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Abstract. In this paper, we review a nonlinear matching pursuit approach (Hou and Shi, 2013), a data-

driven time-frequency analysis method, which is looking for the sparsest representation of multiscale data 

over a dictionary consisting of all intrinsic mode functions (IMFs). In many practical problems, signals are 

non-integer period sampled. In other words, the time window may not contain exactly an integer number of 

signal periods. We consider the sparse time-frequency decomposition of non-integer period sampling signals 

by the nonlinear matching pursuit method and estimate the error. The estimation show that the relative error 

depends on the separation factor, the frequency ratio, and the number of periods of the IMF. 
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1. Introduction  

Data is ubiquitous in our lives, and how to extract useful information from multiscale data has aroused 

research upsurge in recent years. The Fourier transform is a conventional method for analyzing linear and 

stationary data by decompose the signal into a linear combination of different frequency components. While 

the Fourier transform is widely applied in many fields, but it is still has some limitations in processing 

oscillatory data. When traditional data analysis methods can not provide simple indices with clear physical 

meanings, new ideas are in need. Time-frequency analysis method represents one-dimensional time signal 

into time-frequency (TF) domains, which is an important tool for nonstationary and nonlinear signal analysis. 

These include the short time Fourier transform, the wavalet transform [17], and the Wigner-Ville distribution 

[15]. The analytic signal (AS) method is another important approach in TF analysis was introduced by Van 

der Pol [2] and Gabor [7], and it has shown its usefulness in many applications, see, e.g. [11, 16, 1]. The AS 

method contains the original function and its Hilbert transform. In addition, an analytic signal has only the 

non-negative frequency components which has more physical meaning. In the past decades, the empirical 

mode decomposition (EMD) [13] was proposed to study the dynamics hidden inside an oscillatory signal 

which has offered an effective method for nonstationary data analysis. The EMD algorithm decomposes a 

signal into several intrinsic mode functions (IMFs) via a sifting process. The EMD method has shown its 

usefulness in analysing signal components caused by various sources, see, e.g., [5, 14, 26, 27]. But its 

mathematical foundation is still lacking cannot be ignored, which is due to the empirical nature. Recently, 

many variations of EMD were proposed, like the ensemble empirical mode decomposition (EEMD) [25], the 

variational mode decomposition [12], the synchrosqueezed wavelet transforms [10], etc. 

Inspired by the EMD method and compressive sensing [6, 8, 9], Hou and Shi proposed a data-driven 

time-frequency analysis method [21, 22]. The data-driven time-frequency analysis method based on the 

sparsest representation of multiscale data to decompose the signal into a finite number of IMF with a small 

residual: 

 

1

( ) ( )cos ( ) ( ), [0, ],
M

k k

k

f t a t t r t t T


    (1.1) 

where each IMF is a signal with amplitude modulation-frequency modulation (AM-FM). The amplitude 

( ) 0ka t  , the instantaneous frequency '( ) ( ) 0,k kt t    and ( )r t  is a small residual. 

       The idea of this method is looking for the sparsest representation over the dictionary consisting of all 

IMFs by solving the following nonlinear optimization problem: 

 



Qi Yang：Error Analysis for Sparse Time-Frequency Decomposition of  

Non-Integer Period Sampling Signals 

 

 

JIC email for contribution: editor@jic.org.uk 

26 

 
( ) ( )

1 , 1

1

min

subject to    ( ) ( )cos ( ), 0 , cos ,

a
k k M k k M

M

k k k k

k

M

f t a t t t T a D



 

   



   
 (P0) 

where D   is a dictionary which is defined as 

 { ( )cos ( ) : '( ) 0, ( ) ( )},D a t t t a t V      (1.2) 

( )V   is a is the collection of all the function that are less oscillatory than cos ( )t . Liu et al analyzed the 

uniqueness of the optimization problem (P0) under the assumption of the scale separation by considering a 

simplified slow evolution chirp model and studying the wavelet transform of each IMF; it is proved that 

under the assumption of the scale separation and the signal ( )f t is well separated, the solution of (P0) is 

unique up to an error determined by the scale separation property [3]. Now, we review the definitions of 

scale separation and well-separated signal. 

Definition 1.1 (scale separation [3]). A function ( ) ( )cos ( ) ( [0, ])f t a t t t T  is said to satisfy a scale 

separation property with a separation factor 0  , if ( )a t  and ( )t  satisfy the following conditions: 
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 
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





  

      
             (1.3) 

       In the above definition, the condition inf '( ) 0( [0, ])t t T    is to ensure that the instantaneous 

frequency has a physical meaning and the condition '( ) / ( ( ) '( ))a t a t t  implies the envelope ( )a t is 

smoother than the phase function ( )t . The variation of the instantaneous frequency '( )t  over the time 

domain is bounded; otherwise, it is more likely to cause the mode mixing. The definition of well separated 

signal as follows. 

