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ABSTRACT: Land Surface Emissivity is an inherent property of land surface, an important condition for 

retrieving surface and atmospheric parameters, and a key element in land surface data assimilation system. In 

order to obtain more accurate and physically meaningful microwave Land Surface Emissivity, the linear 

retrieval model is constructed for estimating the microwave Land Surface Emissivity in the Taklimakan 

Desert. Firstly, the function relationship between the microwave Land Surface Emissivity and two factors is 

deduced by using a Taylor expansion of a multivariate function. Secondly, according to the optimal control 

theory and the principle of atmospheric radiation transfer, a cost function is established by combining the 

observational brightness temperature with simulated brightness temperature. At last, the optimal solution is 

obtained with the Newton iteration method. The result shows that the optimal microwave Land Surface 

Emissivity improves the simulated value of brightness temperature. In addition, an independent test of the 

retrieval model in different area demonstrates the effectiveness and feasibility of this proposed model. The 

optimal control principle and Newton iteration method can be applied to the linear retrieval of LSE. 

Keywords: Optimal control theory; Linear retrieval; Newton iteration method; microwave Land Surface 

Emissivity  

1. Introduction 

With the development of the Feng-Yun (FY) series satellites and the maturity of the theory and 

method of Satellite Meteorological remote sensing, the satellite-borne remote sensor plays an irreplaceable 

role in numerical weather prediction, climate monitoring and prediction, tropical cyclone and so on [1]. The 

radiation that the remote sensing receives includes the contribution of atmospheric radiation and surface 

radiation. Surface radiation is mainly affected by the microwave Land Surface Emissivity (LSE), so it is 

crucial to obtain accurate LSE.  

LSE is a variable related to many factors. The LSE of bare soil generally decreases with the increase 

of surface temperature and soil moisture content, but increases with the increase of surface roughness. In 

addition, the LSE of bare soil is also affected by detection frequency and polarization mode, with the low-

frequency LSE being more sensitive to the change of soil moisture content [2]. The LSE of vegetation-

covered land surface is higher than that of bare soil [3], the LSE of vertical polarization increases with the 

incident angle, while that of horizontal polarization shows obvious seasonal variation [4]. At present, there 

are two main common algorithms for the calculation of LSE, namely, the statistical method and the 

inversion calculation method based on the satellite data. The statistical method includes genetic algorithm, 

Monte Carlo method, simulated annealing method, neural network method, etc. Aires et al. [5] used neural 

network method to calculate LSE in day time, and found that the convergence speed of the method is very 

slow, the calculation is complex and it is very difficult to obtain some surface parameters. The inversion 

calculation method based on the satellite data usually needs lots of input data such as observational 

brightness temperature， surface temperature， the upward and downward radiation， the atmospheric 

transmittance，channel frequency, soil humidity, vegetation coverage percentage and so on. Although the 

physics of the inversion calculation method is clear, there are too many parameters for inputting. Moreover, 
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the uncertainty of parameters will also affect the precision of derived LSE. Therefore, it is imperative to 

develop a new retrieval method of LSE.  

The optimal control theory and method is about how to find the optimal and the best scheme among 

many schemes by minimizing a prescribed cost function. Due to the continuous expansion of computer 

application, the optimization control theory is widely used in various fields, such as economics, engineering, 

and especially in meteorology in recent years[6-8].In order to derive a more accurate LSE with physical 

meaning, and improve the utilization rate of microwave Radiation Imager (MWRI) data on FY-3C satellite, 

we will take the optimal control theory for the calculation of LSE in Taklimakan Desert area. The linear 

retrieval model of LSE is constructed by considering the influence of surface temperature and specific 

humidity, then the formulas of calculating LSE is obtained. 

This paper is organized as follows. Preliminaries are briefly described in the next section. The 

construction of the Linear retrieval model and the numerical result analysis are provided in Sect. 3. The 

model test is implemented in Sect. 4. Summary and discussion are given in the final section.  
 

2. Preliminaries 

In this section, we introduce the research area and the algorithm principle of Community Radiative 

Transfer Model (CRTM),  

2.1. Research area  
Desert accounts for 15% of the earth's land area, which, with scarce vegetation, relatively flat surface 

and small roughness. Due to the special geographical environment in desert area, the LSE retrieval from 

satellite observations is always different from other surface types in space and time [9-11]. In addition, since 

its associated frequent sandstorms and other disastrous weather seriously affect the surrounding areas, it is 

of great meteorological significance to monitor and study LSE in the desert area. In this study, we choose 

the Taklimakan desert (37°~41°N, 78°~88°E) for investigation. Figure 1 shows the observational brightness 

temperature in the Taklimakan Desert on November 3, 2014. The blue box is selected retrieval area (38º~40

ºN, 81º~85ºE), containing 998 scanning points. 

