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Abstract  Wavelet analysis is a recently developed mathematical tool in applied mathematics.  In this paper, we 

proposed the wavelet based Galerkin method for the numerical solution of one dimensional elliptic problems using 

Hermite wavelets.  Here, Galerkin bases are constructed Hermite functions which are orthonormal bases and these 

are assumed bases elements which allow us to obtain the numerical solutions of the elliptic problems.  The obtained 

numerical solutions are compared with the existing numerical methods and exact solution. Some of the test problems 

are considered to demonstrate the applicability and validity of the purposed method.  
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1. Introduction 

One dimensional elliptic problem occurs frequently in the fields of engineering and science. In most 

cases, we do not always find the exact solutions for these equations via analytical methods. In this case, it is 

very meaningful to give the high precision numerical solutions for this kind of problem by numerical 

methods. Recently, some of the numerical methods are used for the numerical solutions of boundary value 

problems.  For example, Haar wavelet method [1], Legendre wavelet collocation method [2], Wavelet-

Galerkin method [3], Laguerre wavelet Galerkin method [4] etc. 

Wavelets theory is a new and has been emerging tool in applied mathematical research area. Its 

applications have been applied in a wide range of engineering disciplines; particularly, signal analysis for 

waveform representation and segmentations, time-frequency analysis and fast algorithms for easy 

implementation. Wavelets have generated significant interest from both theoretical and applied researchers 

over the last few decades.  The concepts for understanding wavelets were provided by Meyer, Mallat, 

Daubechies, and many others, [5]. Since then, the number of applications where wavelets have been used has 

exploded. In areas such as approximation theory and numerical solutions of differential equations, wavelets 

are recognized as powerful weapons not just tools.   

In general it is not always possible to obtain exact solution of an arbitrary differential equation. This 

necessitates either discretization of differential equations leading to numerical solutions, or their qualitative 

study which is concerned with deduction of important properties of the solutions without actually solving 

them. The Galerkin method is one of the best known methods for finding numerical solutions of differential 

equations and is considered the most widely used in applied mathematics [6]. Its simplicity makes it perfect 

for many applications. The wavelet-Galerkin method is an improvement over the standard Galerkin methods. 

The advantage of wavelet-Galerkin method over finite difference or finite element method has lead to 

tremendous applications in science and engineering.   An approach to study differential equations is the use 

of wavelet function bases in place of other conventional piecewise polynomial trial functions in finite 

element type methods. 

In this paper, we developed Hermite wavelet-Galerkin method (HWGM) for the numerical solution of 

differential equations and are based on expanding the solution by Hermite wavelets with unknown 

coefficients. The properties of Hermite wavelets together with the Galerkin method are utilized to evaluate 

the unknown coefficients and then a numerical solution of the differential equation is obtained. 

The organization of the paper is as follows.  In section 2, Preliminaries of Hermite wavelets are given.  

Hermite wavelet-Galerkin method of solution for the elliptic problem is given in section 3. In section 4 

Numerical results are presented.   Finally, conclusions of the proposed work are discussed in section 5. 
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2. Preliminaries of Hermite wavelets 

Wavelets constitute a family of functions constructed from dialation and translation of a single function 

( )x  called mother wavelet. When the dialation parameter a  and translation parameter b  varies 

continuously, we have the following family of continuous wavelets [7, 8]: 

1/2

, ( ) =| | ( ), , , 0.a b

x b
x a a b R a

a
  

    

If we restrict the parameters a  and b  to discrete values as 0 0 0 0 0= , = , > 1, > 0.k ka a b nb a a b 
 

We have the following family of discrete wavelets 
1/2

0 0, ( ) = | | ( ), , , 0,k

k n x a a x nb a b R a       

where nk ,  form a wavelet basis for )(2 RL . In particular, when 2=0a  and 1=0b ,then )(, xnk  forms an 

orthonormal basis. Hermite wavelets are defined as  

 

22 1
(2 2 1), <, ( ) = 1 12 2

0, otherwise

n m

k

n nkH x n xx m k k



      



