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Abstract. In this paper, we study the generalized iteration of entire functions and investigate the
growth of iterated entire functions of finite iterated order. Here we prove some results on the
growth of iterated entire functions of finite iterated order. The results improve and generalize some
earlier results.
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1. Introduction, Definitions and Notation

In order to study the growth properties of generalized iterated entire functions,
it is very much necessary to mention some relevant notations and definitions. For
standard notations and definitions we refer to [4].

Notation 1.1. [10] Let and for positive integer m, 10g[%1x—x, exp[o] =X and
Iog[m] X= Iog(log[m_l] X), exp[m] X = exp(exp[m_l] X) -

Definition 1.2. The order py and lower order Ar  of a meromorphic function f is

defined as
T logT(r, )
Py _I'rm_fgop logr
and
A, =liminf 109T(r. 1)
f = r0e logr
If f(z) is entire then
T loglogM(r, )
Py —"r”lfgop logr
and 1. —liminf loglogM(r, )
f row logr '

Definition 1.3. The hyper order pr and hyper lower order A  of a meromorphic
function f is defined as
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. |Oglog|(l,|)

and

Af =liminf 109l0gT(r, 7).
r—»o0 logr

If f(z) is entire then

[3]
Y =Iimsuplog M(r, f)

F—>o0 logr
and
- 3
2 —liming 'og®IM(r, )
r—>00 logr

Definition 1.4. [6] A function A function ’1f (r) is called a lower proximate order

of a meromorphic function f if
) Af (1) IS nonnegative and continuous for r =1, say;

(i) ﬂ,f (r) is differentiable for r = r, except possibly at isolated points at
which ,1'f (r_o)and ,1'f (r+0) exist;
(iii) im A, (r)=A4, <oo;

(iv) lim rA. (r)logr=0;and

r—oo

..o T(r, 1)
Iiminf ———= =1.
V) e’ T A
Definition 1.5. [6] Let f (z) and g(z) are two entire functions defined in the open

complex plane and « <(01]. Then the generalized iterations of f with respect to g is

defined as follows:
fl,g (2)=Q-a)z+af(z)

g ()=A-@)gy ¢ ()+af(g ¢ (2)]

fgq (=00, ¢ (2)+at(gy ¢ (2))

fn,g (Z):(l_a)gn—l,f (2)+af [gn—l,f (z))
and so
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g, ¢ (2)=U-a)z+ag(2)
Oy ¢ (2)=0-a)fy g (2)+ag( Ty ()

dg ¢ ()=W-a)fy (2)+ag( Ty (2))

gn, f (2)=0-o) fn—l,g (Z)+ag[ fn—l,g (z)]_

Clearly all f, 4 (z)and are entire functions.

nvg gn,f (Z)

For two non-constant entire functions f and g, it is well known that
logM (r, f(g))<logM (M (r,Qg), ). (1)

Let f(z) and g(z) be two transcendental entire functions defined in the open complex
plane C. J. Clunie [3] proved that

im 1(r.fo9) _ _ and iy T.(r.foQ) _
LU T(r f) P, T(r,g)

In 1985, Singh [11] proved some comparative growth properties of
logT (r, fog) and T(r, f). After this Lahiri [6] proved some results on the
comparative growth of logT (r, fog)and T (r, g).

Recently Lahiri and Datta [7] made a close investigation on the comparative
growth properties of logT (r, fog)and T (r,g). They also proved some results
on the comparative growth properties of loglogT (r, fog)and +(r, £ ).

In 2011, Banerjee and Dutta [2] proved some results on comparative growth of
iterated entire functions which improve some earlier results.

In this paper, we study the growth of generalized iterated entire functions and
prove some results which generalize and improve some earlier results.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [4] Let f(z) be an entire function. For 0O< r <R < oo, we have
T(r.f)<log" M (r, f)= §+:T(R, f).

