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Abstract: In this paper, the problem of existence of periodic solution is studied for the second order delay
differential equation with a singularity of repulsive type

x"(t) + fx(@))x' () + @ (O)x(t — 71) — g(x(t — 12)) = A(2),
where 7; and 7, are constants, g(x) is singular atx = 0,¢ and hare T — periodic functions. By using a
continuation theorem of coincidence degree theory, a new result on the existence of positive periodic
solutions is obtained. The interesting is that the sign of functiong(t) is allowed to change fort € [0, T].
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1. Introduction

The aim of this paper is to search for positive T —periodic solutions for second order delay differential
equation with a singularity in the following form

x"() + fx(0)x'() + O)x(t — 11) — g(x(t — 72)) = A(D), (1.1)

where 7, and t, are constants, f:[0,0) — R is an arbitrary continuous function, g € C((0, +), (0, +))

and g(x) is singular of repulsive type at x = 0, i.e.,g(x) - 4+, asx — 0%, ¢, h: R —» R are T —periodic

with functionh € L1([0,T],R), ¢ € C([0,T],R), while the sign of function ¢ being changeable for ¢ €

[0, T].
In recent years, the problem of periodic solutions to the second order singular equation
n ’ b
x"(0) + FEO)X' (@) + (Ox(t = 11) = 55 = h(D), (L2)

where f:[0,+9) — Ris an arbitrary continuous function, ¢, b, h € L[0,T] and 1 > 0, has been studied
widely. This is due to the fact that the singular term possesses a significant role in many practical situations
[1-11]. For example, the singular term in the equations models the restoring force caused by a compressed
perfect gas (see [3-6] and the references therein). Lazer and Solimini in the pioneering paper[12] first used
the method of topological degree theory, together with the technique of upper and lower solutions, to study
the existence of periodic solution to Eq.(1.2) where f(x) = 0, ¢(t) = 0,b(t) = 1. They obtained that if 1 >

1,a necessary and sufficient condition for existence of a positive periodic solution to Eq.(1.2) is thath: =
%fOT h(s)ds < 0. After that, the problem of periodic solutions for singular differential equations like Eq.(1.2)
has attracted the attention of many researchers[13-19]. We notice that the condition of ¢(t) = 0 forae.t €

[0, T] is required in [16-19], since it is crucial for obtain the priori estimates over all the possible periodic
solutions to the equations
Ab(t)

x"(8) + Af ((0)X' () + Ap(O)x(t = 11) =7 5 = Mh(D), A € (0,1). (1.3)

We only find [20,21] where the sign of ¢(t) is allowed to change. In [20,21], a priori bounds
of all the possible periodic solutions to Eq.(1.3) are estimated by using the inequality

T u'(t)
fo B0 dt =0, (1.4)

where § > 0is an arbitrary constant, u(t) is a positive T —periodic function with u € C?([0, T], R).
Motivated by this, in this paper, we study the existence of positive T —periodic solution for the
equation (1.1). Since there is a delay 7, in (1.1), generally, the inequality like (1.4) for
6=1

T u'®
fo mdt > 0.
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may not hold. This means that the work to estimate a priori bounds of all the possible periodic solutions to
the equations

x"(t) + Af (x(£)x'(t) + Ap(t)x(t — 1) — Ag(x(t — T3)) = Ah(t), 1 € (0,1).
is more difficult than the corresponding ones associated to (1.3).

2. Preliminary lemmas

Throughout this paper, let C; = {x € C(R,R): x(t + T) = x(t) for all t € R}with the norm defined
bylx|e = tren[oaaTc]lx(t)l. For any T —periodic solution y(t) withy € L*([0,T],R),y,(t) andy_(t) is denoted

by max{y(t),0}and — min{ y(t),0} respectively, and y = %fOTy(s)ds. Clearly, y(t) = y,.(t) — y_(t) for
allt e Randy =y, —y_.
The following Lemma is the consequence of Theorem 3.1 in [22].

Lemma 2.1. Assume that there exist positive constants M,, M, and M, with 0 < M, < M, such that the
following conditions hold.
1.Foreach A € (0, 1], each possible positive T —periodic solution xto the equation

u"(t) + Af w®)u'(t) + 2p()u(t — 1) — Ag(u(t — 72)) = Ah(t),
satisfies the inequalitiesM, < x(t) < Mand|x'(t)| < M,for allt € [0, T].
2.Each possible solution ¢ to the equation
gc)—co+h=0,
satisfies the inequalityM, < ¢ < M;.
3.1t holds
(9Mp) — oMy + h)(g(My) — oMy + 1) <0,

Then Eq.(1.1) has at least one T —periodic solution usuch that M, < u(t) < M, forallt € [0,T].

