3) 

and 

 u(ξ2) ≥ (
h̅

|φ|̅̅ ̅̅ )

1

μ
≔ η0.                                                                   (2.4) 

Proof. Let u ∈ D, then  

ü(t) + λf(u(t))u̇(t) + λφ(t)uμ(t) = λh(t), 

which together with the fact of u(t) > 0 for all t ∈ [0, T] gives  

ü(t)

uμ(t)
+

λf(u(t))u̇(t)

uμ(t)
+ λφ(t) = λh(t). 

Integrating the above equality over the interval [0, T], we obtain  

∫
ü(t)

uμ(t)
dt + λ ∫ φ(t)dt = λ ∫

h(t)

uμ(t)
dt,

T

0

T

0

T

0

 

i. e., 

∫
ü(t)

uμ(t)
dt + λTφ̅ = λ ∫

h(t)

uμ(t)
dt.

T

0

T

0

 

Since the inequality  

∫
ü(t)

uμ(t)
dt ≥ 0

T

0

 

is easily obtained by a simple integration by parts, it follows from (2.1) that  

Tφ̅ ≤ ∫
h(t)

uμ(t)
dt =

Th̅

uμ(ξ1)
.

T

0

 

By using mean value theorem of integrals, we have that there exists a point η ∈ [0, T] such that  

Tφ̅ ≤
Th̅

uμ(ξ1)
, 

i. e., 
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u(ξ1) ≤ (
h̅

φ̅
)

1
μ

≔ η. 

So, inequality (2.3) holds. 

Multiplying two sides of (1.1) with uμ(t) and integrating it over the interval [0, T], we obtain that  

∫ φ(t)uμ(t)dt = ∫ h(t)dt
T

0
,

T

0
                                                (2.5) 

which together with  

| ∫ φ(t)uμ(t)dt| = | ∫ h(t)dt| = Th̅
T

0
,

T

0
  

yields 

| ∫ φ(t)uμ(t)dt| ≤ ∫ |φ(t)|uμ(t)dt
T

0
= uμ(ξ2)T|φ|̅̅ ̅̅T

0
.  

Thus, there is a point η ∈ [0, T] such that 

u(ξ2) ≥ (
h̅

|φ|̅̅ ̅̅
)

1
μ

≔ η0. 

So, inequality (2.4) holds. 

The proof is complete. 

Lemma 2.4. Suppose that the following assumptions are satisfied. 

                      [H1]  lim
x→0+

F(x) = +∞, 

[H2]  lim
x→+∞

(F(x) + Tφ+̅̅ ̅̅ xμ) = −∞, 

where F(x) is determined in (2.2), η0 = (
h̅

|φ|̅̅ ̅̅ )

1

μ
 is defined by (2.4). Then there exists a constant γ0 > 0, such 

that  

                                          min
t∈[0,T]

u(t) ≥ γ0,  uniformly for u ∈ D. 

Proof. Let u ∈ D, then u satisfies 

ü(t) + λf(u(t))u̇(t) + λφ(t)uμ(t) = λh(t), λ ∈ (0,1], 

since u ∈ D, it is easy to see that there exist points t1,t2 ∈ R such that 0 < t2 − t1 < T, 

u(t1) = max
t∈[0,T]

u(t), 

and 

u(t2) = min
t∈[0,T]

u(t). 

Assumptions of ℎ̅ > 0  and 𝜑(𝑡) ≥ 0 for a. e. t ∈ [0, T] with 𝜑̅ > 0 holds. This gives 

η0 ≤ u(t1) < +∞, 

to which by using [H1], we have 

F(u(t1)) ≤    F(s)η0≤s≤+∞
sup

< +∞. 

When the condition𝜑(𝑡) ≥ 0 for 𝑎. 𝑒. 𝑡 ∈ [0, 𝑇] with 𝜑̅ > 0 that  

F(u(t2)) = F(u(t1)) − ∫ φ(t)uμ(t)dt + ∫ h(t)dt
t2

t1

t2

t1
  

                              ≤ F(u(t1)) + ∫ φ−(s)u(s)ds + Th̅
T

0
 

                         ≤ F(u(t1)) + uμ(t1)Tφ−̅̅ ̅̅ + Th̅, 

we have 

G(u) = F(u) + uμTh̅ 

and then 

F(u(t2)) ≤ G(u(t1)) + Th̅ ≤    G(u).[η0,+∞)
sup
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If there exists a constant γ0 > 0, combining the above equations, we can get  

min
t∈[0,T]

u(t) = u(t2) ≥ γ0. 

The proof is complete. 

Lemma 2.5. Assume φ̅ > 0 and h(t)≥0 for a. e. t ∈ [0, T] with h̅ > 0. Then there exists a constant ρ > 0 with 

ρ > γ0,  such that  

max
t∈[0,T]

u(t) ≤ ρ, uniformly for u ∈ D.                                                   (2.6) 

Proof. Since u ∈ D, it is easy to see that there exist points t1, t2 ∈ R such that 0 < t2 − t1 < T, 

u(t1) = max
t∈[0,T]

u(t) 

and  

u(t2) = min
t∈[0,T]

u(t). 