 

Figure 1. The observational brightness temperature in the Taklimakan Desert on November 3, 2014. (The blue 

box is retrieval area(38º~40ºN, 81º~85ºE)) 

2.2. Model 
CRTM is a fast radiation transmission model for satellite visible light, infrared, ultraviolet or 

microwave channel radiation transmission [12], developed by the United States Satellite Data Assimilation 

Joint Center. CRTM also computes radiance sensitivities such as the radiance derivatives (Jacobians) with 

respect to the state variables. We input T639 model forecast data, ERA-Interim reanalysis data, and Satellite 

(FY-3C, Microwave Radiation Imager (MWRI), FY-3C/MWRI) observation data into CRTM model to 

obtain the simulated brightness temperature of MWRI. Here we introduce the principle of CRTM simulation 

of bright temperature. 

Assuming a vertically-stratified, plane-parallel and non-polarized atmosphere, the monochromatic 

radiative transfer equation will be written as 
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𝜇
𝑑𝐼(𝜏; 𝑢, 𝜙)

𝑑𝜏
= 𝐼(𝜏; 𝑢, 𝜙) −

𝜛

4𝜋
∫𝑃(𝜏; 𝑢, 𝜙; 𝑢′, 𝜙′)𝐼(𝜏; 𝑢′, 𝜙′)𝑑𝑢′𝑑𝜙′ 

                               −
𝜛

4π
𝑃(𝜏; 𝑢, 𝜙;−𝑢⊗, 𝜙⊗)𝐹⊗𝑒

−𝜏/𝜇⊗ − (1 − 𝜛)𝐵(𝑇) ,                                         (1) 

where𝐼is the intensity, 𝜛is the single-scattering albedo;𝜏denotes the optical depth, 𝐵denotes the Planck 

function, and 𝑃represents the phase function. The directions of the incoming and outgoing light beams are 

represented by(𝜇′, 𝜙′)and (𝜇, 𝜙), where𝜇′ = 𝑐𝑜𝑠(𝜃′) and𝜇 = 𝑐𝑜𝑠(𝜃), 𝜙′ and 𝜙 are the azimuthal angles, 

while𝜃′ and 𝜃are the zenith angles. In the third term on the right side of the equation (1), 𝐹⊗denotes the 

solar irradiance incident at the direction(−𝜇⊗, 𝜙⊗). 

When the sky is clear, then 𝜛 ≈ 0, that is, the scattering terms in equation (1) are neglected in the 

microwave and infrared regions. The solution to the monochromatic intensity can then be written as:  

𝐼(𝜇) = [𝑟∫ 𝐵(𝑇)𝑑𝑇𝑑(𝜏
′, 𝜇𝑑) + 𝑟⊗

𝐹⊗
𝜋
𝑇𝑑(0, 𝜇⊗) + 𝜀𝐵(𝑇𝑠)

𝜏𝑁

0

] 𝑇𝑢(𝜏𝑁 , 𝜇) 

                                                         −∫ 𝐵(𝑇)𝑑𝑇𝑢(𝜏
′, 𝜇)

𝜏𝑁
0

 ,                                                                (2) 

among which, 𝑟 is surface reflectance;𝜏𝑁is the atmospheric optical thickness from top to bottom, 𝑇𝑢 and 𝑇𝑑 

are upward and downward transmission respectively, 𝜀 is LSE. The radiative transfer equation (2) consists 

of four terms. The first term on the right side of (2) is the atmospheric downwelling radiation reflected by 

the Earth’s surface. The second term is the surface reflected solar radiation. The third term is the 

contribution of the surface emission at the surface temperature 𝑇𝑠and the fourth term is the contribution of 

atmospheric upwelling radiation. 

Radiation intensity𝐼 is obtained by using the equation (2) in the CRTM model, then we can calculate 

brightness temperature by the following formula, 

                                                           𝑇𝑏 =
𝑃1

𝐵2⋅𝑙𝑛(
𝑃2
𝐼
+1)

−
𝐵1

𝐵2
 ,                                                                (3) 

where𝑃1, 𝑃2, 𝐵1, 𝐵2represent Planck constant, 𝑇𝑏 is simulated brightness temperature. According to the 

optimal control theory [13]. We can see that LSE calculation module (𝜀) is a very important part. 

 
3. Linear retrieval model 

In this section, the linear function relation of LSE is deduced, and a cost function is constructed by 

using the simulated and observational brightness temperature, then the function relationship is obtained with 

Newton's iteration method. Finally, we analyze the numerical results. 