Lemma 2.2.1'% Let x be a continuous T —periodic continuous differential
function. Then, for any 7 € (0, T],

R U
(| @1 asyz < | el i+ VTixL

In order to study the existence of positive periodic solutions to Eq.(1.1), we list the following
assumptions.
[H.] The function ¢(t) satisfies the following conditions

1

T 1T p_(s)ds 7 T 1
Jy 04 (s)ds >0,0:= m e[0,)and oy:— (f, @+ (8)dt)z € (0,1);
0

[H,] there are constantsM > 0andA > Osuch thatg(x) € (0, A) for allx > M;
1
[H31f, g(s)ds = +o;
[Hy] lim, g (x) = +oo.
b
Remark 2.1. It is noted that assumption[H,] can not be deduced from assumption [H;]. For example,
letg (x) i | Sin% [for allx € (0, +),then assumption [H3] is satisfied. But, assumption [H,] does not hold.
Remark 2.2. If assumptions[H, ]-[ H,]and[H,] hold, then there are constantsD,andD,with0 < D; < D,
such that
g(x) — @x + h > Ofor allx € (0,D,)
and
g(x) —x + h <0 forallx € (D, +x)
Now, we suppose that assumptions[H, Jand[H,] hold, and embed Eq.(1.1) into the following equations
family with a parameterd € (0,1)
x"(t) + Af (x()x'(t) + Ap(t)x(t — 1) — Ag(x(t — T3)) = Ah(t), 1 € (0,1]. (2.1)
Let
N ={x €Cr:x"(t) + Af (x(t))x'(t) + Ap(t)x(t —11) — Ag(x(t — T3)) = Ah(t), A € (0,1],
x(t) > 0,vt € [0,T]},
and
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2

1 3 1 1
T2 TZ(h_)2 Ao \2 max{A+h,0}
M, =— + + —— 2.2

0 1-o [(1—01)(1—0)% (1—0‘1) ] (1-0)p+ ( )

where

_ 1 — 2
1 _ 1 A+|h T2h_max{A + h, 0}

AO = Tz((p+)2 —_— — )

(1—-0)o, (1 —-o0)op,

Ais a constant determined by assumption [H,] Clearly,MyandA,are all independent of(4, x) € (0,1] x Q, and
there is a positive integer kysuch that

koM > M,, (2.3)
whereMis a constant determined by assumption[H,].
Lemma 2.3. Assume that assumptions[H;]-[ H-] hold, then there is an integerk™ > k, such that for
each functionu € £2, there is a pointt, € [0, T] satisfying
u(ty) < k™M.
Proof: If the conclusion does not hold, then for eachk > k,, there is a functionu, € fsatisfying
ux (t) > kMfor allt € [0, T]. (2.9)
From the definition off2, we see
up" + Af (wduy' + Ap (O (t = 71) — Ag(wie (t — 7)) = Ah(t), A € (0,1], (2.5)
and by using assumption[H,],
0 < g(ug(t)) < A, forall (2.6)
By integrating (2.5) over the interval [0,T], we have

T T T
f e(Oug(t —t)dt = f gug(t —7p))dt + f h(t)dt,
0 0 0

T

T T T
| et —mde= [ o @ue—wde+ | gaute—de+ [ heode
0 0 0 0

Sinceg, (t) = O0ande_(t) = Ofor allt € [0, T], it follows from the integral mean value theorem that there are

two pointsé,n € Rsuch that
T

WO TPT = TPwe(n) + fo gQu(D)dt +Th

T
< TP |ugl, + f 9w (©)dt + T,
0

which together with (2.6) yields
ur(§)To,y < To_|ugle + TA+Th,
i.e.,
h
we(§) < olugl, + 2= (2.7)

In view of the inequality
1

i/ (" 2
[uglo < up(§) +T2 <f |uk'(5)|2d5> ,
0
it follows from (2.7) and the condition ofa € [0,1), which is determined in assumption [H,], that
1 1
T_E T , 2 2 max{A+h,0}
il < 10 (Jy Tui )IPds)” + 7220
On the other hand, by multiplying (2.5) with w, (t), and integrating it over the interval [0,T], we obtain
T T T T
| mu@rde =2 gluete = mu®de +2 | o@uete - mw@de - 2 [ Moo,
0 0 0 0
which together with the fact of g(x) > 0 for all x > 0 gives
T T T
f lug '(0)|?dt < Af @4 (Ou,(t — 1)U (t)dt + Af h_(ug (t)dt,
0 0 0

<T@y [uel? + Th_lugl.,

(2.8)

ie.,
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(7 e '@ 12de ) < T2l + (Tho) 2. (2.9)

Substituting (2.8) into the above formula,
1 —
T . \2 , max{A+h0}
f lug'(s)|“ds | + ——————| +
0