Definition 1.2 (well-separated signal [3]). A signal :[0, ]f T  is said to be well separated with 

separation factor   and frequency ratio   if it can be written as 

 

1

( ) ( )cos ( ) ( ),
M

k k

k

f t a t t r t


   
 

where all ( ) ( )cos ( )k k kf t a t t satisfy the scale separation property with separation factor , ( ) ( ),r t O   

and their phase function ( )k t  satisfy 

 ' '

1
( ) ( ), [0, ],

k k
t t t T 


     

and 1, 1 (1).O     

       The optimization problem (P0) can be seen as a nonlinear version of the 
0L  minimization problem which 

is NP-hard and challenging to solve [21, 22, 23]. Mallat and Zhang introduced an algorithm, called matching 

pursuit, that builds up a sequence of sparse approximations stepwise and provide the representation of (1.1) 

[8]. For Gabor dictionaries, S. Qian and D. Chen proposed a similar algorithm [19]. The basis pursuit (BP) is 

an important optimization principle for decomposing a signal, which was introduced by S. Chen, D. Donoho 

and M. Saunders [20]. Because the 
1L  norm is approximately equivalent to the 

0L  norm under certain 

conditions, the main idea of BP is to find a representation of the signal whose coefficients have the smallest 
1L  norm. 

       It is too difficult to solve the optimization problem (P0) which is nonlinear and nonconvex. It is like the 

EMD method, Hou and Shi introduced an algorithm based on matching pursuit to solve problem (P0) [23, 24]. 

This nonlinear matching pursuit (NMP) algorithm is stated as follows. 
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Task. To find a approximate optimizer of the problem (P0) 

Initialization: Set the initial residual 0r f  and 1.k   

Main iteration: 

Step 1. Solve the nonlinear least-squares problem as follows: 
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min cos
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(1.4) 

Step 2. Update the residual 

 

1

cos .
M

k j j

j

r f a 


   (1.5) 

Step 3. If 2 0k L
r  , stop. Otherwise, set 1k k   and go back to Step 1. 

 

        

In the above algorithm, each IMF is given by solving the nonlinear least-squares problem in Step 1. Liu 

et al gave some estimations of each IMF, and proved each IMF is a local minimizer of  (P0)  under the 

assumptions of scale separation and the signal has integer periods over the time span [3]. A two-level method 

based on data-driven time-frequency analysis, proposed in [4], to find the sparse time-frequency 

decomposition. The main idea of the two-level method is run a local algorithm to obtain a approximate 

instantaneous frequency, then take the result as the initial guess of the global algorithm. In the local 

algorithm, f is divided into a number of overlapped small time subintervals, and get the local frequency by 

solving the optimization problem in Step 1 on each time subinterval. Then we can get a pieces of an IMF in 

each overlapped subinterval, and connect all pieces of the IMF into a global IMF. The main difficulty in the 

local algorithm is to select a suitable number of periods of IMF over the subintervals. 

       In this paper, we consider the sparse time-frequency decomposition of non-integer period sampling 

signals. For any given non-integer period sampling signal ( )f t  we decompose f  over the dictionary D
 

which can be written as 

  : ( )cos ( ) : ( , ) ,D a a U     
 

(1.6) 

where 
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 (1.7) 

Now, we consider the following problem 
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.
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
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 (P2) 

We can find a sparse representation of the non-integer period sampling signal f by solving the optimization 

problem (P2). By the proof of [3, Theorem 3.1], we have the following result: 

Lemma 1.1.  Let ( )f t  be a function satisfying the scale property with separation factor  and frequency 

ratio   as defined in Definition 1.2: 
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Suppose that {1, , }.l M  If 

 ( , ) ( , ),l lp a p a   
(1.8) 

where ( , )p a   is given in (P2), then we have 
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(1.9) 
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where 

 
2

2 2 2

1 , ,

cos , coscos
, ,

cos cos cos

l l k kk k L
k l k l

k l l l l l k kL L L

a aa

a a a

 
  

  

   

(1.10) 

and 

 
2 2

2 2 2 2

2 , ,

cos , coscos ( )
, .

cos cos cos cos

k kk k L L
k l k l

k l l l l l k kL L L L

a aa r t

a a a a

 
  

   

    

(1.11) 

        

2. Discussion on problem (P2) with non-integer period sampling signal 

In the rest of this paper all the functions that we discuss are supposed to belong to 2[0, ]L T . For 

convenience, we write the 
2L  norm 2L

  as   for short. Let ( )f t  be represented in the following form 

 

1

( ) ( )cos ( ) ( ), [0, ].
M

k k

k

f t a t t r t t T


     
(2.1) 

where ( )cos ( )( 1, , )k ka t t k M   are the IMFs. In this paper, we always suppose that 1 2,   where 1  is 

the number of periods of 
1cos ( )t  in the interval [0, ]T . In many practical problems, signals usually have 

dozens of periods. 

      Our main result is summarized in Theorem 2.1. 