3.1. Derivation of LSE  
According to the previous analysis, the LSE is a function of many factors, that is 

                                                            𝜀=g(𝑇𝑠, 𝑄𝑠, 𝜆, 𝛼, 𝜃,⋯ ) ,                                                             (4) 

where𝑇𝑠 ,𝑄𝑠 ,𝜆 ,𝛼 , and 𝜃  stand for surface temperature, surface humidity, wavelength, surface state and 

observation angle, respectively. In view of the simplicity of the surface in desert area and the conical 

scanning characteristics of FY3C/MWRI, and there is also a significant correlation between LSE and 

surface temperature and humidity in desert areas, so LSE can be regarded as a function of surface 

temperature and humidity here, that is 

                                                               𝜀𝑑𝑒𝑠𝑒𝑟𝑡 = 𝑓(𝑇𝑠, 𝑄𝑠) ,                                                              (5) 

where 𝑇𝑠  represents the surface temperature, 𝑄𝑠 is the surface humidity, respectively. Because the exact 

function relationship between LSE and them is unclear, the function (5) is expanded as follows according to 

Taylor formula for multivariate functions [13],  

𝑓(𝑇𝑠, 𝑄𝑠) = 𝑓(0,0) + 𝑓𝑇𝑠
′(0,0)𝑇𝑠 + 𝑓𝑄𝑠

′(0,0)𝑄𝑠 +
1

2!
𝑓𝑇𝑠𝑄𝑠

′′ (0,0)𝑇𝑠𝑄𝑠 

                                 +
1

2!
𝑓𝑇𝑠

′′ (0,0)𝑇𝑠
2 +

1

2!
𝑓𝑄𝑠

′′ (0,0)𝑄𝑠
2 +

1

2!
𝑓𝑄𝑠𝑇𝑠

′′ (0,0)𝑄𝑠𝑇𝑠+. . . +𝑜
𝑛                             (6) 

When we take a linear approximation, the linear function of LSE about surface temperature humidity is 

obtained, that is 

                                                                       𝜀lin = 𝑎lin𝑇𝑠 + 𝑏lin𝑄𝑠 + 𝑐lin                                                       (7) 

𝜀𝑙𝑖𝑛is the LSE under the linear function relationship; 𝑎lin, 𝑏lin, 𝑐lin and is the undetermined coefficients in the 

linear function relationship respectively. 

3.2. Cost function 
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In order to obtain the constant in the linear function relationship, a cost function, which combines the 

simulated brightness temperature obtain by CRTM model and its observational counterpart of the 998 

scanning points from FY3C/MWRI , may be formulated in the following way : 

                                                        𝐽(𝑋) = ‖𝑇𝑏(𝑋) − 𝑇𝑜‖2
2 ,                                                                (8) 

In the linear retrieval model, 𝑋 = [𝑎lin, 𝑏lin, 𝑐lin]
𝑇 ; 𝑇𝑏(𝑋)  is the simulated brightness temperature with 

respect to 𝑋by CRTM model, 𝑇𝑜represents the observational brightness temperature from FY3C/MWRI. 

3.3. Algorithm 
The coefficients in the function (7) can be derived by minimizing the cost function (8) [14]. The 

minimization algorithm used here is Newton iteration method, which is a method used to find the minimum 

of the cost function by means of partial derivative information [15]. Taking the first three terms of Taylor's 

expansion, the function (8) is as follows:  

                      𝐽(𝑋) = 𝐽(𝑋𝑘) + (
∂𝐽(𝑋𝑘)

∂𝑋𝑘
)
𝑇
(𝑋 − 𝑋𝑘) +

1

2
(𝑋 − 𝑋𝑘)

𝑇 (
∂𝐽2(𝑋𝑘)

∂𝑋𝑘
2 ) (𝑋 − 𝑋𝑘).                      (9) 

Let𝑋𝑘be the minimum value, minimizing the right side of the equation (9) ,  

                                           
∂𝐽(𝑋𝑘)

∂𝑋𝑘
+ (

∂2𝐽(𝑋𝑘)

∂𝑋𝑘
2 )𝑋 − (

∂2𝐽(𝑋𝑘)

∂𝑋𝑘
2 )𝑋𝑘 = 0 ,                                                (10) 

then we obtain the iterative formula: 

                                               𝑋𝑘+1 = 𝑋𝑘 − (
∂2𝐽(𝑋𝑘)

∂𝑋𝑘
2 )

−1

.
∂𝐽(𝑋𝑘)

∂𝑋𝑘
 ,                                                       (11) 

among them 

                          
∂𝐽(𝑋𝑘)

