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Abstract: In this paper we consider Bagley-Torvik fractional differential equations, which are arising in 

the modeling of motion of rigid plate immersed in a Newtonian fluid. The main attribution of our content is 

that it transforms the fractional differential equations to a system of algebraic equations without any 

restrictions and assumptions. Theoretical results are authenticated by five numerical examples of both linear 

and nonlinear. To demonstrate the accuracy and efficiency of the Haar wavelet collocation method and 

results are compared with the existing methods. 

Keywords: Fractional differential equations, Bagley-Torvik, Haar wavelets, Collocation method. 

Mathematics Subject Classifications: 65T60, 65L60, 34A08. 

1. Introduction 

Many researchers have worked on fractional order Bagley-Torvik equations. Podlubny[1] had 

explained about fractional differential equations in his book. Diethelm and Ford [2] have presented the 

numerical solution of the Bagley-Torvik equation. Arvet and Tamme [3] have described the piecewise wise 

polynomial collocation method [PPCM] to solve Bagley-Torvik linear boundary value problems of 

fractional order. Arvet and Tamme [4, 5] have used a spline collocation method [SCM]. Jafari et al. have 

applied the Legendre wavelets [6], Pahdaman et al. have used the optimization technique based on training 

artificial neural network (ANN) to solve differential equations of fractional order [7].  

The applications of fractional calculus in different fields of physics and engineering are namely 

dynamic of viscoelestic damped stricter [8], continuum and statistical mechanics[9], propagation of 

spherical flames, self similar protein dynamics[10], fluid dampers[11], bioscience, electromagnetism, signal 

processing control engineering[12], electrochemistry, diffusion processes, relaxation oscillation model[13], 

dynamics model of love, nonlinear oscillation of earthquake can be modeled with fractional derivatives[13, 

14], one more important thing is a new mathematical concept to the solution of diverse problems in 

mathematics. 

 Wavelet is a mathematical tool to solve problems in science and engineering. There are many 

wavelets exists but Haar is the simplest wavelet in them. The graphical view of Haar scaling function is 

single block pulse and the mother wavelet of the Haar system is formed by two dilated unit block pulses 

stand by next to each other, where one of them is inverted.  Haar wavelet has properties like compact 

support, orthogonality and simple applicability. Due to valuable properties and its simplicity Haar wavelets 

are using to solve problems in signal and image processing, in physics for characterization of  Brownian 

motion, quantum field theory, numerical analysis viz. differential, integral, fractional differential equations. 

Over the years some researchers have worked on Haar wavelets by using different methods for numerical 

solutions. Lepik and Hein[15], Haariharan et al.[16], Majak et al.[17], Reddy et al.[18, 19] have given 

various applications of Haar wavelets with collocation method in the solution of higher order differential, 

integral and fractional differential equations.  
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Motion of an immersed Plate: 

 

Let m be the mass of the rigid plate immersed in a Newtonian fluid which is extended to infinity and 

connected to a fixed point by a mass less spring whose stiffness is K. Let us suppose that thefluid is not 

disturbed by the motion of the spring. Let A be the area of the plate which is sufficiently large in order to 

produce the fluid adjacent to the plate. The fluid velocity and stress are  
0.5

( , ) ( )
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                                (1) 

Where, 𝑣̄𝑝(𝑠) is the transform of the prescribed velocity of the plate. Net forces acting on the plate of 

displacement X, is given by 

                                                           2 ( , 0)xm X F K X A t= = − − .                                                   (2) 

Using equation (1) and 𝑣𝑝(𝑡, 0) = 𝑋̇(𝑡), we obtained 

   

2
1.5

( )2
2 0t

d X
m A D X K X

dt
+ + = ,                                                 (3) 

   Where, 
1.5 0.5 0.5 .

dX d
D X D D X

dt dt
= =                                                  (4) 

Therefore, the presence of fractional derivative in the differential equation represents the motion of a simple 

physical system which includes familiar mechanical and fluid components. It may be predicted that in any 

systems its presence is characterized by localized motion in a viscous fluid [20]. 

In the present analysis we construct a simple Haar wavelet collocation method (HWCM)  for the 

numerical solution of second order Bagley-Torvik equations of fractional order(0.5 or 1.5) initial and 

boundary value problems. We mainly focus on the following initial and boundary conditions carried out to 

confirm and certify reliability of the algorithm. 