1 1
T2
1-0 (1-0)ps

T 5 1
( f g '(t)|2dt) S om
0

1 2

1
_ Ll rz T 2 max{A+h,0}
(Th-)* |T— <f0 [ $)Pds | + =7 o=

1
2

1 3 1
T 2 i T a4
= o, (f |uk'(s)|2ds>2+—“(h‘)1<f |uk'(s)|2ds>4+Ao,
0 (1- o)z \Jo

1 1

% (fOT <p+(t)dt)E € (0,1), which is determined by assumption [H, ], and
1

1max{A + h, 0} (TZ max{A + h, 0}>7

whereg; =

Ay = (Tey)2 — —
0= NPT T oyg, -0,
and then

T 2 3(_)% T 2
2 T4(h_ 4 A
([ cora) < ([ aoras) 42
: (1= 0)(1 - )2\ 1
which results in

1 3 1 1
T ezt TA0C) Ao \z
(f3 hue @) 2dt)* < P (1_01) . (2.10)
Substituting (2.10) into (2.8), we have
|uk|00 < MOP

where M,, is determined by (2.2). This is

u(t) < Myforallt € [0,T]. (2.11)
By the definition ofk,, we see from (2.3) that (2.11) contradicts to (2.4). This contradiction implies that the
conclusion of Lemma 2.3is true.

3. Main results

Theorem 3.1. Assume that [H,]-[ H4] hold. Then Eq.(1.1) has at least one positive T —periodic solution.
Proof. Firstly, we will show that there existM;, M,with M; > k*M and M, > Osuch that each positive
T —periodic solution u(t) of Eq.(2.1) satisfies the inequalities

u(t) < My, [u'(t)| < My, forall t € [0,T]. (3.1)
In fact, if uis an arbitrary positive T —periodic solution of Eq.(2.1), then
u"(t) + Af w(@)u'(t) + Ap(u(t —11) — Ag(u(t — 75)) = Ah(t), 1 € (0,1]. (3.2)
This implies u € 0. So by using Lemma 2.2 that there is a pointt, € [0, T] such that
u(ty) < k™M, (3.3)
and then
Trr voN12 %
il < we(@) + T2 (f luie'(s)]%ds) (3.4)
Integrating (3.2) over the interval [0,T], we have
Jy e(®u(t — )de — [ gu(t — 1,))dt = [ h(t)dt. (35)
By assumption [H,], we see from (3.5) that there is a point t; € [0, T] such that
u(ty) =v, (3.6)

where y < k*Mis a positive constant, which is independent ofA € (0,1]. Similar to the proof of (2.9), we
have

(Jy moFde) < @FDlul. + (Th)lul?, (37)
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Substituting (3.4) into (3.7), we have
1 1

T 2 1 1 T 2
(f |u’(t)|2dt> < (Tpy)2 k*M+TE(f |u'(s)|2ds> +
0 0

N[

(TZ)% [k*M 4Tz (fy |u’(s)|2ds)z]
1

1/ (T 2 3 __ LyT 2
s(Taﬁ(f |u'(s)|2ds> +T%(h_)? <f |u'(s)|2ds> +
0 0
1
k*M(Tﬂ)% + (Tk*Mh_)?,

|1 - 107 ( | T|u'(t)|2dt>%
0

< T%(K)% (f3 1w'(s)12ds)* + K M(TET): + (Tk*M[)%. (3.8)

[uy

which results in

Since
1 1 1

T 5 > T 5
(977 = T2 ( | <p+<s)ds>2 < 1T_20( | <o+(s)ds)2,
0 0

it follows from assumption [H,] that

1
1-T(p)2 >0,
which together (3.8) yields that there is a constant p > 0, which is independent ofA € (0,1], such that
1

T 2
(f |u’(t>|2dt) <p,
0

1
u(t) < k™™ +Tzp: = My, forallt € [0,T]. (3.9
Now, if uattains its maximum over [0,T] at t, € [0, T], then u'(t,) = 0 and we deduce from (3.2) that
t

uw'@) =4[ [=fu = e®)u(t — 1) + gu(t —12)) + A(t)]dt

t2
Forall t € [ty, t, + T]. Thus, if F' = f, then

and then by (3.4), we have

t+T t,+T
[w'(O)] < AIF(u(t)) — F(u(t))| + lf lp(s)luls —1))ds + AJ gu(t —13))dt +
2 ty+T 2
2 f |h(s)|ds
< 22 max |F(w)| +2 [y g@u(s)ds + AT]@] |ul., + AlAl. (3.10)

From (3.5), we see that
T T
f g(u(s))ds = f pOu(t —ty)dt —Th
0 0

< Ty lul, + Th_.
It follows from (3.10) that

lu'(t)] < 21( max |FW)| + AT|¢||ul., + W)
0susM;

