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Abstract. In this paper, a novel high accurate and efficient finite difference scheme is proposed for solving 

the Schrödinger-Poisson System. Applying a local extrapolation technique in time to the nonlinear part  makes  

the  proposed  scheme  linearized  in  the  implementation. In  fact, at  each  time  step, only two tri-diagonal 

linear systems of algebraic equations are solved by using Thomas method. Another feature of the proposed 

method is the high spatial accuracy on account of adopting the compact finite difference approximation to 

discrete the system in space. Moreover, the proposed scheme  preserves  the  total  mass  in  discrete  sense. 

Under  certain  regularity  assumptions  of  the exact  solution, the  local  truncation  error  of  the  proposed  

scheme  is  analyzed  in  detail  by  using Taylor’s  expansion, and  consequently  the  optimal  error  estimates  

of  the  numerical  solutions  are established by using the standard energy method and a mathematical induction 

argument. The convergence order is of O(τ 2 + h4) in the discrete L2-norm and L∞-norm, respectively. 

Numerical  results  are  reported  to  measure  the  theoretical  analysis, which  shows  that  the  new scheme is 

accurate and efficient and it preserves well the total mass and energy. 

Keywords: Schrödinger-Poisson system, local extrapolation technique, compact finite difference 

scheme, conservation laws, optimal error estimates. 

1. Introduction 

The Schrödinger-Poisson system (SPS) appears in nonlinear optics and plasma physics, more often in 

quantum mechanics and semiconductor theory [1-3]. It is named by Diosi and Penrose who first proposed a 

model to explain the collapse of quantum wave function. It can also be viewed as a nonlinear correction of 

the Schrödinger equation with Newtonian gravitational potential. According to the classical model [1], the 

interaction between a charged particle and electromagnetic field can be described by coupling nonlinear 

Schrödinger equation and Poisson equation. The dimensionless form of the SPS reads 
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Here 
 
is a complex-valued wave function which represents the single particle wave function with 
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 , 1-2 i , V is a given external trapping potential, 0 is the coupling parameter, 
 
is the 

Poisson potential, )3,2,1(  dRd is a bounded computational domain. 

The Schrödinger-Poisson system (SPS)  can also be redefined as nonlinear Schrödinger  

Equation (NLS), i.e, 
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(1.4) 

and the Poisson potential Φ(x, t) is expressed by convolution form 

 

Φ(| |2, t) = | |2  ∗G(|x|), 

where G(|x|) is the Green function of Poisson equation on Rd. Similarly, it easy to see that we have two 

conserved quantities. The total mass gives in terms of 
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and the total energy is    
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In the past decades, there are extensive researches in basic mathematical analysis carried out for the 

Schrödinger-Poisson system. Pure theory analysis about the existence of solutions for the SPS can be found 

in the literature [4-7]. Besides, for the dynamical properties and well-posedness of the SPS, we can read [8-9] 

and the references therein. In addition to the above basic analyses, numerical analysis is of equal importance. 

Various accurate and efficient numerical methods have been proposed for the Schrödinger-Poisson system, 

including the finite element method (FEM) [10-11], finite difference method (FDM) [12-17], and time-

splitting or (pseudo-)spectral-type method [8,18-22], such as spectral element method (SEM) [19-20],  

spectral Galerkin method [21], splitting Chebyshev collocation method [22]. 

As far as we know, finite difference method is relatively rare in the numerical analysis of SPS. 

Ringhofer et al. presented a discrete predictor-corrector SPS preserving energy and mass in [14], where the 

discretization was based on the Crank-Nicolson scheme. In [14], the theoretical analysis is given, but no 

numerical experiments are carried out to verify it. Ehrhardt et al. [15] also proposed a Crank- Nicolson-type 

predictor-corrector scheme with a discrete transparent boundary condition to solve the spherically symmetric 

SPS, and proved that the scheme satisfies discrete mass and energy conservation exactly by numerical 

simulation. In [16], Chang et al. constructed a novel two-grid centered difference  method for the numerical 

solutions of the nonlinear Schrödinger-Poisson (SP) eigenvalue problem, they obtained that the  convergence 

rate of eigenvalue computations on the fine grid is O(h3). To enhance the accuracy of convergence, Zhang 

introduced compact finite difference discretization for SPS in [17]. He confirmed that the Crank-Nicolson 

compact finite difference (CNCFD) method and the semi- implicit compact finite difference (SICFD) 

method in their paper are both of order O(τ 2 + h4) in   the discrete L2-norm, H1-norm and L∞-norm. 

