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Abstract: This paper considers an inverse problem for a logistic model with free boundary. This inverse problem
aims to identify the growth coefficient only depending on time from a fixed point measurement data. Based on a
fixed point argument, we prove the local in time existence and uniqueness of our inverse problem.
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1 Introduction

Free boundary problems are a kind of mathematical physics models with one unknown function that
defines this boundary. It has been found in a broad variety of physical applications, such as the one-phase
Stefan problem [18,15,3,14,1,6], the free boundary problems for predator-prey model [13], the information
diffusion in online social networks with time varying distance [20], ductal carcinoma in situ mathematical
model [21] and so on. In the last twenty years, there has been a few of work related to the related inverse
problems, see [7,9,10,13] and the references therein for more details. Such inverse problems are more
complicated than the traditional ones because of the unknown free boundary.

In this paper, we consider the following diffusive logistic model with free boundary [11]:

f u, = duy, = r(Ou(1-2), (x,t) € Qs
u,(0,t) = u(s(t),t) =0, t € (0,T),
s(0) =s,>0, (1.1)
u(x,0) = ugy(x), x € [0, s0],
s'(t) = —pu,(s(t), t), t € (0,7),

where Qs = {(x,1)|0 < x < s(t),0 < t < T}, s(t) represents the free boundary is unknown function.
System (1.1) can be used to depict information diffusion in online social networks, in which u(x, t) denotes
the density of influenced users at time t and distance x, K and d indicate the carrying capacity and diffusion
rate, respectively.
In this paper we couple to the equations the following additional the boundary observation on u:
u(0,t) =f(t) te[0,T], 1.2)

as our inversion input data to determine the unknown function r(t), which represents the intrinsic
growth rate in this model.

In [5], the authors proved showed the local in time existence and uniqueness of logistic model and
further obtained blow-up property about a free boundary model. The authors [11] proved a global existence
for a logistic equation with free boundary.

The last boundary condition s’ (t) = —pu,(s(t), t) on boundary s(t) is called Stefan condition, which is
widely used to describe phase transitions between solid and fluid states [2].

Recently, inverse source problems with a free boundary have received much attention. For example,
Snitko [11] proved the local in time existence and uniqueness for an inverse problem of determining an
unknown time-dependent leading coefficient in a parabolic equation with free boundary. Hussein, Lesnic,
Ivanchov and Snitko [8] investigated a multiple time-dependent coefficient identification thermal problem
with unknown free boundary under two additional integral conditions.

In this paper, we consider a coefficient inverse problem for system (1.1), which is a semi-linear model
with free boundary. On the other hand, we use the measurement at boundary point x = 0. In practical
applications our measurement data are less than the global measurement data. In this paper we will prove the

Published by World Academic Press, World Academic Union



244 Jiapeng Pan et. al.: An inverse problem for diffusive logistic equation with free boundary

local existence and uniqueness for our coefficient inverse problem of determining r(t) in (1.1) by the
measurement data (1.2).

The rest of our paper is organized as follows. In Section 2, we prove a local in time existence and
uniqueness result for the direct free boundary problem and show the solution in suitable Sobolev space
continuous dependence on T and r. In Section 3, we first transfer our inverse problem to an equivalent
problem. Then a local existence and unigqueness of the equivalent problem is obtained by the contraction

mapping.

2 Direct free boundary problem

In this section, we prove the existence local in time of the direct problem (1.1) in a suitable Banach
space. Meanwhile, we show a continuous property of the solution with respect to r and T, which is important
to consider the inverse problem of determining the unknown r.

Firstly, we make a change of variable to straighten the free boundary. Let Q = (0,1), Qt = Q X (0, T),

and
f=3g WD =vEy, 2.1)
system (1.1) can be rewritten as
|{ Vi — dszl(t) Vg — %EVE = r(t)v(l - %), &t) eQr,
ve(0,1) = v(1,1) =0, t € (0,T), 2.2)
V(E, 0) = VO(E)I E € ﬁ:
s(Os'(t) = —pve(1,0), t € (0, T),
where vy (§) = uy(x), and (1.2) is rewritten as
v(0,t) = f(t), t € [0,T] (2.3)
Let
h(t) = s(t)s’(t). (2.4)

Then, (v, h) further satisfies the following problem:
[ ve—da(vg - BMgv =rOv(1-%),  GVeQn