Consider the general form of Bagley-Torvik equation  as follows 
2 ( ) ( ) [ ( )] ( ), where 0.5 or1.5, 0 1,kPD y x QD y x R y x f x x + + = =                    (5) 

where, 𝑃 ≠ 0,  𝑄,  𝑅 are constant coefficients, where k is the nonlinear integer of the equation. 

Here the initial conditions given as 

(0) , 0,1.n

nD y n= =  

Whereas the boundary condition at    

0 0 0, for 0 1, ( ) , 0,1.n

nx x x D y x n=   = =  

𝜂𝑛, 𝛿𝑛are real constants.  
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This paper is organized as in section 2 fractionally integrated Haar wavelets are introduced. In section 3, 

steps related to application of the method are given. Numerical problems are solved in section4. Obtained 

results are discussed in the section 5. In section 6, conclusion of the work is inserted. 

2. Haar wavelets and their integrals 

The Haar function defined on the interval [𝑎,  𝑏] is defined using two parameters that is the dilation 

parameter 𝑗 = 0,  1,  2,  . . . . , 𝐽 and 𝑘 = 0,  1,  2,  . . . . , 2𝑗 − 1, where 𝐽is the maximal level of resolution. with 

these parameters 𝑖thHaar wavelet[15] in Haar family is defined as 

1 2

2 3

1, for [ (i), (i)),

( ) 1, for [ (i), (i)),

0, otherwise,

i
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h x x
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here 𝑖 = 2𝑗 + 𝑘 + 1,     𝜁1(𝑖) =
𝑘

𝑚
,   𝜁2(𝑖) =

𝑘+0.5

𝑚
,   𝜁3(𝑖) =

𝑘+1

𝑚
,  

where𝑚 = 2𝑗 ,  Eq.(6) is valid for 𝑖 > 2. ℎ1(𝑥) and ℎ2(𝑥) are called father and mother wavelets in Haar 

wavelet family and are given by     
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where, .
2

a b
p

+
=  

The integrals of Haar functionsℎ𝑖(𝑥) can be evaluated as 
1

1,

0

( ) ( ) ,i iP x h x dx= 
                                                                           

(9) 

1

, 1,

0

( ) ( ) , 2, 3, ....i iP x P x dx  −= =
                                                

(10) 

If 𝜐 is a fractional and for 𝑖 = 1, then using gamma function Eq.(10) becomes  

   
,1

1
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for 𝑖 ≥ 2,  we have  
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if 𝜐 is a natural number and for 𝑖 = 1Eq.(10) becomes 

,1

1
( ) ( ) ,

!
P x x a 


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= −
                                                                   

(13) 

for 𝑖 ≥ 2,  𝜐 = 1,  we have 
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For 𝑖 ≥ 2,  𝜐 = 2,  we have 
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Any function which is having finite energy on [𝑎,  𝑏]  and square integrable i.e. 𝑦 ∈ 𝐿2[𝑎,  𝑏]  can be 

decomposed as infinite sum of Haar wavelets: 

        
1

( ) ( ),i i

i

y x d h x


=

=                                                                          (16)

 

 

where 𝑑𝑖 ′𝑠 are called Haar coefficients. If 𝑦is either piecewise constant or wish to approximate by piecewise 

constant on each subinterval then the above infinite series will be terminated at a finite number of terms as 
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3.  Method of solution 

Haar wavelet collocation method: 
Approximate highest order derivative by piecewise constant on each subinterval for given resolution 𝐽 ∈
𝑁in Eq.(5) 
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Express fractional order derivative of 𝑦for 𝛼 = 0.5 𝑜𝑟 1.5in terms of Haar wavelets   
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Decomposed 𝑦(𝑥)  in terms of integrated Haar functions and replace (16-20) into the given fractional 

differential Eq. (5).  

Discritize equation obtained in above at collocation points 𝑥𝑙 =
𝑥̃𝑙−1−𝑥̃𝑙)

2
,   𝑙 = 1,2, . . . 2𝐽+1, where 𝑥̃𝑛 is the 

grid point given by𝑥̃𝑛 = 𝑎 + 𝑛
(𝑎−𝑏)

2𝐽+1
.  𝑛 = 0,1,2, . . . , 2𝐽+1. Resulting into 2𝐽+1 × 2𝐽+1 algebraic system. 

Calculate the Haar wavelet coefficients 𝑑𝑖 ′𝑠 and obtain the Haar solution for unknown function𝑦. 

