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Abstract: In this paper, the dynamical behaviors and projective synchronization of a five-dimensional 

hyperchaotic Lorenz system are investigated. First of all, a hyperchaotic system is constructed by introducing 

two state variables into the Lorenz chaotic system. Secondly, the dynamical behaviors of the proposed 

system, such as the dissipative property and equilibrium point, are discussed. Thirdly, based on the stability 

theory, the projective synchronization of the systems can be achieved.  Finally, some numerical simulations 

are given to verify the projective synchronization scheme. 
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1 Introduction 

Chaos is a very interesting nonlinear phenomenon. In 1963, Lorenz discovered the famous Lorenz 

chaotic system [1]. After that, chaotic systems have been researched extensively, such as the Lü system [2-

4], the Chen system [5] and the Rössler system [6]. Recently, much work has been done in constructing 

hyperchaotic models [7-9]. However, there is no universal method to get hyperchaotic systems. Compared 

with chaotic systems, hyperchaotic systems must have at least two positive Lyapunov exponents, and the 

dimension must be four or more [10]. Hyperchaotic systems can be obtained by adding one or more state 

variables to a three-dimensional chaotic system [11, 12]. Hyperchaotic systems have more abundant 

dynamical characteristics and complex behaviors than chaotic systems [13, 14]. So they are better suitable 

for some engineering applications, such as chemical reactions, electric circuits [15], cryptography [16, 17], 

fluid dynamics and secure communication [18-20].  

Chaos synchronization is another fascinating concept. Pecora and Carroll proposed a drive-response 

chaotic synchronization scheme in 1990 [21], and realized the synchronization of two chaotic systems in the 

circuit, which promoted the theoretical study of chaotic synchronization and chaos control. Since then, many 

effective chaotic synchronization methods have emerged, such as complete synchronization [22, 23], 

generalized synchronization [24], phase synchronization [25], lag synchronization [26, 27], projective 

synchronization [28], anticipating synchronization [29] and exponential synchronization [30]. In recent 

years, the synchronization of chaotic fractional differential systems [31, 32] has attracted more and more 

attention because of its potential applications in secure communication and control processing [33-35]. 

The research of projection synchronization has received extensive attention from experts at home and 

abroad in recent years. Projection synchronization is that under certain conditions, the output of the coupled 

drive system and the response system state is not only phase locked, but the amplitude of each 

corresponding state also evolves according to a certain scale factor relationship. The method has been 

widely observed and discussed in coupled integer order chaotic systems. 

The other parts of article is organized as follows. In section 2, a new five-dimensional hyperchaotic 

Lorenz system is constructed and the dynamical behaviors of the hyperchaotic system are discussed, such as 

attractor, dissipativity and equilibrium point. In section 3, the projective synchronization scheme of the 

hyperchaotic system is designed and some numerical simulations are completed. In section 4, some 

conclusions are given. 

2 System description 

mailto:sxryctc@163.com
https://link.springer.com/article/10.1186/s13662-017-1280-5#CR5
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2.1 A new hyperchaotic Lorenz system 
The famous Lorenz chaotic system can be represented by the following autonomous differential 

equations 

                                                                        {
ẋ1 = a(x2 − x1)           
ẋ2 = cx1 − x2 − x1x3 
ẋ3 = x1x2 − bx3          

,                                                           (1) 

where 𝑎, 𝑏 and 𝑐 are real constants. When the parameters are chosen as 𝑎 = 10, 𝑏 = 8/3 and 𝑐 = 28, 

the system (1) is chaotic.  

A new five-dimensional system is constructed by adding two variables into Lorenz chaotic system. In 

the first equation of the system (1), x4 is introduced and the rate of change of x4 is  ẋ4 = −x2x3 + dx4. In 

the second equation of the system (1), another state x5 is introduced and the rate of change of x5 is ẋ5 = rx1. 

The new five-dimensional system can be described as 

                                                                        

{
 
 

 
 
ẋ1 = a(x2 − x1) + x4           
ẋ2 = cx1 − x2 − x1x3 + x5 
ẋ3 = x1x2 − bx3                    
ẋ4 = −x2x3 + dx4                 
ẋ5 = rx1                                   

,                                                     (2) 

where 𝑎, 𝑏, 𝑐, 𝑑 and 𝑟 are real constants. When the parameters are chosen as 𝑎 = 10, 𝑏 = 8/3, 𝑐 = 28, 𝑑 =
−6 and 𝑟 = −5, the system (2) is hyperchaotic. The chaotic attractors of the system (2) are plotted in Fig. 1 

with the initial state (x1, x2, x3, x4, x5) = (1, 1, 1, 1, 1). 