Theorem 2.1. Let ( )f t  be a function satisfying the scale property with separation factor   and frequency 

ratio   as defined in Definition 1.2: 
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k k k k k

k

f t a t t a U a O t T 


      
(2.2) 

Suppose that there exist ( ,a U  , [1, ),d  and {1, , }l M such that 

 1 ' '( ) '( ) ( ), [0, ].l lt t t t T         (2.3) 

If 

 ( , ) ( , ),l lp a p a   (2.4) 

where ( , )p a   is given in (P2), then we have 
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The proof of Theorem 2.1 relies on some estimates, which we demonstrate in the following lemmas. 

Lemma 2.1.  Let ( ), ( )a t t satisfy (1.3). Then 
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where  

 ( ) (0)
.

2

T 





  (2.7) 

The proof of lemma 2.1 can be found in Appendix A, and it is easy to show that, for any {1, , }k M , 

we have  
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 
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(2.8) 

Lemma 2.2. Let ˆˆ( , ( , )a a   both satisfy (1.3), and there exist 1d   such that 

 ˆ'( ) '( ), [0, ].t d t t T     (2.9) 

Then 
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where 
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 

 
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       The proof of lemma 2.2 can be found in Appendix B. 

 

2.1.   Proof of Theorem 2.1 
Using the above estimates, we are ready to prove Theorem 2.1. Now, we give the proof of Theorem 2.1. 

 

Proof of Theorem 2.1. For any 1 ,k l M    if ,l k  we have 

 ' '( ) ( ), [0, ],l k

l kt t t T      
(2.12) 

and the following inequality by applying Lemma 2.2, 
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Since 
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we have 
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It follows that  
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On the other hand, we have 

 1 ''( ) ( ), [0, ]l k

kt t t T        

(2.18) 

by (2.3) and (2.12). Similarly as the estimation of 
,k l , we have 
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       If ,l k  we have 
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So we can also obtain that 
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It follows from (1.9), (1.10) and (1.11) that 
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a
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This completes the proof. 

For a well-separated non-integer period sampling signal, we know from estimate (2.24) that, the larger 

the frequency ratio or the number of periods of the IMF, the smaller the error of the solution of optimization 

problem (P2). However, when an IMF has large number of periods in the given time domain, its 

instantaneous frequency may change greatly so that the inequality sup '( ) / inf '( ) ' ( [0, ])t t M t T     may 

not be satisfied. In this case, mode mixing might happen (for example, (3.47) in [3]). So in practice, we may 

divide the whole time domain into small intervals so that l  in each interval is suitable, not too small or too 

big. 

3. Concluding remarks. 
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In this paper, we considered the sparse time-frequency decomposition of non-integer period sampling 

signals. For the non-integer period sampling signals, we analyze the error of looking for a sparse 

representation by the nonlinear matching pursuit method. By the theoretical proof, we show that the relative 

error depends on the separation factor, the frequency ratio, and the number of periods of the IMF. 
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Appendix A. Proof of Lemma 2.1. 

To proof Lemma 2.1, we need the following estimation. 

Lemma A.1.  Let (0,1),   and 1( ) [ , ]g t C c d  be a positive function. Suppose 

 '( )
[ , ].

( )

g t
t c d

g t
    

(A.1) 

Then we have 

 1
( )cos 2 ( ) ,

d d

c c
g t tdt g t dt



 
  
 

   
(A.2) 

where 

 
: .

2

d c





  

(A.3) 

Proof. First we have that 

 2 4 2[ ]

2 (2[ ] 1) 2[ ]
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   
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  

   

     
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(A.4) 

Without loss of generality, suppose that 

  
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(A.5) 

Thus 
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 (A.6) 

On the other hand, for any integer [1, ]m  , 
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 (A.7) 

Thus 

 2 4 2[ ] 2[ ]

2 2([ ] 1)
( )cos 2 ( ) .
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(A.8) 

This and (A.6) imply (A.2). 

       Now, we can give the proof of Lemma 2,1. 

Proof of Lemma 2.1. First, we know 
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Let 2 ( ).s t  Then we obtain 
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where 1( ) : ( / 2)t s s   and (noticing that '( ) 1/ (2 '( ( )))t s t s ) 
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So the derivative of g  is  

 

 

2

2

( ( )) '( ( )) ( ( )) ''( ( )) '( )
'( ) .

'( ( ))

a t s a t s a t s t s t s
g s

t s





 
  (A.12) 

Then we obatin 
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Using Lemma A.1, we get 
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Thus (2.6) follows by combining (A.9) and (A.14). 
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Appendix B. Proof of Lemma 2.2. 

Proof of Lemma 2.2. We have the following equality: 
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For the integral 1I , let ˆ( ) ( ).s t t    Then 
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where 1ˆ( ) ( ) ( )t s s     and (noting that ˆ'( ) 1/ ( '( ( )) '( ( )))t s t s t s   ) 
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Thus, we have 
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and 
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Using Lemma A.1, we get 
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Similarly, we can obtain that 
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Combine (B.1), (B.6) and (B.7), we complete the proof. 
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