4. Numerical experiments 

Example 1: Consider the Bagley–Torvik equation that governs the motion of a rigid plate immersed in a 

Newtonian fluid [6, 7, and 21]: 
3

2 2( ) 2 ( ) ( ) ( ), (0,1).MD y x S D y x Ky x f x x+ + = 
 

For the sake of comparison with some of numerical methods [6, 7], we chose 𝑀 = 2𝑆√𝜇𝜌 = 𝐾 = 1and 

( ) 1 ,f x x= + with (0) 1, '(0) 1.y y= =  
The exact solution of this problem is 𝑦(𝑥) = 1 + 𝑥. 
In Figure 1 Haar and exact solution for J=3 is inserted. In Table 1 numerical results are compared to the 

other numerical methods such as ANN [7], GA-Genitc algorithm based technique (GA-based), GP-Genetic 

pattern based technique (GA-PS based)[21]. 

 

Figure 1: Comparison of Haar and exact solution with J=3. 

Table 1 : Comparison of numerical results for Example 1. 

X Exact 
ANN 

[7] 

GA-

based 

[22] 

GA-PS 

based 

[22] 

EANN[7] EGA[22] EGP[22] HWCM EHWCM 

0 1.00 1.0000 1.0248 1.0160 0 2.30 E-02 1.60 E-06 1.00 0 

0.2 1.20 1.1999 1.2208 1.1998 2.18E-06 3.13 E-02 1.95 E-06 1.20 0 

0.4 1.40 1.3999 1.4269 1.4016 3.24 E-06 3.45 E-02 1.62 E-06 1.40 0 

0.6 1.60 1.5999 1.6345 1.6074 2.91 E-06 1.36 E-02 7.42 E-06 1.60 0 

0.8 1.80 1.7999 1.8287 1.7999 2.71 E-06 2.30 E-02 1.27 E-06 1.80 0 

1 2.00 1.9999 1.9850 1.9537 4.03 E-06 3.13 E-02 4.62 E-06 2.00 0 
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Example 2: Consider the Cauchy problem of the Bagley- Torvik equation of a rigid plate [4]:   
2 1.5( ) ( ) ( ) ( ), 0 1,D y x D y x y x f x x+ + =    

where,𝑓(𝑥) =
15

4
√𝑥 +

15

8
√𝜋𝑥 + 𝑥2√𝑥, 

subject to the initial conditions 𝑦(0) = 0,  𝑦′(0) = 0.  

The exact solution of this problem is 𝑦(𝑥) = 𝑥2√𝑥. 
Comparison of Haar and exact solution with J=4 is drawn in Figure 2. Absolute errors for various values of 

J are shown in Figure 3. In Table 2 comparison of maximum absolute errors for HWCM with SCM [4] are 

inserted. 

 

Figure 2:Comparison of Haar and exact solution of Example 2 with J=4. 

 

Figure 3: Comparison of absolute errors for Example 2. 
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Table 2 : Comparison of maximum absolute errors for Example 2. 

J HWCM 
SCM[4] 

1r =  1.8r =  2.6r =  

4 8.7E-05 3.1E-02 1.1E-02 6.6E-03 

8 2.8E-05 1.6E-02 3.2E-03 1.2E-03 

16 9.2E-06 8.1E-03 9.2E-04 2.2E-04 

32 3.1E-06 4.1E-03 2.7E-04 3.8E-05 

64 1.0E-06 2.1E-03 7.8E-05 6.9E-06 

 

Example 3: Consider the boundary value problem for Bagley–Torvik equation [3]: 
2 1.5( ) ( ) ( ) ( ), 0 1,D y x D y x y x f x x+ + =    

where 𝑓(𝑥) =
15

4
𝑥0.5 +

15

8
√𝜋𝑥 + 𝑥2.5 + 1,  subject to 𝑦(0) = 1,  𝑦(1) = 2. 

Exact solution is given by 𝑥2.5 + 1. 
Haar and exact solution with J=5 is shown in Figure 4. Comparison of absolute errors for different values of 

J is drawn in Figure 5. Maximum absolute errors are compared to the PPCM [3] in Table 3. 

 

Figure 4: Comparison of Haar and exact solution of Example 3 with J=5. 
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Figure 5: Comparison of absolute errors for Example 3. 

Table 3 : Comparison of maximum absolute errors for Example 3. 