V(Er 0) = VO (E)I E € -(_l:
h(t) = —pve(1,1), te (0,1),
with
1
A(h) - Zfoth(‘t)d‘t+s% ’ (2 6)
B(h) = ————. '
2, h(t)dt+s3
We define
o 1 a
Xr = 22 Q) x €2*2[0, T, (2.7)
and
”(V' h)”XT = ”V”CHQ'H%(QT) + ||h||C%+%[0,T]. (28)

Theorem 2.1. Let v, € C2*%(Q), v{(1) < 0, r € C2[0, T]. Then there exists a sufficient small T, > 0 such
that the direct problem (2.5) has a unique solution (v,h) € Xt forany 0 < T < T,. Furthermore, we have the
following estimate

h <C|(T+T? a
11, )| x, T+ )Ilrllcim

+ Illcaveqa | (2.9)

Where C is a constant depending on Q, T, p and sg.

PI’OOf Define DM,T = VM,T X HM,T' Where

Vi = {9 € QD | 9G60) = vo(®), 191 ppgus < M)
L a c 2(Qr)
Hyr = {ﬁ € C2"2[0,T]| h() =h*,||h]| 1,« < M}, (2.10)
cz*2[0,T]
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where h* = —pv( (1) > 0. For given (9, h) € Dy 1, we consider
ve — dA(R)vge — B(R)&ve = r(0)9 (1 - %) &1 € Qr,
ve(0,0) = v(1,0) =0, te (0,1, (2.11)
v(§ 0) = v, (D), g€,
and
h(t) = —pve(1,1), te[0,T]. (2.12)

By the theory of linear parabolic equation, there is a unique solution v € C*****2(Qy) of system (2.11).

Then h € Cz*2[0, T] by (2.12).

Thus, the mapping

F:Dyt € X1 = X,
(W& 0, h(1) — (wWE D, h(®) (2.13)

is well defined.

We split the following proof into two steps.

Step 1. We prove F(Dy 1) € Dyt

We use the standard Schauder theory for parabolic differential equation with Neumann boundary, e.g.
Theorem 5.3 in [12] to obtain

sc (1=, “w)
IVl s _|| llegiom 17 ooy T Vollczeca)
<C ( 9% « >+ Vol|cz+acg ]
1712y (1911 g+ 191 )+ Ivollczveqay
<C (TM + T2M 2)||r||C 2 o] ||V0||C2+a(ﬁ)]. (2.14)
Also, from (2.12), we have
a < :
1] oz 0 S CIVEl azis o < OV v (2.15)
Letting M = 4C(||vo||cz+« ) and choosing T, > 0 sufficient small such that
C(TM + T?M? <M, 2.16
( M)l g <5 (2.16)
together with (2.16), we have
(v, ) [[x, < (2.17)

So, we have F(Dy 1) € Dy rforall 0 <T < T0

Step 2. We prove||F(¥,,h,) — F(v2,h,)|, < ~[1(92,5,) - (92, 02) .,

Let (95, ;) € Dyr, (Vi hy) = F(93, b)) (i = 1,2) and (V, H) := (v; — v3, hy — hy). Then, we have
— dA(hy)Ver — B(hy)&Ve = dvy g (A(Ry) — A(R))

+8v,6 (B(hy) = B(R2)) + r[(91 — 9)(1 — 01 +92))], (§.1) € Qr,

V:(0,t) =V(1,t) =0, t € (0,T), (2.18)
V(£,0) =0, EEN,
H(t) = —uVe(1,1), t €[0,T].
Then, applying Theorem 5.3 in [12] again, we obtain
V1] aranst g
< c[ 1A(R,) - A(R ]
[z, el G )|| (hy) — A(R 2)||C2[0T]
+C B(h B(h
l1v2ll s, 11 (R - (z)nczm

+C|||r g U, —D 1——v+v z_]
il 2., 1652 = 22)(1 =2 B +02D) s,

sc[n all vt AR = ARl g

+C T2 11B(hy) — B(hy)l|

CZ[OT]]
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+C[Tg (ﬁ—ﬁ « AP 4Dl e B —D _)] 2.19
I ”(:2[0,T] |19, zllca,z(QT) 191 zIICa,Z(QT)II 1 zllca,z(QT) (2.19)
Obviously,
1 1
2 [  hyde+s3 2 hydr + s?
2|f, (Rp=Riy)ar|