 (1) 

2
( )H H xm m


                                                            (2) 

where 1.,0,1,= Mm   In eq. (2) the coefficients are used for orthonormality. Here )(xH m  are the 

second  Hermite polynomials of degree m with respect to weight function 
21=)( xxW   on the real line 

R  and satisfies the following reccurence formula 1=)(0 xH , xxH 2=)(1 , 

           
( ) = 2 ( ) 2( 1) ( )

2 1
H x xH x m H xmm m

 
 

, where 0,1,2,=m .                       (3) 

For 1&1  nk in (1) and (2), then the Hermite wavelets are given by 

1,0

2
( )x


 , 

1,1

2
( ) ( 4 2)x x


  , 

2

1,2

2
( ) (16 16 2)x x x


   , 

3 2

1,3

2
( ) (64 96 36 2)x x x x


    , 

4 3 2

1,4

2
( ) ( 256 512 320 64 2)x x x x x


      

And  so on. 

 

2.1 Function approximation 

We would like to bring a solution function  ( )u x  under Hermite space by approximating ( )u x  by 

elements of Hermite wavelet bases as follows, 

                                                 , ,

1 0

( ) n m n m

n m

u x c x
 

 

                                                       (4) 

where   ,n m x  is given in eq. (1). 

We approximate ( )u x  by truncating the series represented in Eq. (4) as, 
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                                                     
1 12

, ,

1 0

( )

k M

n m n m

n m

u x c x

 

 

                                                   (5) 

where   c  and     are   
1

2 1
k

M


  matrix. 

 

2.2 Convergence analysis 

Theorem 1. A continuous function ( )u x  in  2 0 , 1H  defined on  0 , 1  be bounded, then the Hermite 

wavelets expansion of ( )u x  converges to it [9]. 

 

3. Method of solution 

Consider the differential equation is of the form, 

                                             
2

2

u u
u f x

x x
 

 
  

 
                                                     (6)                                              

With boundary conditions: 

    buau  1,0
                                                                

(7) 

Where  ,   are functions of x or u or constants and  xf  is function of x or constant. Write the 

equation (6) as 

 
2

2
( )

u u
R x u f x

x x
 

 
   

 
                                         (8) 

where  xR   is the residual of the eq. (6). When   0xR  for the exact solution, )(xu  only  will 

satisfy the boundary conditions.  

)(xu defined over [0, 1) can be 

expanded as a modified Hermite wavelet, satisfying the given boundary conditions which is involving 

unknown   

 
1 12

, ,

1 0

( )

k M

n m n m

n m

u x c x

 

 

                                                           (9) 

where  , 'n mc s  are unknown coefficients to be determined.  

Differentiating eq. (9) twice with respect to  x  and substitute the values of  

2

2
, ,

u u
u

x x

 

 
 in eq. (8). To 

find , 'n mc s  we choose weight functions as assumed bases elements and integrate on boundary values 

together with the residual to zero [10].  i.e.    
1

1,

0

0m x R x dx  , 0, 1, 2,......m  then we obtain a 

system of linear equations, on solving this system, we get unknown parameters. Then substitute these 

unknowns in the trail solution, numerical solution of eq. (6) is obtained. 

4. Numerical Experiment 

Problem 4.1 First, consider the second order equation [11],          

                                                   10,2

2

2





xxu

x

u
                                                    (10) 

With boundary conditions:   

    01,00  uu                                                               (11) 
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The implementation of the eq. (10) as per the method explained in section 3 is as follows: 

The residual of eq. (10) can be written as:  

  2

2

2

xu
x

u
xR 




                                               (12) 

Now choosing the weight function   (1 )w x x x   for Hermite wavelet bases to satisfy the given 

boundary conditions (11), i.e.  

     x w x x ψ  

1,0

2
( ) (1 ) (1 )( ) x x x x xx 


    