J HWCM PPCM[3] 

4 4.7E-03 1.7E-02 

8 1.5E-03 9.3E-03 

16 4.7E-04 4.9E-03 

32 1.5E-04 2.5E-03 

64 5.1E-05 1.3E-03 

128 1.7E-05 6.7E-04 

256 5.8E-06 3.4E-04 

 

Example 4: Consider the fractional order Cauchy problem [5]: 

1.5 0.5( ) 2 ( ) 3 ( ) (1 ) ( ) ( ), 0 1,D y x Dy x xD y x x y x f x x+ + + − =    

where, 𝑓(𝑥) =
2

Γ(1.5)
𝑥0.5 + 4𝑥 +

4

Γ(1.5)
𝑥2 + (1 − 𝑥)𝑥2,  with𝑦(0) = 𝑦′(0) = 0.  

Its analytic solution is 𝑦(𝑥) = 𝑥2. 
Comparison of Haar and exact solution with J=4 is displayed in Figure 6. Absolute errors are compared in 

the Figure 7 for different J values. Comparison of maximum absolute errors of HWCM with SCM [5] is 

tabulated in Table 4. 
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Figure 6: Comparison of Haar and exact solution with J=4 for Example 4. 

 
        Figure 7: Comparison of absolute errors for Example 4. 

Table 4 : Comparison of maximum absolute errors for  Example 4. 

J HWCM 
SCM[5] 

1r =  1.8r =  2.6r =  

4 1.6E-05 1.9E-02 5.4E-03 5.3E-03 

8 6.1E-05 1.0E-02 1.5E-03 9.6E-04 

16 2.2E-06 5.4E-03 4.0E-04 1.7E-04 

32 8.1E-06 2.8E-03 1.0E-04 3.2E-05 

64 2.9E-06 1.5E-03 2.0E-05 5.7E-06 

128 1.0E-06 7.7E-04 6.6E-06 1.0E-06 
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Example 5 : Consider the nonlinear fractional differential equation[21, 23] : 
2( ) ( ) 1, 0 1, 0 1,D y x y x x + =      

subject to the initial condition 𝑦(0) = 0. 

The exact solution when 𝛼 = 1is 𝑦(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1
.   

Comparison of Haar, exact and adomian decomposition method (ADM) [23] solutions for 𝛼 = 1  is 

graphically shown in Figure 8.  Comparison of HWCM and exact solution for 𝛼 = 1 and HWCM for 𝛼 =
0.5with Legendre𝛼 = 0.5 [22] is shown in Figure 9. In Figure 10 absolute errors for various values of J are 

drawn. 

 
Figure 8: Comparison of Haar, ADM [23] and exact solution for Example 5. 

 
Figure 9: Comparison of Haar, exact and Legendre [23] solutions for Example 5. 
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Figure 10: Comparison of absolute errors for Example 5. 

5. Results and Discussions 

The comparison of Haar and Exact solution at collocation points for Examples 1-4 have been shown 

in Figures 1, 2, 4 and 6 respectively. These figures ensured that the numerical solution obtained by proposed 

method is in excellent agreement with the exact solution each problem. Same scenario is continued for the 

last example and one more interesting point is that proposed method is having good approximation property 

then ADM when 𝛼 = 1, these findings are shown in Figure 8. In Figure 9 comparison of Haar solution and 

Legendre solution for different values of 𝛼 = 1,  0.5 is represented. The Haar solution curve for 𝛼 = 0.5 is 

closer to Haar and exact solution with𝛼 = 1, whereas Legendre solution goes faraway. Moreover absolute 

errors obtained to Examples 2-5 for different resolutions are drawn in Figures 3, 5, 7, 10 by this we 

concluded that as the resolution value increases absolute error curve approaches towards x-axis (where the 

absolute errors are zero). Comparison of numerical results obtained to Examples 1-4 are shown in Tables 1-

4. Here the proposed method exhibited the precise results compared to other existing numerical methods 

such as ANN, GA-based, GA-P based, SCM, PPCM. From this observation we concluded that a very good 

improvement in the accuracy is achieved by increasing the level of resolution. 

6. Conclusions 

This work exhibited the applicability of the Haar wavelet collocation method to solve Bagley-Torvik 

equations arising in the modeling of rigid plate immersed in a Newtonian fluid. We had given several 

examples (linear and nonlinear) to examine the accuracy of the HWCM. The numerical results obtained by 

this method are compared with other methods we concluded that HWCM is the unbeaten numerical 

technique for above said problems. 
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