However, their error estimate results need a weak restriction on the grid ratio in extending their schemes to 

two or three dimensions. 

Compared with the standard difference scheme, the compact scheme can make better use of fewer mesh 

points to achieve higher precision. Therefore, in view of the basis of [17], we propose a linearized compact 

finite difference (LCFD) scheme with a local extrapolation technique. This scheme linearizes the nonlinear 

term which can avoid using iterative method to deal with, and not only spends fewer time in the computation 

but also improves the better convergence accuracy. Differing from the analysis method used in [17], we 

establish the optimal error estimates without any restriction on the grid ratios by applying a lifting technique 

as well as the standard energy method. 

The paper has the following basic structure. In Section 2, we give some notations and auxiliary lemmas. 

A linearized compact finite difference (LCFD) scheme for Schrödinger-Poisson system (SPS) is proposed. In 

Section 3, we establish the optimal error estimates in the discrete L2-norm and L∞-norm, respectively. In 

Section 4, numerical experiments are presented to verify our theoretical analysis. 

 

2.  Finite difference scheme and auxiliary lemmas 

For simplicity, we introduce this numerical method only in one-dimensional cases,extension to two or 

three dimensions are straightforward. The wave function   is exponentially decaying,so the problem of one-

dimensional Schrödinger-Poisson System will be truncated on bounded domain [a, b] in the calculation. We 

consider the initial boundary value problem with Dirichlet  boundary conditions for SPS (2.1)~(2.4):   
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Here, Poisson potential Φ and wave function   satisfy the homogeneous boundary conditions (2.4) 

respectively. 

 

2.1    Numerical method 

We firstly make a uniform mesh division on [a, b]. For a positive integer J, choose mesh size 
J

ab
h

)( 


 
and time-step τ = ∆t . Denote grid points x j=a+jh (j = 0 ,1,· · ·,J) and time steps tn = nτ  

(n = 0, 1, 2, · · · ). Define two index sets  

Γ
0

J := {j | j = 0, 1, · · · , J − 1, J},     ΓJ := {j | j = 1, 2, · · · , J − 2, J − 1}, 

and a space of grid functions  

XJ := {w = (w0, w1, · · · , wJ ) | w0 = wJ = 0} ⊂ CJ+1. 

Let J

n Χ
 
be the numerical vector solution at time t = tn , and 

n

j
 
be the numerical  

approximation of the exact solution  (xj ,tn) for j = 0, 1, 2, · · · , J  and n = 0, 1, 2, · · · . Introduce the  

following finite difference quotient operators as  
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Define the matrix operator with order J-1  as 
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where Ah is the standard central finite difference, I  is an identity matrix and ∆h = B
1

h Ah is   

fourth order approximation of ∂xx. Then we introduce 
11:   JJ

h CCI  to be the identity projection operator 

as 

Ihw = (w1, w2, · · · , wJ−1)
T ∈ CJ−1, ∀w = (w0, w1, · · · , wJ )

T ∈ XJ . 

Define discrete inner products and norms over XJ as   
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Based on the notations above, now we give a linearized compact finite difference (LCFD)  

schemes for the one-dimensional SPS: 
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The proposed scheme applies Crank-Nicolson method to the variables j
 
of SPS equation (2.5) in time 

direction. Otherwise, by using a local extrapolation technique to discrete the coefficient of the nonlinear term 

in temporal direction and adopting the centered finite difference method to approximate the other terms, the 

above scheme is expected to reduce the difficulty in dealing with nonlinear items and the computational cost. 

Obviously, this three-level scheme can not start by itself, so we use the Taylor’s expansion to compute the 

first step value 
1

j : 
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(2.9) 

where Poisson potential 
0

j
 
can be calculated by scheme (2.6). 

 

2.2     relevant auxiliary lemmas 

Lemma 2.1 For any grid functions u, v ∈ XJ , the following expressions hold 
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To estimate the error, we give the following properties for the related approximation matrices Ah, Bh, 

∆h. 

Lemma 2.2 [17] For any grid functions u, v ∈ XJ and approximation matrices Ah, Bh, ∆h, they hold that 
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where 4321 ,,,, CCCCC
 
are the constants independent of w

 
or h . 