1,0
ψ , 

1,1 1,1

2
( ) ( ) (1 ) ( 4 2) (1 )x x x x x x x


     ψ  

2

1,2 1,2 (1 )
2

( ) ( ) (16 16 2) (1 )x xx x x x x x


     ψ  

Assuming the trail solution of (10) for   1k   and 3m   is given by 

         1,0 1,0 1,1 1,1 1,2 1,2( )u x c x c x c x  ψ ψ ψ                                     (13)  

Then the eq. (13) becomes           

   
2

( ) 1,0 1,1 1,2

2 2 2
(1 ) ( 4 2) (1 ) (16 16 2) (1 )u x c c cx x x x x x x x x

  
         (14) 

Differentiating eq. (14) twice w.r.t. x  we get, 

2 3 2

1,0 1,1 1,2

2 2 2
(1 2 ) ( 12 12 2) ( 64 96 36 2)c c c

u

x
x x x x x x

  
  




        (15) 

       
2

1,0 1,1 1,2

2

2

2 2 2
( 2) ( 24 12) ( 192 192 36)c c c

u

x
x x x

  
 





                          (16)  

Using eq. (14) and (16), then eq. (12) becomes, 

  2

2 2

1,0 1,1 1,2

1,0 1,1 1,2

2 2 2
( 2) ( 24 12) ( 192 192 36)

2 2 2
(1 ) ( 4 2) (1 ) (16 16 2)

R c c c

c c c

x x x x

x x x x x x x x

  

  

 

 

       

 
      

 

 

       

2

2 22 3 2( 2) ( 4 6 26 12)
1,0 1,1

2 4 3 2( 16 32 210 194 36)
1,2

R x c x x c x x x

c x x x x x

 



          

     

                                      

(17) 

This is the residual of eq. (10).    The “weight functions” are the same as the bases functions. Then by 

the weighted Galerkin method, we consider the following: 

                        
1

1,

0

0m x R x dx ψ , 0, 1 ,2m                                            (18) 

For 0, 1, 2m   in eq. (18),   

    
1

1,0

0

0x R x dx ψ ,     
1

1,1

0

0x R x dx ψ ,    
1

1,2

0

0x R x dx ψ  

           1,1 1,2 1,3( 0.3820) (0) (0.4487) 0.0564 0c c c                                                (19) 

1,1 1,2 1,3(0) (0.9943) (0) 0.0376 0c c c                                               (20) 

1,0 1,1 1,2(0.4487) (0) (2.3686) 0.0591 0c c c                                              (21) 
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We have three equations (19) – (21) with three unknown coefficients i.e. 0,1c , 1,1c and 2,1c .  By 

solving this system of algebraic equations, we obtain the values of 1,0 0.1522c   , 1,1 0.0378c    and 

1,2 0.0039c   .  Substituting these values in eq. (14), we get the numerical solution; these results and 

absolute error =    a eu x u x  (where  au x  and  eu x  are numerical and exact solutions respectively) 

are presented in table 1 and figure 1 in comparison with exact solution of eq. (10) is  

2sin ( ) 2sin (1 )
( ) 2

sin (1)

x x
u x x

 
   . 

 
Table 1: Comparison of numerical solution and exact solution of the problem 4.1 

*LWGM : Laguerre wavelet-Galerkin method 

 
 

x 
Haar 

solution [11] 
HWGM 

Exact 

solution 

Absolute Error 

Haar solution HWGM 

0.125 -0.0121 -0.0119 -0.0119 0.0002 0.000 

0.375 -0.0340 -0.0334 -0.0334 0.0006 0.000 

0.625 -0.0440 -0.0435 -0.0435 0.0005 0.000 

0.875 -0.0261 -0.0259 -0.0259 0.0002 0.000 

 

Fig. 1: Comparison of numerical and exact solutions of the problem 4.1. 

 x                  

Numerical solution  

Exact 

solution 

Absolute Error 

FDM 
LWGM*   for 

1 & 5k M   

HWGM for 

FDM 

LWGM

 1 & 5k m 

 

HWGM

 1 & 5k m 

 

1 & 3k m 

 

1 & 5k M 

 

