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Abstract. In this paper, we investigate the local stability and Hopf bifurcation analysis in a predator-prey model with 

square root response function and two time delays. By choosing the two delays as the bifurcation parameter and by 

analyzing the corresponding characteristic equations, the conditions for the stability and existence of Hopf bifurcation for 

the system are obtained. Finally, the corresponding numerical simulations are carried out to support the theoretical 

analysis. 
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1. Introduction  

The interaction between the predator and the prey is the fundamental structure in population dynamics. 

Predator-prey models have been widely researched in both ecology and mathematical ecology[1-7]. There has 

been a great and continuing interest in predator–prey models with time delay, functional response, etc. The 

effect of these factors has explained more richer and complicated dynamics. 

Time delay is a natural phenomenon which exists universally and unavoidably in nature. In biological 

systems, such as the gestation process of species, the migration process of species, the digestion and 

transformation process of species after capture of prey and its own mature time, etc, they all belong to time 

delay phenomena[8-12]. In [8], Song et al. presented a predator–prey system with stage structure and time 

delay for the prey. In [10], Peng and Zhang considered a delayed predator-prey system with Holling type III 

functional response incorporating a prey refuge and selective harvesting. In [12], Hao et al. studied a diffusive 

single species model with stage structure and strong Allee effect subject to homogeneous Neumann boundary 

condition. From the discussions of above references, we found that time delay destroyed the stability of the 

system at the equilibrium point and caused the periodic fluctuations of the species, which can lead to various 

forms of bifurcation behavior or chaotic movement in the related systems. Therefore, in order to maintain the 

ecological balance, it is meaningful to fully study the factor of time delay. 

In the predator-prey model, one of the important factors affecting population dynamics is functional 

response, which reflects the predatory ability of predators. In [13], Salmanet al. researched a discrete predator-

prey system with square root functional response, they derived the flip and Niemark-Sacker bifurcations. In 

[14],  Braza analyzed a predator-prey model with square root functional responses in which a modified 

Lotka–Volterra interaction term is used as the functional response of the predator to the prey. Based on the 

above considerations, in this paper, we shall investigate the dynamic analysis in a predator-prey model with 

two time delays and square root functional response. 

The remainder of this paper is organized as follows. In Section 2, we present a general description for the 

predator-prey model. In Section 3, the local stability and the existence of Hopf bifurcation at the positive 

equilibrium are discussed. In Section 4, we perform some numerical simulations which are revealed to illustrate 

the validity of the theoretical results. Finally, making a brief conclusion in Section 5.  

2. The delayed predator-prey model with square root response function 

In [14], Braza proposed a predator–prey model with square root functional responses: 
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where )(tx and )(ty can be described as the population densities of prey and predator at time t , s denotes 

the death rate of the predator, and c is the biomass conversion or consumption rate. He studied the dynamics 

of the square root system and compared with the dynamics of predator–prey systems that used a typical Lotka–

Volterra interaction term.  

However, the factor about time delay often appeared in actual situation. In this paper, motivated by Braza 

[14]and Zhu et al. [15], we introduce two time delays and square root functional responses into the following 

predator-prey model: 
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where the parameters sctytx ,),(),(  are defined in system (1). 1 is the time delay due to the gestation of 

prey, and 
2  is the feedback delay,that is to say, the predator takes the time to convert the food into its growth.   

3. Local stability and Hopf bifurcation analysis 

In this section, we shall discuss the stability of system (2) at the positive equilibrium and the existence of Hopf 

bifurcation by analyzing the corresponding linearized system. 

It is obvious that system (2) has a unique positive equilibrium ),( ** yxE , where 
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Let 
** )()(,)()( ytytyxtxtx  and represent )(),( tytx  by )(),( tytx , respectively. Using 

Taylor expansion to expand the system (2) at the posotive equilibrium ),( ** yxE , then we can get the 

linearized system of system (2) as follows: 
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The corresponding characteristic equation of system (3) is given by 
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In order to investigate the distribution of roots of the transcendental equation (4), the result of Ruan and 

Wei [16] is introduced here. 
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As ),,,,( 321 m  vary, the sum of orders of the zeros of ),,,( 1 meep
   in the open right half plane 

can change, and only a zero appears on or crosses the imaginary axis. 

Due to the time delay 
1 and 

2  are considered as the bifurcation parameters, next, we will discuss the 

following three cases. 