 

Fig. 1. Chaotic attractors of the system (2) in 2D spaces with 𝑎 = 10, 𝑏 = 8/3, 𝑐 = 28, 𝑑 = −6 and 𝑟 = −5. 

  

2.2 Dissipativity 
The divergence of system (2) is calculated as  

                                                            ∇v =
∂ẋ1

∂x1
+
∂ẋ2

∂x2
+
∂ẋ3

∂x3
+
∂ẋ4

∂x4
+
∂ẋ5

∂x5
= −19.667 .                                     (3) 

When ∇v < 0, the system (2) is a dissipative system and the exponential shrinkage is -19.667. That is, in the 

dynamical system (2), when t → +∞, each volume containing the dynamical system trajectory shrinks to 

zero at an exponential rate of -19.667. The orbit of the dynamical system is ultimately limited to a specific 

subset of zero volume, and the asymptotic motion is located on the attractors of the system (2). 

2.3 Equilibrium point and stability 
Let  

                                                                        

{
 
 

 
 
a(x2 − x1) + x4 = 0          
cx1 − x2 − x1x3 + x5 = 0 
x1x2 − bx3 = 0                   
−x2x3 + dx4 = 0               
rx1 = 0                                 

.                                                       (4) 

The only equilibrium point E0(0, 0, 0, 0, 0) of system (2) is available. Then the Jacobian matrix of the 

system (2) at the equilibrium point E0 is described as 
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J0 =

[
 
 
 
 
−a a 0 1 0
c − x3 −1 −x1 0 1
x2 x1 −b 0 0
0 −x3 −x2 d 0
r 0 0 0 0]

 
 
 
 

=

[
 
 
 
 
−10 10 0 1 0
28 −1 0 0 1
0 0 −8/3 0 0
0 0 0 −6 0
−5 0 0 0 0]

 
 
 
 

 . 

The corresponding eigenvalues of the Jacobian matrix J0  are  λ1 = 11.704 ,   λ2 = 0.1866 , λ3 =
−2.667 , λ4 = −6 and λ5 = −22.890625 , respectively. Here λ1  and λ2   are two positive real numbers, 

λ3,  λ4 and λ5 are three negative real numbers. Therefore, the equilibrium point E0 is a saddle point and 

unstable.  

3 Projective synchronization of the new 5D hyperchaotic system 

3.1 Projection synchronization theory of linear separation 
Let chaotic system be  

x(t) = f(x(t), t) ,                                                                   (5) 

where x(t) ∈ Rn  is the n-dimensional state vector of the system, f: Rn → Rn defines a vector field of n-

dimensional vector space. The function f(x(t), t)  is decomposed into f(x(t), t) = g(x(t)) + h(x(t), t) . 

Where g(x(t)) = Ax(t) is the linear part of f(x(t), t), A is a constant full rank matrix, and all the real parts 

of its eigenvalues are negative. So h(x(t), t) = f(x(t), t) − g(x(t)) is the non-linear part of f(x(t), t). In this 

way, the system (5) can be rewritten as 

                                                                          x(t) = g(x(t)) + h(x(t), t) .                                                       (6) 

Construct a new system 

                                                                         y(t) = g(y(t)) + h(x(t), t)/α ,                                                   (7) 

where y(t) = Rn  is the n-dimensional state vector of the system (7). α is a preset synchronization scale 

factor. The synchronization error between system (6) and system (7) is defined as e(t) = x(t) − αy(t), and 

its solution is determined by the following equation. 

                                       ė(t) = ẋ(t) − αẏ(t) = g(x(t)) − αg(y(t)) = A(x(t) − αy(t)) = Ae(t) .              (8) 

The zero of e(t) is the equilibrium point of ė(t), because all the real parts of the eigenvalues of A are 

negative. According to the stability criterion of linear systems, synchronization errors are asymptotically 

stable at zero, i.e. lim
t→+∞

e(t) = 0. That is to say that state vector x(t) of system (6) and the state vector y(t) 

of system (7) achieve projective synchronization according to the given synchronization scale factor α. 

3.2 Realization of projection synchronization 
Projective synchronization is interesting in view of its proportionality between the synchronized 

dynamical status. It can be used for digital communication especially in secure communications. In this 

section, we focus on researching projective synchronization of the new 5D hyperchaotic system (2).  