3.  Error estimates 

Before we establish the optimal error estimate, we make two assumptions as follows: 

(A)    V(x) is the external trapping potential and β is the rotation speed. Assume that there  

exists a constant 0  such that 

;||,,
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(B)    Assume that the exact solution   satisfies 

),)(];,0[())(];,0[())(];,0[())(];,0[( ,61,32,234   WTCWTCWTCLTC
 and max0 TT  , where maxT

 
is the maximal existing time of the solution [24-25]. 

According to the proposed scheme (2.5)~(2.9), define the local truncation error function J

nr   as 

follows: 
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where   J

T
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Then by using Taylor’s expansion, we can obtain the following estimates of the local truncation error, 

Lemma 3.1   (Local truncation error) Under assumptions (A) and (B), the local truncation error J

nr   

for the scheme (2.5)~(2.9) satisfies 
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Theorem 3.1   (l 
2-norm estimate)  Under assumptions (A) and (B), there exist two constants 00   and 

00 h  sufficiently small, such that when 00    and 00 hh  , we have 
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Proof  We will prove Theorem 3.1 by mathematical induction. When 1n , it is straightforward to see 
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noticing Lemma 2.2, we have the following estimate 
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thus when τ is sufficiently small, we have 
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which means that the first inequality in (3.3) holds true when kn  . The ‘error’ equation with 
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this together with triangle inequality gives 
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Summing (3.8) over k gives 

                                                 
).()(|||| 422-421- hChCkeI k

hh  
                                         

 



Journal of Information and Computing Science, Vol. 13(2018) No. 4, pp 311-320 

 

 

JIC email for subscription: publishing@WAU.org.uk 

317 

Noticing that 
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Hence, for sufficiently small τ and h ≤ τ , there is 
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On the other hand, we have 
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This means that, for sufficiently small h and τ ≤ h, there is 

        
.1|||| 

ke
                                                                     

(3.10) 

Thus, for sufficiently small τ and h, it is always true that 
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Then noticing the assumption in Theorem 3.1 and applying the inverse inequality, we can estimate 
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when τ and h  is sufficiently small, it results to 
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Thus, the proof of Theorem 3.1 is finished. 

Lemma 3.2   (
l -norm estimate) Under the same conditions of Theorem 3.1 with assumptions (A) and (B), 

we also have  

  .1,|||| 42




T
nhCen 

 

 

4    Numerical experiments 

In this section, numerical experiments are reported to test our theoretical analysis for the linearized 

compact finite difference scheme (LCFD), which includes the convergence order and the discrete 

conservation laws. For convenience, we denote  
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where ||e N (h, τ )||


 is the maximum norm errors of N  at ntn   with the time-step τ and grid size h.  

 

Example  Consider the following initial-boundary value problem  
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then we have the exact solution of this problem 
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To achieve the good stability, we test the accuracy in the spatial and temporal direction separately. 

Firstly, we takeα = 5, 2

2

V x  and the errors are estimated by using MATLAB software at time T = 0.5. In 

Table 1, the spatial errors computed by the LCFD scheme is listed, which choose a sufficiently small time 

step τ = 0.0001 for ignoring the temporal errors and  different mesh sizes h. In Table 2, the temporal errors of 

the LCFD scheme are computed with a sufficiently small mesh size h = 0.0001 which is also to neglect the 

spatial errors and different time steps τ. It is obvious to see that the spatial convergence order almost equals 4 

in Table 1 and the temporal convergence order almost equals 2 in Table 2, as it supports our theoretical 

results.  

To achieve the good stability, we test the accuracy in the spatial and temporal direction separately. 

Firstly, we take α = 5, 
2

2

V x , and the errors are estimated by using MATLAB software at time T = 0.5. In 

Table 1, the spatial errors computed by the LCFD scheme is listed, which choose a sufficiently small time 

step τ = 0.0001 for ignoring the temporal errors and  different mesh sizes h. In Table 2, the temporal errors of 

the LCFD scheme are computed with a sufficiently small mesh size h = 0.0001 which is also to neglect the 

spatial errors and different time steps τ. It is obvious to see that the spatial convergence order almost equals 4 

in Table 1 and the temporal convergence order almost equals 2 in Table 2, as it supports our theoretical 

results.  