|A(fll) - A(Ez)| =

Tz Jy Ryde+s3)(2 fy Rpdr+s3)’ (2.20)
which leads to
t
~ ~ ~ ~ 1
14GR) = ARz, = || G = Ry — —
cz[o,T] 2 A «
J o 2 J, hdt + 55)(2 [ hpdt + 55) o]
~ ~ 3 ~ ~
< - @ <C(CT: - , _
< CTIIR = Rall g ) < TRy =Rl e (2.21)
Similarly, we have
A A B, R,
|B(h1) = B(hs)| = |—+ -~ -
2 [y dT +s5 2 [ hydt + s§
|2((’A11 f;(ﬁz—ﬁ1)df—(ﬁz—ﬁ1) f; H1‘17))"'55 (51—’72)|
= = r . (2.22)
(2 fy hidT+s3)(2 [, RzdT+55)
and then
B(h,) — B(h
|| ( 1) ( 2)||C%[0,T]
t t
< C||h1f (hy — hy)dr + (hy — hl)f hidt + s3(hy — hy) || «
0 0 CZ[O,T]
sc@'ﬁ « IRy =Pyl « Ry =Byl « )
Il IHCE[O,T]” 1 2||CE[0,T]+|| 1 ZHCE[O,T]
1
SC(TZE o =Rl na 4+ TRy = Ryll 1.0 )
|| 1||C%+7[0,T]” 1 2||C%+§[O'T] || 1 2||C%+7[0,T]
1
< 2 2V, — A @ .
< c(T2M +T3) ||y oll g (2.23)
Therefore, from (2.14), (2.19), (2.21) and (2.23), we have
2n2 _
WVl sz, < C|(TM 425N g+ vollgoreqey)|
3 5 . .
(T§+T§M + T) s = Byl 1,
cz*z[0,T]
C(T +T?*M a U, — D a
+ ( + )”r“CE[O,T]”vl v2||C2+a'1+7(QT)
3 5
> 5 2r2 _
< c{[(rz+TzM + T) ((TM +T2MDrl g ||U0||C2+a(ﬂ))]
+(T + T*M « }x[ﬁ—ﬁ «
( Vil g i | =Rl e
+||'l71 - v2||C2+a'1+g(Q_T):|
< B (il g+ volloveqa ) (01 ) = (22, R, (2.24)
where
3 5 7 9
Bu(T) = (T + T2 + TiM + T?M + T:M? + T3M? + T2M?), (2.25)
satisfies
lim By () = 0. (2.26)
Also, we have
« < « < . :
||H||C%+E[O‘T] - C||V5||C1+a%+i(érr) — C||V||C2+a,1+%(QT) (2 27)

So, from (2.24) and (2.27), we have
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1V, H)llx, < CBu(T) (||r||cg[0 0t ||vo||c2+“(ﬁ)) (21, B1) = (92, 25, - (2:28)
We can choose T sufficiently small such that

1
CﬁMU")(nrnC o o FIollceve) < 5

to obtain [|F(01, 1) = F (02, B )|, <3 11(00, 1) = (82, R,
Therefore the Banach fixed point theorem concludes that for a small time T, there exists a unique solution

a _ 1 «a
(v,h) € C***™2(Q;) x €2*2[0, T]. This completes the proof of Theorem 2.1.  m
In order to study our inverse problem, we also need the following better regularity for v under suitable
condition on v.

Theorem 2.2. Let v, € C37*(Q), v4(1) < 0,7 € Cz[0,T]. Then forall 0 < T < T, we have the following
estimate for :

VI srazee

272(Qr)
2 11
<c[( 2477 ) Il |

cz[o,T]
3
[( Tz + T2+T2+T4)||r||2E ]
z[0,T]

3
+C [Tz|Irllcg[mllvollcz+a@ +T2firl] g IvolEasa)

+C [Ivol22raqgy + 1vollcasaga | (230)
where C is a constant depending on Q, T, u and s,.
Proof. Let v = g. Then by (2.5) we obtain

I ge — dA(h)gg; — B(h)g — B(h)ége = Tv — 21wy, (£,8) € Qr,

2
9(0,8) =0,g:(1,t) = Z—d t e (0,7), (2.31)
9(§,0) =v($), §eq
Then, by Theorem 5.3 in [12], we obtain
<cC a
lgll 2+a1+2(Q ) [HTHC 2[0,T] ”vf”(;ai i HTHCZ[OT vl "‘_(() )|| f”C Z(Qr )]
+C|IIRIPsa  +Vllco+aca
[n 21 o+ I6llcer (m]
1 3
< 2 a a 2 a 2
<C [Tz|lrl|C2[O,T]||v||C2+a'1+2(Q_T) +T2||T||C5 ” ” z+a1+7(Q )]
+C |IhI?1 « + ||v] aren | 2.32
[n e ¥ IWollcar (m] (232)