0.1 -0.009481 -0.0095247 -0.009536 -0.009562 -0.009555 7.40e-05 3.00e-05 7.00e-06 

0.2 -0.018768 -0.0188780 -0.018895 -0.018904 -0.018897 1.29e-04 1.94e-05 7.00e-06 

0.3 -0.027466 -0.0276135 -0.027643 -0.027636 -0.027635 1.69e-04 2.14e-05 1.00e-06 

0.4 -0.034990 -0.0351476 -0.035179 -0.035171 -0.035180 1.90e-04 3.28e-05 9.00e-06 

0.5 -0.040564 -0.0407250 -0.040734 -0.040734 -0.040759 1.95e-04 3.41e-05 2.50e-05 

0.6 -0.043233 -0.0434003 -0.043369 -0.043425 -0.043416 1.83e-04 1.56e-05 9.00e-06 

0.7 -0.041869 -0.0420382 -0.041974 0.042031 -0.042025 1.56e-04 2.79e-05 6.00e-06 

0.8 -0.035186 -0.0353301 -0.035273 -0.035294 -0.035302 1.16e-04 2.57e-05 8.00e-06 

0.9 -0.021752 -0.0218298 -0.021544 -0.021803 -0.021815 6.30e-05 1.48e-05 1.20e-05 
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Problem 4.2 Next, consider another differential equation [1]    

                                                    

2

2
1, 0 1

u u
x

x x

 
    

 
                                            (22) 

With boundary conditions:   

    01,00  uu                                                                       (23) 

which has the exact solution   













1

1

e

e
xxu

x

.
 

By applying the method explained in the section 3, we obtain the constants 1,0 0.4387c  , 

1,2 0.0361c   and 1,3 0.0023c  .  Substituting these values in eq. (14) we get the numerical solution. 

Obtained numerical solutions are compared with exact and other existing method solutions are presented in 

table 2 and figure 2.  

 
Table 2: Comparison of numerical solution and exact solution of the problem 4.2 

 

 
Fig. 2: Comparison of numerical and exact solutions of the problem 4.2. 

 

 x                  

Numerical solution  

Exact 

solution 

Absolute Error 

FDM 
LWGM*   for 

1 & 5k M   

HWGM for 

FDM 

LWGM

 1 & 5k m 

 

HWGM

 1 & 5k m 

 

1 & 3k m 

 

1 & 5k M 

 

0.1 0.037255 0.038699 0.038816 0.038824 0.038793 1.54e-03 9.04e-05 3.10e-05 

0.2 0.068235 0.071137 0.071109 0.071158 0.071149 2.91e-03 1.20e-05 9.00e-06 

0.3 0.092313 0.096385 0.096359 0.096414 0.096389 4.08e-03 5.00.e-06 1.00e-06 

0.4 0.108799 0.113756 0.113748 0.113779 0.113769 4.97e-03 1.30e-05 1.00e-05 

0.5 0.116933 0.122449 0.122457 0.122457 0.122459 5.53e-03 1.00e-05 2.00e-06 

0.6 0.115881 0.121538 0.121569 0.121541 0.121546 5.66e-03 8.00e-06 5.00e-06 

0.7 0.104724 0.110016 0.110056 0.110018 0.110020 5.30e-03 4.00.e-06 2.00e-06 

0.8 0.082451 0.086755 0.086792 0.086758 0.086764 4.31e-03 9.00e-06 6.00e-06 

0.9 0.047950 0.050539 0.050538 0.050541 0.050545 2.59e-03 6.00e-06 4.00e-06 



S. C. Shiralashetti et. al.：Hermite Wavelet based Galerkin Method for the Numerical Solutions of  

One Dimensional Elliptic Problems 

 

 

JIC email for contribution: editor@jic.org.uk 

258 

 

Problem 4.3 Finally, consider the singular boundary value problem [12],  

10,49
1 32

2

2










xxxxu

x

u

xx

u
                             (24) 

With boundary conditions:   

    01,00  uu                                                                       (25) 

which has the exact solution 
32)( xxxu   

As in the previous example, we obtained the constants 1,0 0.4429c  , 1,2 0.2217c   and 

1,3 0.0001c   .  Substituting these values in eq. (14) we get the numerical solution. Obtained numerical 

solutions are compared with exact and other existing method solutions are presented in table 3 and figure 3.  