According to the projection synchronization theory of linear separation, the system (2) can be 

rewritten as 

                                          f(x1, x2, x3, x4, x5) = g(x1, x2, x3, x4, x5) + h(x1, x2, x3, x4, x5) ,                          (9) 

g(x1, x2, x3, x4, x5) =

(

 
 

−a 0 0 0 0
0 −1 0 0 0
0 0 −b 0 0
0 0 0 d 0
0 0 0 0 −1)

 
 

(

 
 

x1
x2
x3
x4
x5)

 
 
  ,                              (10) 

                                                              h(x1, x2, x3, x4, x5) =  

(

 
 

ax2 + x4
cx1 − x1x3 + x5

x1x2
−x2x3
rx1 + x5 )

 
 
 .                                            (11) 

Then the drive system can be written as 
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(

 
 

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5)

 
 
=

(

 
 

−a 0 0 0 0
0 −1 0 0 0
0 0 −b 0 0
0 0 0 d 0
0 0 0 0 −1)

 
 

(

 
 

x1
x2
x3
x4
x5)

 
 
+

(

 
 

ax2 + x4
cx1 − x1x3 + x5

x1x2
−x2x3
rx1 + x5 )

 
 
 ,              (12) 

And the response system is defined as  

(

 
 

ẏ1
ẏ2
ẏ3
ẏ4
ẏ5)

 
 
=

(

 
 

−a 0 0 0 0
0 −1 0 0 0
0 0 −b 0 0
0 0 0 d 0
0 0 0 0 −1)

 
 

(

 
 

y1
y2
y3
y4
y5)

 
 
+

1

𝑎

(

 
 

ax2 + x4
cx1 − x1x3 + x5

x1x2
−x2x3
rx1 + x5 )

 
 
 ,            (13) 

where α is a projection factor. 

Let 

 

{
 
 

 
 
e1(t) = x1(t) − αy1(t) 

e2(t) = x2(t) − αy2(t) 

e3(t) = x3(t) − αy3(t) 

e4(t) = x4(t) − αy4(t) 

e5(t) = x5(t) − αy5(t) 

 ,                                                    (14) 

and the error system can be obtained as  

(

 
 

e1̇
e2̇
e3̇
e4̇
e5̇)

 
 
=

(

 
 

−a 0 0 0 0
0 −1 0 0 0
0 0 −b 0 0
0 0 0 d 0
0 0 0 0 −1)

 
 

(

 
 

e1
e2
e3
e4
e5)

 
 
 .                                       (15) 

Then the solution can be solved as 

{
 
 

 
 
 e1(t) = m1e

−at 

e2(t) = m2e
−t 

 e3(t) = m3e
−bt

e4(t) = m4e
dt 

e5(t) = m5e
−t 

  ,                                                      (16) 

where 𝑚1, 𝑚2, 𝑚3, 𝑚4 and 𝑚5 are real numbers with the parameter values 𝑎 = 10, 𝑏 = 8/3, 𝑐 = 28, 𝑑 =
−6 and 𝑟 = −5. According to the stability criterion of linear system, the synchronization error evolution 

converges to zero as 𝑡 → +∞ . Namely, the drive system (12) and the response system (13) will get 

projective synchronization according to the predetermined synchronization scale factor. 

3.3 Numerical simulations 
In order to verify the validity of the proposed projective synchronization method, the simulation 

results have been carried out. In the following numerical simulations, the parameters are always chosen as 

𝑎 = 10 , 𝑏 = 8/3 , 𝑐 = 28 , 𝑑 = −6  and 𝑟 = −5 . The initial values of the addressed system are set as 
(x1, x2, x3, x4, x5)=(1, 2, 3, 4, 5) and (y1, y2, y3, y4, y5)=  (−1, −2,   3, 2, 1). The step size is selected as 

0.001. The scale factor is chosen as  α = −2 and  α = 2, respectively.  

Simulation results of two-dimensional projection synchronization phase diagram (α = −2 and α = 2) 

are shown in Fig. 2 and Fig. 3. The three-dimensional projection synchronization phase diagram (α = −2 

and α = 2) is shown in Fig. 4. Reverse synchronization error curve(α = −2) is shown in Fig. 5. Phase 

synchronization error curve( α = 2) is shown in Fig. 6. 
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Fig. 2. The phase diagram of two-dimensional reverse projection synchronization (α = −2) 

 
Fig. 3. The phase diagram of two-dimensional projection synchronization(α = 2) 

 
 

Fig. 4. The three-dimensional projection synchronization phase diagram (α = −2 and α = 2) 
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Fig. 5. Reverse synchronization error curve(α = −2) 

 
Fig. 6. Phase synchronization error curve(α = 2) 

4 Conclusions 

In this paper, a new 5D autonomous hyperchaotic system is presented based on Lorenz chaotic system. 

The hyperchaotic system has abundant and complex dynamical behaviors. The attractors of the system are 

shown by some phase diagrams. Furthermore, according to the stability theory, the projective 

synchronization of the new 5D hyperchaotic system is studied. The proposed projection synchronization 

scheme is simple and does not require the calculation of the Lyapunov exponent. Detailed numerical 

simulation results have been given to verify the effectiveness of the projection synchronization scheme. 
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