Furthermore, substituting (2.9) into (2.32), we have

1
a < 2 a 2 a arp
00 sty = [Pz (4T il )|

2
3
2 a 2 a aro
ciTairlle ((T FTOI g+ lvollcar @) ]

¢ <(T +TA)rll «
Ccz2[0,T]

2
+ ||Uo||c2+“(ﬁ)> ||V(')||c2+“(ﬁ)]

9 11
< C[(T7+T7> IrlPa ] +C[(T2 4 T2 472 +T4) e ]
cz[o,T] 2[o,1]

1
+C[r2rll s Ivolleara T2 |C;[O‘T]||vo||cz+a@]

+C [I1vo122+aggy + 1vollcasa|. (233)
This completes the proof.
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3. Inverse Problem

We are now in a position to prove the local existence and uniqueness of our inverse problem (1.1) and
(1.2), or its equivalent form (2.2) and (2.3). We will proceed the proof by the contraction mapping.
From (2.2) and (2.3), we deduce

v,(0,t) — d Szl(t) vee(0,0) = r()f (1 - L. (3.1)

Therefore,

r() == |f'© -d

2(t)
with p(e) = f(©)(1 - L.
Now we show the orlglnal inverse problem is equivalent to the inverse problem (2.2) and (3.2), i.e. the

following theorem.
1

Theorem 3.1. Let u(x, t) = v(§,t), s(t) = (2 fth(‘r)d‘l: + so) &= (—t) Then for sufficient small T > 0,

the inverse problem (L.1) and (1.2) has a solution (w, s,7) € C2***3(Q,) x czt 2[0, T] Cz[0,T] |f and
only if the inverse problem (2.2) and (3.2) has a solution (v, b, ) € C2***2(3y) x cz* 2[0,T] x C2[0,T].

Proof. This theorem can be proved by using the same method in [19]. For brevity, the detailed proof is
omitted.

Theorem 3.2. Let v, € C***(Q), f(t) € C“%[O, T] such that 0 < f(t) < K. Then there exists sufficient
a _ 1, a
small T; > 0 such that the problem (2.2) and (3.2) has a solution (v, h,r) € C****2(Q;) x €2*z[0,T] x

Cz[0,T].
Remark 3.1. K indicates the carrying capacity. By the maximum principle, we can obtain 0 < u < K. So
our assumption 0 < f(t) < K is acceptable in pratice.
Proof. Step 1. We define the mapping.
Let
Ryr = {f € CEO,TI IFll g < N}. (3.3)
For given # € Ry , we consider

v, — dA(R)vge — B(WEve = (v (1-2), (€.) € Qr,

ve(0,0) =v(1,t) =0, t € (0,7), (3.4)
U(f, 0) = UO(E): f € ﬁ:
and
h(t) = —uve(1,t), te[o,t]. (3.5)

By Theorem 2.1, we know that there exists a sufficient small T, > 0 such that the problem (3.4) and

a 1 a [24
(3.5) has a unique solution(v, k) € C****2(Q;) x Cz*z[0, T]. Then we obtain r € Cz[0, T] by (3.2). So,
the mapping

G:Ryr c Cz[0,T] - C2[0,T],

7(t) v r(t) (3.6)

is well defined.
Step 2. We prove

< C[(T?+T*N3+N +1] (3.7)

Wl z4qa42 5

2(Qr)
for sufficiently small T, where w = Vg
Obviously, by (3.4) we know that w satisfies

— dA(Rwgs — 2B(M)w — B(R)éwg +=Fvw —fw = —=ivE, (£,t) € Qr,
wg(0,6) = 0,w(1,6) =, te(0,T), (38)

\ w(&, 0) = vy (§), {eq,
Then, by Theorem 5.3 in [12] again, we obtain
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2 2
W asanss o) <€ [||r||czm R 1P L G o (LA R
Applying Theorem 2.1 to (3.4), we have
Wl zraneg p <€ |+ TN g+ Iollczveqay | (3.10)
By (3.5), we obtain the following estimate for h:
1Rl avg < ClVell et | < CT|wl| ol (311)

Substituting (3.10) and (3.11) into (3.9) yields

2
< Pl « 2 a o
W] st < [nrnmﬂ (e g, + ol ]