∂𝑋𝑘
= ∇𝐽(𝑋𝑘)

𝑇𝐽(𝑋𝑘) = 2∑ ∇(𝑇𝑏
𝑖(𝑋𝑘) − 𝑇𝑜

𝑖)998
𝑖=1 (𝑇𝑏

𝑖(𝑋𝑘) − 𝑇𝑜
𝑖) ,                        (12) 

∂𝐽2(𝑋𝑘)

∂𝑋𝑘
2 = 2∑∇(𝑇𝑏

𝑖(𝑋𝑘) − 𝑇𝑜
𝑖)

998

𝑖=1

∇(𝑇𝑏
𝑖(𝑋𝑘) − 𝑇𝑜

𝑖) 

                                          +∑ (𝑇𝑏
𝑖(𝑋𝑘) − 𝑇𝑜

𝑖)998
𝑖=1 ∇2(𝑇𝑏

𝑖(𝑋𝑘) − 𝑇𝑜
𝑖) .                                                (13) 

The main problem of Newton iteration method is that the second-order partial derivatives of Heisen 

matrix are usually difficult to calculate in the process of iteration. To simplify the calculation and make the 

algorithm more effective, a new iterative formula is obtained by ignoring the second-order partial 

derivatives[16]: 

                                     𝑋𝑘+1 = 𝑋𝑘 − (∇𝐽(𝑋𝑘)
𝑇∇𝐽(𝑋𝑘))

−1
∇𝐽(𝑋𝑘)𝐽(𝑋𝑘) ,                                         (14) 

the second part on the right of the iterative formula (14) is also called the direction of iteration (𝑑𝑘 ). 

However, there isn’t step-length factor in the iterative formula (14). As a result, the value of the cost 

function sometimes increases rather than decreases. Thus, it is necessary for each iteration to introduce a 

step-length factor to limit the decline in this direction. Based on the Armijo-Goldstein criterion [17], the 

step-length in one-dimensional linear search can be written as: 

                                                          𝜆𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜆∈𝑅

𝐽(𝑋𝑘 + 𝜆𝑑𝑘).                                                     (15) 

The iteration will stop until the gradient of the cost function satisfies a certain precision (‖∇𝐽(𝑋)‖ <
10−4), with the optimal solution achieved in the last step. After this, the coefficients (𝑎lin, 𝑏lin, 𝑐lin) in the 

function can be obtained. Then, the function relationship of the LSE associated with the surface temperature 

and humidity can be determined. 

3.4. Numerical results  
998 scanning points in the Taklimakan desert are chosen for the retrieval experiment. For the cost 

function of the linear retrieval model, we use Newton iteration method to find its minimum value. Figure 2 

shows the evolution of the cost function with iteration number. It can be seen that the cost function of the 

linear retrieval model tends to be stable when the iteration is 12 times, according to the accuracy 

requirement, the iteration value of thirtieth times is taken as the optimal value of the cost function. At this 

time, the cost function decreases from 14784.162K2 to 1010.996K2, and the average error of each 

brightening temperature is about 1.007K.  
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Figure 2. The evolution of the cost function of the linear retrieval model with the number of iterations 

The LSE function relationship obtained from the linear retrieval model is: 

                                   𝜀lin = −0.00287𝑇𝑠 − 0.41238𝑄𝑠 + 1.06526                                                 (16) 

From the function (16), it is obvious that the LSE in the desert area decreases with the increase of surface 

temperature and humidity. 

In order to compare the old model with the linear retrieval model more intuitively, the calculation 

results under the two models are given in Table 1. From the range of the deviations, both models have 

greatly improved the original results. It can be seen that the LSE obtained by the retrieval model not only 

improves the simulation accuracy of brightness temperature, but also improves the trend of brightness 

temperature simulation. 
Table1. Result comparison 

Model Old Linear 

Average error (K) 3.938 1.008 

Standard deviation 

of deviation(K) 
0.911 1.006 

 Percentage 

improvement(%) 
/ 74.403% 

    

To further verify the reasonability of the LSE retrieval model, we use the LSE obtained by the linear 

retrieval model to simulate brightness temperature with CRTM model, which is called as 𝑇lin. 𝑇oldis the 

simulated brightness temperature by using the old LSE provided by CRTM model. 𝑇lin  and 𝑇old  are 

compared with the observational brightness temperature (𝑇obs). Figure 3 is the sequence diagram of 𝑇obs, 𝑇old 

and 𝑇lin. It can be seen that the change range of the first 500 scanning points is very small, which makes 𝑇old 

more difficult to reflect the surface information accurately and 𝑇oldis obviously lower and less dispersed 

than𝑇obs, that may be due to the low calculation value of the original surface emissivity in CRTM model. On 

the contrary, 𝑇lin is closer to 𝑇obsin the numerical value, besides, the trend change of 𝑇linis more consistent 

with 𝑇obsthan that of 𝑇old. 
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Figure 3. The Sequence diagram of brightness temperature in the retrieval area 

(𝑇obs: FY3C/MWRI observational brightness temperature; 

𝑇old: Simulated brightness temperature with the old LSE; 

                      𝑇lin: simulated brightness temperature with the LSE obtained by the linear retrieval model.) 