 
Table 1.Spatial errors computed by the proposed scheme with τ=0.0001 at T=0.5. 

h                             ( , )E h            1rate  

0.2         0.0001        1.14e-03           —  

 

0.1         0.0001        6.95e-05        4.0359 

 

0.05       0.0001        4.31e-06        4.0113 

 

0.025     0.0001        2.75e-07        3.9702 

 

Table 2.Temporal errors computed by the proposed scheme with h=0.0001 at T=0.5. 

h                          ( , )E h             2rate  

0.0001       0.01       5.0171e-05          —  

 

0.0001      0.005      1.2803e-05       1.9704 

 

0.0001     0.0025     3.1981e-06       2.0012 

 

0.0001    0.00125    8.0189e-07       1.9957 

         

In order to show the advantages of the proposed LCFD scheme, we compare it with the Crank Nicolson 

compact finite difference method (CNCFD) and the semi-implicit compact finite difference method (SICFD) 

given in [17]. We analyse the error at time T = 1  under the maximum norm. For the spatial errors, we choose 

time step τ = 0.0001 and different h. For the temporal errors, we take mesh size h = 0.0001 and different τ . 

The numerical results are listed in Table 3 and Table 4, which separately present the errors and CPU times of 

LCFD, CNCFD and SICFD. 
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From Table 3 and Table 4, the convergence orders of three schemes are of four in the spatial direction 

and of two in the temporal direction. We can also witness that the proposed LCFD scheme is not only more 

accurate but also more efficient than CNCFD and SICFD. 

 

Table 3.Spatial errors of the three schemes with τ = 0.0001 and different h at time T = 1. 

                                         2.0h             1.0h               05.0h            025.0h                          

LCFD    ( , )E h        1.6224e-03     1.0468e-04       6.4671e-06      4.0898e-07     

                    1rate            ——             3.9541              4.0167             3.9830  

                  CPU time      1.36s             1.44s                1.58s                1.96s 

CNCFD  ( , )E h      1.6221e-03      1.0463e-04     6.4618e-06      4.0545e-07 

                     1rate           ——             3.9545             4.0172             3.9943 

                  CPU time      3.59s             3.82s               4.42s                5.27s                                  

SICFD   ( , )E h       1.6221e-03      1.0465e-04     6.4651e-06      4.0653e-07     

                    1rate             ——             3.9542            4.0168              3.9912 

                 CPU time       1.43s             1.62s              1.76s                 2.51s 

 

Table 4. Temporal errors of the three schemes with h = 0.0001 and different τ at time T = 1. 

                                      002.0       001.0         0005.0        00025.0                          

LCFD    ( , )E h       1.2465e-06      3.1383e-07      7.9113e-08       1.9817e-08     

                    2rate            ——              1.9898            1.9880              1.9972 

                 CPU time       4.06s              7.97s               15.68s              30.31s 

CNCFD   ( , )E h       1.8577e-06     4.6391e-07      1.1595e-07       2.8975e-08 

                   2rate            ——              2.0016             2.0003              2.0006 

CPU time        10.99s            17.42s              29.17s              63.46s 

SICFD    ( , )E h       4.1135e-06     1.0254e-06      2.5590e-07       6.3939e-08    

                   2rate            ——              2.0042             2.0025              2.0008 

                CPU time        4.25s             8.34s                16.24s              31.58s 

 

5    Conclusion 

We propose and analyse a new linearized compact finite difference (LCFD) scheme for the 

Schrödinger-Poisson system in this paper. Different from the Crank-Nicolson compact finite difference 

(CNCFD) method and the semi-implicit compact finite difference (SICFD) method  given in [17], we make 

the nonlinear part of Schrödinger-Poisson system linearized by using a local extrapolation technique. It only 

needs to solve two tri-diagonal linear systems of algebraic equations by Thomas method, which computes 

faster than iteration method in the CNCFD scheme. The proposed method is as high spatial accuracy as the 

SICFD scheme, on account of applying the compact finite difference approximation to discrete the system in 

space. In addition, by introducing the standard energy method and a mathematical induction argument, the 

optimal error estimate converges to O(τ 2 + h4) in the discrete L2-norm and L∞-norm, respectively. Our 

analysis method for solving the Schrödinger-Poisson system may be a more accurate and efficient choice 

compared to previous studies. 
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