1
+C |21 g 10 vt + Il Lo
1

<C [(T2 + T*)N3 + N + Tz||h|| RN - (3.12)
By Theorem 2.2, we have
T2||h|| 1+— [0.7] = CT2||U5|| 2+a1+7(— ) = CTZHUH c3tan +2(Q )
5
< (T3 [(TE + T7> 171 ] (T3 [(Tf T2 4T 4 74) 1712 ]
cz2[0,T] cz[o,T]
1 1 3
2.2 . B Sia 2
42|21l g (vollcragy + 2Pl IvolEaseq)|
1
+CT2 (196 ]122+aggy + l1vollcavaa |
1
<CTz(N3*+ N2+ N+1) (3.13)
1
So, for given N we can choose sufficient small T such that CTz2(N3 + N2+ N + 1) < %and then obtain
W] pegrse < CI(T*+T*)N3+N+1] (3.14)
™ 2(Qr)
Step 3. We prove the existence of the fixed point of mapping G.
First, we prove G(Ryr) C Ry 1.
By (3.2) and noticing that 0 < f(t) < K, we obtain
a < a
17112,y < CIF' () = d 5 vee @01 o
< a
<c (||f||cl+5 +Iveell as,
<c(t+imwll e
C€™2(Qr)
< C(1+TIWI vz, ) (3.15)
By substituting (3.14) mto (3 15), we have
”r”cg[oﬂ < C+CT[(T? +T*)N3 + N +1]. (3.16)
2 ’
Then we can choose N > 2C and sufficient small T > 0 to obtain
[I[| « <N, (3.17)
cz[0,T]
i.e. G(RN'T) C RN,T.
Next, we prove
. . 1ia &
— a < - — a
G (1) G(Tz)nci[oﬂ =3 71 7'2||C7[01T] (3.18)

for given 7y and 7, € Ry 1 .
Let (v;, h;)(i = 1,2) be two solutions of the system (2.5) corresponding to #; and 7, respectively, and
letr, = G(#,), 2 = G(7). Then by (3.2) we know that ;- 1, satisfies

ri-1, = ——=[A(h)v1,6£(0,1) — A(h) v £¢(0,1)]

d
P
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) [A(h1)171 ££(0,1) —v,£:(0,t) — (A(h1) - A(hz))vz,ff(ol t)] (3.19)
Let (V,H) :== (v, — vy, hy — h,). By (3.4) and (3.5), we obtain
( Ve — dA(h1)V§§ - B(hl)S(Vf =d (A(h1) - A(hz))vz,ff
+(B(hy) — B(hy))§va g + AV + (R — v, — 2 (Rvf —#v3), (,6) € Qr,
Ve(0,8) =0,V(L,0) =0, t € (0,7, (3.20)
V(§,0) =0, §EeQ,
H(t) = —uVe(1,0), t € [0,T].

Then, by the standard theory for the linear parabolic equation we obtain
a < a — a
WVl st = €2l as o 1AG) = AGDIL 2|

+C [Ivaell oz, ||B(h1> Bkl g,

+C [urlv . 2( =2 )02+ 2 0E = vD) | us ] 3.21)

Similar (2.21) and (2.23), we have
A(hy) — A(h a < CTz||lhy — h 3.22
4G = 4Gl g < CTolIA = Bl s (3:22)

— « < 2 :
1BCh) =B ¢ < C(T24T2) 11hs = hall sy (3.33)
Additionally,

I e S CIVEI atie o S IV ot o (3.24)

Then, by (3.21)-(3.24) and ||(v;, h))|| < C(i = 1,2) due to Theorem 2.1, where C is dependingon Q, T,
N, u and v,, we further have

< C[(TZ + T2+ TD)||H]| s . ]

V1 ovasst g

c2*2[0,1]
€U IV st )+ T = Fall g 11 ]
+C [73"||f1||cgml]||v1 =Vl vt 10+ V2l vy )]]
<c [(TE +T2+T2) + TNV ovanst g )+ TR = f2||C%[0’T]]. (3.25)
Therefore, for sufficient small T, we have
WVl ovasst ) S CTIF = all e (3:26)

On the other hand, by (3.19) we have
s =rall g =€ (Ionge = vagell as | + 114D — Al )

€z[0,T]
< a Tz||H 2 27
= (T 1 e ) (327)
Thus, by (3.24), (3.26) and (3.27) we find that
5
s =rall g < C(T+T2) 1A = Fall o (3.28)

which implies (3.18), if we choose T sufficient small such that
c(r+ Tg) <2
Therefore the Banach fixed point theorem concludes that for a small time T, there exists a unique
solution r € C%[O,T]. For given r € C%[O, T], we have a unique solution (v,h) € CZ+“'1+%(QT) X
C%J'%[O, T] by Theorem 2.1, which completes the proof of Theorem 3.2. [ ]
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