Assumptions of ℎ̅ > 0 and 𝜑(𝑡) ≥ 0 for a. e. t ∈ [0, T] with 𝜑̅ > 0 holds. When the condition 𝜑(𝑡) ≥ 0 for 

𝑎. 𝑒. 𝑡 ∈ [0, 𝑇] with 𝜑̅ > 0 that  

F(u(t2)) − F(u(t1)) + ∫ φ(t)uμ(t)dt
t2

𝑡1
= ∫ h(t)dt

t2

𝑡1
.  

So, we get 

F(u(t1)) = F(u(t2)) + ∫ φ(t)uμ(t)dt − ∫ h(t)dt
t2

t1

t2

t1
  

                              ≥ F(u(t2)) − ∫ φ−(t)uμ(t)dt − ∫ h(t)dt
T

0

t2

t1
 

Which together with (2.5) yields, 

F(u(t1)) = F(u(t2)) + ∫ φ(t)uμ(t)dt − ∫ h(t)dt
t2

t1

t2

t1
  

                        ≥ F(u(t2)) − ∫ φ−(t)uμ(t)dt
T

0
− ∫ φ(t)uμ(t)dt

T

0
 

                        = F(u(t2)) − ∫ φ+(t)uμ(t)dt
T

0
 

                             ≥ F(u(t2)) − uμ(t1)Tφ+̅̅ ̅̅  

  F(u(t1)) + Tφ+̅̅ ̅̅ uμ(t1) ≥ F(u(t2)) ≥ min
t∈[γ0,η]

F(x) > −∞.                                                    (2.7) 

Using [H2] in Lemma 2.4 we get, exists ρ > 0, when x ∈ [ρ, +∞], 

F(x(t)) + Tφ+̅̅ ̅̅ xμ(t) < min
t∈[ρ0,η]

F(x(t)). 

From (2.7) we get u(t1) < ρ 

i. e.  

max
t∈[0,T]

u(t) < ρ, 

for all u ∈ D are satisfied. 

The proof is complete. 

3. Main results 

Theorem 3.1.  Ammuse 𝜑̅ > 0, and ℎ(𝑡) ≥ 0 for 𝑎. 𝑒. 𝑡 ∈ [0, 𝑇] with ℎ̅ > 0, there exist a constant M∗ =

2 ( max
γ0≤μ≤M1

|F(u)| + Th̅ +∥ u ∥∞ Tφ−̅̅ ̅̅ ),  such that  

  |𝑢̇|∞ ≤ M∗.                                                                             (3.1) 

Proof. If u attains its maximum over [0, T] at t1 ∈ [0, T], then u̇(t1) = 0 and we deduce from (2.1) that  

u̇(t) = λ ∫ [−f(u(s))u̇(s) − φ(s)uμ(s) + h(s)]ds,
t

t1

 

for all 𝑡 ∈ [𝑡1, 𝑡1 + 𝑇]. Thus, if 𝐹̇ = 𝑓, then 
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|u̇(t)| ≤ λ|F(u(t)) − F(u(t1))| + λ ∫ h(t)dt − λφ(t)uμ(t)
t1+T

t1

 

                       ≤ 2λ( max
γ0≤μ≤M1

|F(u)| + Th̅ +∥ u ∥∞ ∫ φ−(t)dt)
T

0
 

                       ≤ 2λ( max
γ0≤μ≤M1

|F(u)| + Th̅ +∥ u ∥∞ Tφ−̅̅ ̅̅ ) 

                  ∶= 𝜆𝑀∗, 

and then 

max
𝑡∈[0,𝑇]

|𝑢̇(𝑡)| < 𝑀∗, uniformly for t ∈ [0, T].                                           (3.2) 

Equation (3.2) implies that (3.1) holds. 

Let m0 = γ0 and m1 = ρ be two constants, then we see each possible positive T −periodic solution u to 

equation satisfies 

m0 < u(t) < m1, |u̇(t)| < M∗ for all t ∈ [0, T]. 

This implies that condition 1 of Lemma (2.1) is satisfied. Also, we can deduce that 

h̅ − φ̅xμ > 0, for x ∈ (0, m0] 

and  

h̅ − φ̅xμ < 0, for x ∈ [m1, +∞). 

Furthermore, we have 

(h̅ − φ̅m0
μ

)(h̅ − φ̅m1
μ

) < 0. 

Which gives that condition 2 of Lemma 2.1 holds. By using Lemma 2.1, we see that equation (1.1) has at 

least one T −periodic solution. 

Example 3.1: Consider the following equation 

 ẍ(t) −
1

x2 ẋ(t) + a(1 + 2 sin 2t) xμ(t) = cos 2t,                                     (3.3) 

where a, μ ∈ (0, +∞) are constants. 

Corresponding to (1.1), we have f(x) = −
1

x2 , φ(t) = a(1 + 2sin 2t), h(t) = cos 2t, and T = π. Clearly, h̅ =

0, and h(t) ≥ 0 for all t ∈ [0, T] with φ̅ = a > 0. Since η = (
h̅

φ̅
)

1

μ
= 0  and 

            F(x) = ∫ f(s)ds =
1

x
− 1,

x

1
                                                           (3.4) 

we have  

C0 =  F(s) = F(1) = 0 < +∞.s∈[A1,+∞)
sup

                                         (3.5) 

Obviously, (3.4) and (3.5) imply that assumptions of [H1] and [H2] hold. Thus, by using Theorem 3.1, we 

have that for each μ ∈ [0, +∞), equation (3.3) has at least one positive π −periodic solution. 
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