 
Table 3: Comparison of numerical solution and exact solution of the problem 4.3 

 

 

 

 
Fig. 3: Comparison of numerical and exact solution of the problem 4.3. 

 

 x                  

Numerical solution  

Exact 

solution 

Absolute Error 

FDM 
LWGM   for 

1 & 5k M   

HWGM for 

FDM 

LWGM

 1 & 5k m 

 

HWGM

 1 & 5k m 

 

1 & 3k m 

 

1 & 5k M 

 

0.1 -0.014709 0.009482 0.008949 0.008988 0.009000 2.37e-02 4.82e-04 5.10e-05 

0.2 -0.013726 0.032067 0.031941 0.032156 0.032000 4.57e-02 6.70e-05 5.90e-05 

0.3 -0.002584 0.063049 0.062954 0.063277 0.063000 6.56e-02 4.90e-05 4.60e-05 

0.4 0.015387 0.096028 0.095977 0.096101 0.096000 8.06e-02 2.80e-05 2.30e-05 

0.5 0.036564 0.125018 0.124996 0.125015 0.125000 8.84e-02 1.80e-05 4.00e-06 

0.6 0.056572 0.144061 0.144008 0.144363 0.144000 8.74-02 6.01e-05 8.00e-06 

0.7 0.070066 0.147039 0.147009 0.147409 0.147000 7.69e-02 3.90e-05 9.00e-06 

0.8 0.070568 0.128037 0.128003 0.128241 0.128000 5.74e-02 3.70e-05 3.00e-06 

0.9 0.050294 0.081075 0.080996 0.081132 0.081000 3.07e-02 7.50e-05 4.00e-06 
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Problem 4.4 Finally, consider another singular boundary value problem [13]    

                         

2
5 4 2

2

8
44 30 , 0 1

u u
xu x x x x x

x x x

 
       

 
                                (26) 

With boundary conditions:  

   0 0, 1 0u u                                                                    (27) 

which has the exact solution   3 4y x x x   . 

By applying the method explained in the section 3, we obtain the constants and substituting these values 

in eq. (14) we get the numerical solution. Obtained numerical solutions are compared with exact and other 

existing method solutions are presented in table 4 and figure 4.  

 
Table 4: Comparison of numerical solution and exact solution of the problem 4.4 

x 
Numerical solution Exact 

solution 

Absolute error 

FDM HWGM FDM HWGM 

0.1 0.024647 -0.000900 -0.000900 2.55e-02 0 

0.2 0.024538 -0.006401 -0.006400 3.09e-02 1.00e-06 

0.3 0.016024 -0.018904 -0.018900 3.40e-02 4.00e-06 

0.4 -0.000072 -0.038407 -0.038400 3.83e-02 7.00e-06 

0.5 -0.022021 -0.062512 -0.062500 4.05e-02 1.20e-05 

0.6 -0.045926 -0.086417 -0.086400 4.05e-02 1.70e-05 

0.7 -0.065532 -0.102920 -0.102900 3.74e-02 2.00e-05 

0.8 -0.072190 -0.102420 -0.102400 3.02e-02 2.00e-05 

0.9 -0.054840 -0.072914 -0.072900 1.81e-02 1.40e-05 

 

Table 4: Comparison of numerical solution and exact solution of the teat problem 4.4. 

5. Conclusions 

In this paper, we made an attempt for obtaining numerical solution of one dimensional elliptic problem 

by Galerkin method using modified Hermite wavelets. From the above tables and figures, which we 

observed that the comparison of the numerical solutions obtained using proposed method is better than FDM, 

LWGM and nearer to the exact solution.  As increasing the values of M , we get more accuracy in the 

numerical solution which represented in the above tables. Hence, the proposed method is effective for 

solving differential equations. 
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