< 2/1( max |F(w)| + M,TTg] + TW)
0susM;

1= AM,, forall t € [0, T], (3.11)
and then
|u'(t)] < My, forall t € [0, T]. (3.12)
(3.10) and (3.12) imply that (3.1) holds.
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Below, we will show that then there exists a constant y, € (0, y), such that each positive T —periodic
solution of Eq.(2.1) satisfies

u(t) > yq forall t € [0,T]. (3.13)
Suppose that u(t) is an arbitrary positive T —periodic solution of Eq.(2.1), then
u"(t) + Af (wyu'+ Ap(Hu(t — 1) — Ag(u(t — 1)) = Akh(t), 1 € (0,1]. (3.14)

Let t; be determined in (3.6). Multiply (3.14) byu'(t) and integrating it over the interval[¢; + 74,t + 74] (Or
[t + 74, t1 + 71]) , We get

! 2 ! 2 t+74
't + )" Ju'(ty + 1)l 42 Fu(s) (u'(s))2ds
2 2 t1+T1
t+T1 t+T1 t+T1
=2 f s — 1)) (w(s))ds — A f 9($)us — 1) '(s))ds A f H(Ow(s)ds
t1+7, t1+74 t1+7,
t+14 t+7;
=1 guls—t))W(s—))ds + 2| gluls — t))[u'(s) — (s — 75)]ds —
R t+71 A t+11
Af e(s)u(s —t)(W'(s))ds + Af h(t)u'(s)ds
t1+7 t1+7q
= AL gu(s)u(s)ds + A7 g(uls — 1) [u/(s) —u'(s — 72)lds —

t+141

t !, I}
2 ft:;l o()u(s — ) (s))ds + 2 [, h(Ou'(s)ds,
which yields the estimate
u(ty) "t + 2 "t + 2 T
f g(syds| < HEFE | 'l + o)l +Af If ()] (w)?dt +
u(t) 2 2 0
Af] lp@®uw| dt + 2 f) |h(wd.
From (3.10) and (3.11), we get

A

u(ty) N —
A f g(s)ds| < AM2 + A max |f(w)|TM2 + AM;M,T || + AM,T|h|
u(t) 0susM;
which gives
| fjég” g(s)ds| < My, forall t € [t,,t; +T] (3.15)
with

My = M} + max |f(W)|TM; + MM, Tlgl + M,TIhl.
susM;
From [Hs] there existsy, € (0,y) such that
fny g,(w)du > M, for all € (0,7,] (3.16)
Therefore, if there isa t* € [ty,t; + T] such thatu(t*) < y,, then from (3.16) we get

14
f g(s)ds > Ms,
u(t*)

and then

u(ty) 14
f g(s)ds > f g(s)ds > My,
u(t*) u(t*)

which contradicts (3.15). This contradiction gives thatu(t) > y,for allt € [0, T]. So (3.13) holds.
Letm, € min{ Dy, y,}andm, € (M; + D,, +) be two constants, then from(3.1) and (3.12), we see that each
possible positive T —periodic solution usatisfies
my < u(t) < my, |[u'(t)| < M,
This implies that condition 1 and condition 2 of Lemma 2.1 are satisfied. Also, we can deduce from Remark
2.2 that
g(c) —@c+h>0,forc e (0,mg]
and
g(c) —pc+ h <0, forc € [my, +x)
which results in

(g(mg) — omg + h)(g(My) — §M, + h) < 0.
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So condition 3 of Lemma 2.1 holds. By using Lemma 2.1, we see that Eq.(1.1) has at least one positive
T —periodic solution. The proof is complete.
Example 3.1: Considering the following equation
x")+ fx(@))x'@) +a(l + 2sint)x(t — 1) — P cost, (3.17)
wheref is an arbitrary continuous function,z,, 7, € [0, 4+00) and a € (0, +) are constants. Corresponding
to Eq.(1.1), we have g(u) = = @(t) = a(l + 2sint) and A(t) = cos t.By simple calculating, we can

’
u2

verify that assumptions [H,]-[ H,] are all satisfied. Furthermore,

T
f P, (D)dt = (4—n + 2\/§)a,f p_(t)dt = (2V3 — 2_")(1,
0 3 0 3

and then
2
fy p-()ds  2B-F
0:=—% = a7 € (0,1)
fo 9+()ds 2423
and
1 1
Tz (T 1 a2z 4m 3
o ([ ou0di = G+ 2v3)n
0 (2m)2
If
21

a<—g——r,
(3 +2v3)3

then o; € (0,1), this implies that assumption [H,] holds. Thus, by using Theorem 3.1, we have that Eq.(3.17)
has at least one positive2m —periodic solution.
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