 

Figure 4 demonstrates a statistical histogram of the deviation of 𝑇linand 𝑇old from 𝑇obs. The abscissa 

represents the deviation interval while the ordinate represents the number of deviations within the interval. It 

can be seen that the deviations between𝑇obsand𝑇oldare biased positive, with most of them ranging from 3 to 

4K, but the deviations in mostly range from -1 to 1K. The deviations between 𝑇obsand 𝑇lin is obviously 

smaller than those between 𝑇obs and 𝑇old. Besides, the deviations between 𝑇obsand 𝑇lin, is closer to the normal 

distribution with the mean of 0 than those between𝑇obsand 𝑇old. From the results of numerical results, the 

LSE obtained by the linear retrieval model is better than the old one provided by CRTM model. 

 

Figure 4. Statistical histogram of deviation of𝑇old,𝑇lin and𝑇obsin retrieval area 

(The abscissa represents the deviation, the ordinate represents the number of deviations within the interval, and 

the total number of red and blue deviations is the same, which is 998 equal to the scanning points in retrieval 

area. The red bar is 𝑇obs minus 𝑇old, and the blue bar is 𝑇obs minus 𝑇lin) 
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4. Model test 

The linear retrieval model is tested in this section to verify the reliability and stability of it. We use the 

equation (16) obtained by the retrieval area to calculate LSE in the whole Taklimakan desert area(37°~41°N，
78°~88°E), and the LSE are further provided to the CRTM model to simulate the brightness temperature 

which here are called 𝑇lin
1 . The original simulated brightness temperature with the old LSE is denoted as 𝑇old

1  

in the whole Taklimakan desert. Figure 5 is the spatial distribution of observational brightness temperature 

and simulated brightness temperature with different LSEs in the whole Taklimakan desert area. Figure 5(a) 

is the spatial distribution of observational brightness temperature (𝑇obs
1 ), it can be seen from the map that the 

outline of the desert area is obvious, that is, the brightness temperature of the desert edge area is lower than 

that of the desert hinterland, which coincides with the characteristics of surface temperature in the desert 

area. Compared with𝑇obs
1 , the simulated brightness temperature of Taklimakan Desert under the LSE 

provided by the CRTM model (𝑇old
1 , figure 5(b) ), there are great differences between them, not only in the 

numerical value, but also in the trend of change, so it is difficult to accurately describe the geographical 

characteristics of desert areas. Figure 6 (c) shows the simulated brightness temperature under the LSE 

obtained by the linear retrieval model. It is obvious that the values of 𝑇lin
1  and 𝑇obs

1  are closer in both 

numerical value and changing trends. The brightness temperature of 𝑇lin
1  is about 273 K in most areas, and it 

is higher in some parts of the central and Eastern regions, reaching about 275 K, which is very similar to 

that of 𝑇obs
1  . 

 

 

 

(a) 

 

(b) 
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Figure 5. Spatial distribution of observational brightness temperature and simulated brightness temperature under 

two different LSEs in Taklimakan desert (a: 𝑇obs
1 ; b:𝑇old

1 ; c:𝑇lin
1 ). 

 

5. Summary and discussion  

In this study, the optimal control theory is applied for the calculation of Microwave Land Surface 

Emissivity in the desert area. By combining the observations from FY3C/MWRI and the simulated 

brightness temperature, the linear retrieval model of LSE is constructed for the desert area. The minimum 

value of the cost functions are obtained by using the Newton iteration method. Then, the specific linear 

function relationship between the LSE and surface temperature, surface humidity is found. Using the new 

LSE provided by the linear retrieval model, the simulated brightness temperature in the retrieval area is 

obviously improved compared to that with the old LSE. At last, an independence test by applying the linear 

retrieval model in the whole Taklimakan Desert verifies the validity of the new LSE scheme. Therefore, the 

optimal control theory can be effectively applied to the calculation of LSE. In future, more influence factors 

of LSE will be introduced to build the model, and the model can also be studied in a wider space and time 

range. 
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