Lemma 2.2. [4] Let f(z) and g(z) be two transcendental entire functions, then

. T(r, f B
T (1) 0

Lemma 2.3. [8] Let f(z) and g(z) be two entire functions. If M (r,g) >

2+¢
&

|9(0)],

for any & > 0, then
T, f(@)<@+&)T(M(r,g), T).
In particular if g(0)=0, then T (r, f (g)) <T (M (r, g), f)forall r>0.
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Lemma 2.4. [9] Let f (z)and J(Z)be two entire functions. Then we have
1 1 r
> = M|~
T(r, fog)= 3IogM (SM [4,gj+0(1), fj.
Lemma 2.5. [5] Let f be an entire function. Then for k>2,

(k-1
liminf 109 r.f)_q
=% Jogk=2lT(r, f)

Lemma 2.6. [7] Let f be a meromorphic function. Then for s5(>0) the function

As +0—A¢ (1) . . . .
I* =" is an increasing function of r.

Lemma2.7. Let f(z)and {(Z)be two entire functions such that

0<A¢ <p; <oo and0< A, < p, <oo respectively, then for any

e(0<e<min{4,, 4}

) (pf+¢)(1+0(1))logM(r,g)+O(1)  when nis even,
Iog[n ]T (r fn )s
7 (pg+e)(@+0(1) logM(r, £ 1+O(1)  when n'is odd
and

(4§ —£)(1+0(1))logM (rlg +O(1) when nis even,
-1+ ( 4n=

log r,fn’g)z

r
4n—l’

f +O(1) whennisodd,

(/19 -£)(1+0(2)) logM [
for all sufficiently large values of r.

Proof. We get from Lemma 2.2, Lemma 2.3 and (1) for £ >0 and for all large
values of r,

T(rfng)<T(rgn g |*T(r.f(gny ) +OQ)
<@+ O)T (1, T (G 1 1))]
<2TM(rgng ) f)
ie., logT(r,fng)<logT (M(r,gn-1) +O(1)
<(p, Jrg)logM[r,gn_Lf ]+O(1), using Definition1.1.
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So,log™T(r, f )< logl?!M (r,g_, ) +O()

<log{logM((r, fr—2,g) +logM (r,g(fn-2,4)) +OQ)}+O()
<log{logM (M(r, fa-2,g),9)+logM (M (r, fn-2,4) ,9)+O(1)}+O(1)
<loglogM (M (r, fn-2,4),9) +O)

<(pg+e)logM (r, fn2,g) +O(D).

Therefore, logi"aT(r, fh g)<(pos+&)l0OgM (r,01, 1) +O()

<(ps+e){logM (r,z)+logM (r,g) +O@Q)HOQ)
<(ps+&)(@+0(1))logM (r,g) +O(@)when nis even.
Similarly,
log™ 4T (r, fn’g) S(pg +&)1+0)logM(r, f)+0O@) whennisodd.

Again for £(0<e<min{4,,4}) we get from Lemma 2.2 and Lemma 2.4 for
all large values of r,

T(r,fn,g|=T [r, f(9nq 1 )j—T[r,gn_lif J+0®)
>(1+0@)T (r’ f(n1 )j

2(1+0(1)):13Iog M (éM (Z Oy j+0(1), f]
Aeg —&
z(1+0(1));(é|v| (Z,gn_l,f J+o<1)J f
1(1,,(r A e
z(1+0(1))3(9|v| [4,gn_Lf D ,
thatis, logT (r,fn,g > (4, —&)logM [Z,gn_l : ]+0(1)
>(4, —&)T [Z, 01 ¢ j+0(1)

r

>(2, —g){TCl,g( fnz,g)j—T(Ll, fs j+0(1)}+0(1)

> (2, ~£)LHOO)T(§.a(f,.) [+O)
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> (4, —g);logM[ [r ot j+0(1),gJ+O(1)

n—2,9
1 A, —&
> (A, —g)s(ém U fn_2’9]+0(1)J 97 Lo

> (A, —8)1(1M (2, 2 ]Tg Lo,

thatis, logt?IT (r, fn .9)=(1, —&)logM [ r ot +0(@).

n— 29}

Therefore, logl" 1T (r,fn,g)> (4, —&)logm (Llnrl,gl,f j+O(1)
>(A, —g)(1+0(1))log|v|( “,gj+0(1) when niseven.