Case 1: .021   The characteristic equation (4) reduces to 

0)( 233231321
2  babababaa  .                                                                       

(5) 

According to the Routh-Hurwitz criteria, a set of necessary and sufficient conditions for all roots of Eq. (5) 

to have a negative real part are obtained, we have  

(H2) 0321  baa , 

then the equilibrium point ),( ** yxE is locally asymptotically stable when the condition (H2) holds. 

Case 2:  01  , 02  . Eq. (4) becomes 
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Now we substitute 
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which leads to 
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It is easy to see that if the condition 
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satisfy, then Eq. (8) has no positive roots. Hence, all roots of Eq. (6) have negative real parts when 

),0[1   under the conditions (H2) and (H3). Further, if (H2) and 
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hold, then Eq. (6) has positive roots. Without loss of generality, we assume that it has two positive roots, 

which are denoted by k1 , 2,1k .  

By Eq. (7), we have  ,2,1,0;2,11  jkj
k . Thus, k1  is a pair of purely imaginary roots of Eq. 

(6) with 
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j
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Let )()()(  i  be the root of Eq. (6) near 10  satisfying 0)( 0  , 1010)(   . 

According to the Hopf bifurcation theorem [17], we will verify the transversality condition in the following. 
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holds, then the following transversality condition is satisfied:  
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Proof Taking the derivative of   with respect to 1  in Eq. (6), we obtain 
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According to the analysis above, we have the following results. 

Theorem 1 For 02  , assume that (H1) and (H2) are satisfied, then the following conclusions hold: 

(i) If (H3) holds, then the positive equilibrium ),(  yxE of the system (2) is asymptotically stable for all 

01  . 
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In order to give the main results, we provide the following assumption. 

         (H6) Eq. (13) has at least finite positive root. 
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We have the following theorem. 

Theorem 2 For system (2), 02  , ),0[ 101   and 21   . Suppose that the conditions (H6) and (H7) hold, 

then the positive equilibrium ),(  yxE  is asymptotically stable for all ),0[ 202    and unstable for

202   . Furthermore, the system (1.2) undergoes a Hopf bifurcation at the positive equilibrium ),(  yxE  

when 202   . 

4. Numerical simulation  

In this section, we give some numerical simulations by using matlab to explain the analytical results in the 

above previous section. 

Let 55.0,35.0  cs , then we obtain the following particular example of system (2): 
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It is not difficult to verify that the condition (H1) holds, we obtain the positive equilibrium 

)3787.0,4050.0(*E . 

For 0,0 21   , we obtain .5277.1,4881.0 1010   From Theorem 1, we know that the positive 

equilibrium 
*E is asymptotically stable when ),0[ 101   , when the time delay 1  passes through the 

critical value 10 , the positive equilibrium 
*E will lose its stability and a Hopf bifurcation occurs, and a 

family of periodic solutions bifurcate from the positive equilibrium 
*E . The corresponding waveform and 

the phase plots are shown in Fig. 1 and Fig. 2. 

For ),0[8.0 101   , 02  , we have 3817.020  , 8065.020  . According to Theorem 2, 
*E

is asymptotically stable when ),0[ 202    and unstable when 
202   , which is illustrated in Fig.3 and Fig.4. 
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Fig. 1: When 02  , 
*E is asymptotically stable for 5277.195.0 101   . 

 

Fig. 2: When 02  , 
*E undergoes a Hopf bifurcation for 5277.155.1 101    
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Fig. 3: 
*E is asymptotically stable for 8065.055.0 202    and 8.01  . 

 

Fig. 4: 
*E undergoes a Hopf bifurcation for  8065.085.0 202    and 8.01  . 

5. Conclusion 

In this paper, we have investigated the Hopf bifurcation analysis in a delayed predator-prey model with square 

root response function. By setting a same group of parameter values, according to the existing two time delays 

and discussing three different cases, we know that the positive equilibrium will lose its originally stability and 

a Hopf bifurcation occurs, and a family of periodic solutions bifurcate 
*E when the time delay pass though 

some critical values. The results of our numerical simulations are in accordance with the theoretical analysis. 

Through this study, We further found that the time delay is able to cause a periodic evolution of the prey and 

predator populations and alter the dynamics of system (2) significantly. This lays a foundation for next research 

on the control problem about ecological models.  
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