Similarly if n is odd then

Iog™ 4T (r, fn,g )= (4, —£)(1+0(1)) logM [4[_1 f j+0(1).
This proves the lemma.
3. Theorems
Theorem 3.1. Letf and g be two non-constant entire functions such that Q) < ﬂ,f S ’Of < 00 and

0< ﬂg < P, <O respectively. Then fork =0,1,2,3,......

9 <liminf log™ T r, fng)_ <lim log™ 1T r. fng)_ <Fg
P s IogT[r,g(k)] S IogT[r,g(k)] 24

when n is even and

=5 Lliminf log™™7 (r, fng j <limsup log™T (r, fn,g j <';)f
pe 7 logT(rf®) T ogT(r f0] T g

when n is odd, where f* denote the k-th derivative of f.

Proof. First suppose that n is even. Then for given 8(0 <& min{/lf ,ﬂg}) we get from Lemma 2.7 for

all large values of r,
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logi" T (r,fn,g )2 (4, —£)(1+0(L) logM (L,gjm(l)

> (4, —g)(1+0(1))T( M,gj+0(1)
ie. 1og"T(r, fng >IogT[ 0 ]+O(1)

S0, logi™ T (r,fng | >Iog[2]T( xr. j+0(1)
So for all large values of r,

Iog[””]T(r,fn,g) |09[2]T(4n1,j log I

logT (r,g(k)j log-F e logT (r,g(k)j
Since,
~ logT(r,g®
!msup Iog r = Py»
so for all large values of r and arbitrary & > Owe have
logT [r,g(k)]< (p, +&)logr. .. (32)

since £>0 is arbitrary, so from (3.1) and (3.2) we have

,
logt™ T (1, f log?I7 9) _loga
mint o ( ”gj_hmmf 4 logr—log4
o logT(rgl) log " p,1ogr
4n—1
2,
> N EX)
'Og

Again from Lemma 2.7 for all large values of r,

logt™ 9T (r, fn1g) <(p; +&)(1+0@))logM(r,g)+O()
log!™!T(r,fng) <logBPIM (r,g)

le., < 0(1). ... (34
logT(r,g®|  logT(r,g®| o 34
Since,
IogT(r,g(k)]
liminf =1,
o logr ’
so for all large values of r and arbitrary 8(0 <& ﬂ“g) we have
logT [r,g(k)j> (4,—&)logr. ... (35)
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since £>0 is arbitrary, so from (3.4) and (3.5) we have

[n+1] -
limsup log™ T(r’ fn’gjﬁpg.
o T(rg®] 4

g

Combining (3.3) and (3.6) we obtain the first part of the theorem.
Similarly when n is odd then we having the second part of the theorem.
This proves the theorem.

Theorem 3.2. Letf and g be two non-constant entire functions such that O< ﬂ,f < 'Of < o0 and

0< /19 < Py, <O respectively. Then

A logt" T (r, f logt" T (r, f
(i) ~9 <iimint ogl [’ n’gjﬁlﬁlimsup 09T [r n,g)S,OJ
P r ogT(r,9) > logT (r,9) lg

when n is even and

[n] [n]
(1) %Slilpoinf Ioglo TT(rr ffn’g)slﬁmsuploglo TT(rr ffn’gjé’of
P g ( : ) 9 ( : ) //Lf

when n is odd.
Proof. First suppose that n is even. Then for given 6‘(0 <EL I’T‘]il’]{ﬂ,f ,ﬂg }) we get from Lemma 2.7, for
all large values of r,

log" 4T (r, fn,g) <(p; +&)1+0@))logM(r,g)+0O()

log™I T (r,fn,g ) _logM r,g)
logT(r,g) ~ logT(r,9)

log"l T (r.fng) -

1e.,

+0A) e (3.7)

ie., liminf ogT(r.g) <1 [by Lemma2.5]. ... (3.8)
Also,
logi" T (1, fn,g )2 (4, —&)(1+0(1)) log M (4[_1 | gj+0(1)

i.e. Iog[”]T(r,fn,gjzlogT( r gj+0(1).

4n—l !
So,

log""'T (r.fng ) logT (4r1 9)
logT(r,g) |Og4ln’_l

logr—log4™
: Ioggr]4 }0(1)
Pq

logln!]
ie. liminf o T(r,fn,g)z 4
o logT (r,9) Py
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Also from (3.7), we get for all large values of r,
|Og[”]T(r, fn,gjS logl? M (r.g)  logr
logT(r,9) logr logT (r,9)

|0g[n]T[r,fn,g)<& (310)
% .. (3

+0(1)

I.e., lim sup

o logT (r,9)
Again from Lemma 2.7,

log" T (1, fn,g )2 (4, —€)(L+0(D) logM (4[_1,9}0(1)

ie. log" T (r,fn g ) log? M ul,gjma). . (311)
Let 0<e<min{L 4,,4}.
Since
lo
liminf M =1,
SN G
r9
there is a sequence of values of r tending to infinity for which
A, (1)
T(rg)<@+e&)r 9 ... (312)
and for all large values of r,
log* M (r,g)>T(r,g)>(1—g)r/19(r). ..... (3.13)
From (3.13) we obtain for all large values of rand for 0 >0 and 6(0 <& <1)
(rjig+5
logM [ 5. > (L-e) —+—
4 ( r jzgmxg(wj
4n—1
Z 1_ 18+b rig ©
()
because Ko7 ("7 jsan increasing function of r.
So by (3.12) we get for a sequence of value of r tending to infinity,
logM (nrl, QJZH%T(", g)
4 1+&(4)"
ie., logl?lM U jz logT(r,g)+OQ®»). ... (3.14)
Now from (3.11) and (3.14)
logMI T (r, f
limsup J ( n.9 ) > ....(3.15)

r— logT (r,g)
So the theorem follows from (3.8), (3.9), (3.10) and (3.15), when $n$ is even.
Similarly, when n is odd we get (ii).
This proves the theorem.
Corollary 3.3. Using the hypothesis of Theorem 3.2 if f and g are of regular growth then
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log"T(r,fng)  log"T(r,fng]

m logT (r,g) = logT (r, f | =1

Remark 3.4. The conditions /1f , /19 >0 and Pi» /)g <00 gre necessary for Theorem 3.2 and Corrollary 3.3,
which are shown by the following examples.

Example 3.5. Letf=z,g =expzand @ =1. Then 4; =p; =0and 0 <ﬂg =py <.

n
H
Now when nis even then T, =€Xp-“- Z.
Therefore

T(r. £ )<logM(r, f ) =exp[2_1} .

So,

L]
log!"I T (r, f ) <logl" exp[2 }r

n
- Iog[fl} r.
5
Also when nis odd, f, =€Xp 2z,
Therefore
&
T(r, f)<logM(r, f )=exp 2y

So,

=
log"I T (r, f )<log"l|expt 2 ¢

n+1
—+1
=Iog[ 2 }r
Now logT (r, f)=loglogrand logT (r,g)=logr—log .
Therefore when n is even
n

log"l T (I’, fn) < |09[2+1} r
logT (r,9) ~ logr—logx

—0 asr — oo,

and when n is odd
n+1
log™ T (r, fn) - |og[2+l} r
logT (r,f) — loglogr

—0 as r — oo,

2
Example 3.6. Let f =eXp[ 7, 9= expzand & =1. Then 4; =p; =c0 and ig =Py =1
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[3;1}

2
Now when n is even then f, =€Xp- - Z.
Therefore

3]
3T (2r, f )=logM(r, f )=exp- 2 Jr

. TER)

e, T(r, fn)zgexp >
5]

ie., logMT(r, f )>exp'?2 %+0(1).

&
Also when nis odd, f, =€Xp 217,
Therefore

b
3r2r, f )=logM(r, f )=exp- # r

ie, T(r,f )= éexp[?mzl 1}

n-3
ie, logMT(r, fn)Zexp[ 2 } +0(1).

Also, T(r, f)<erand T(r,g)=".
7T

Therefore when n is even
n

N
|0§J[“]T(r,fn)>exp[2 Jr+0(1)
logT(r,g) =~ logr—logx

— 00 as r — oo,
and when n is odd
kS
log™"I T (r, fn)_ expl 2 r+0()
logT(r,f) — r

—> 00 asS I — oo,
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