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Abstract: In the development of medical image segmentation, the application of convolutional neural 

networks has begun a profound revolution. The deep learning model is famous for excellent flexibility, 

efficiency and accuracy. The U-Net model is the beginning of task in the segmentation of medical images, 

which includes the basic operations of convolution, maxpooling, deconvolution, and concatenation. However, 

the U-Net model is disable to perform well on many types of data sets, because the model can’t solve the 

exact segmentation of the details. We proposed Residual and Dense Fully Convolutional Network (RDFCN) 

that consist of Residual Connection Block and Dense Connection Block, which makes up for the 

shortcomings of U-Net. The dataset we used for training and testing comes from iSeg-2017 challenge 

(http://iseg2017.web.unc.edu). This dataset is comprised of infant(between 6 and 9 months of age) brain MR 

images. After the testing, our model outperforms the U-Net and some of its improved models in evaluation of 

WM, GM and CSF. 
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1. Introduction 

 With the development of medical imaging technology, the segmentation of medical images is 

becoming more and more important. More and more segmentation methods have been proposed to 

effectively solve various complex segmentation tasks, some of which are based on traditional statistical or 

partial differential equations. In recent years, with the development of computer technology, more and more 

methods based on deep learning have become mainstream. 

Ronneberger et al.[1] created a deep network model of a U-shaped structure, namely U-Net. In the 

case of a small amount of data, the method can still obtain extremely high accuracy. In addition, this model 

also has strong noise immunity. However, the model also has some shortfalls: 1) Some details are easily lost 

in the segmentation result; 2) as the number of network layers deepens, the gradient will disappear and 

training will become difficult. 

Zhou Z et al. improved the skip connection of U-Net model[2], namely the nested U-Net. They 

connect all the layers and enable network to learn different levels of features. Badrinarayanan V proposed 

the SegNet[3], which introduces the pooling indices instead of deconvolution in upsampling layers and 

reduces memory consumption during the training. Zhao H et al. created the PSPNet[4]. A pyramid pool 

block is introduced to fully obtain global information. Chen L C et al. proposed the DeepLab[5], which 

applies methods of atrous convolution and atrous spatial pyramid pooling(ASPP). They combine the final 

output of the deep network with the fully connected conditional random field(CRF) to make the location of 

the object boundary more precise. 

II. RELATED WORK 

Brain diseases affect human health and capture tens of thousands of lives every year. How to 

accurately analyze and effectively treat brain diseases has always been a hot topic in the medical field. The 

segmentation of biomedical images is an excellent means of assisted diagnosis and treatment. Many current 

methods demonstrate excellent performance in adult brain MR image segmentation tasks. Infant brain MR 

images have more serious intensity inhomogeneities, low contrast and weak boundary problems, whose 

segmentation challenge is greater. Traditional methods are disabled to accomplish such a segmentation task, 

so we need to create a deep learning model. 

In the development process of deep learning, the deepening of the network layer usually leads to the 

disappearance of the gradient during the training process, the convergence becomes slower, and the 
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classification accuracy is even worse. The proposal of ResNet has made this problem effectively solved[6]. 

The inception of a building block makes the network model focus on learning the residuals between input 

and output. Huang G et al. proposed DenseNet. This model creates a better feature extraction method: Dense 

block. Unlike ResNet, each layer in the block concatenates all of the previous feature maps as its additional 

input, which enhances feature reuse. 

There are problems with the U-Net model: loss of details, gradient dispersion, and difficult 

improvement in accuracy. Therefore, we create a model called Residual and Dense Fully Convolutional 

Network(RDFCN) inspired by the idea of ResNet and DenseNet. We introduce Residual Connection Block 

and Dense Connection Block to optimize the model. Our main contributions are: 1) the Residual Connection 

Block helps the train speed up the convergence and avoid the disappearance of the gradient. 2) the Dense 

Connection Block enhances the reusability of features.3) our model achieved excellent performance on the 

test set 

2. RDFCN 

 
A. RDFCN model 

We propose an optimized U-Net model in this paper. Residual connections and dense connections are 

modularized for applying in full convolutional neural networks. The network is divided into an encoding 

path and a decoding path. Fig.2 clearly demonstrates the overall structure of our model. We will describe this 

residual connection block in detail in Section B. We apply the dense connections to the original feature 

fusion(concatenation), which will be elaborated in Section C. 

 
Fig. 2. The entire process is shown in the RDFCN structure map. The input to the model is a two-channel image. 

Residual Connection Block and Dense Connection Block are important parts of the structure, the details of them are 

shown in Fig. 3 and Fig. 4, respectively. 

B. Residual Connection block 

The residual connection block in the structure is divided into two cases: residual connection block1 and 

residual connection block2. This design can avoid gradient dispersion and speed up the convergence of the 

model during the training process. We respectively represent the calculation results of the two blocks:  

𝑥𝑙+1 = 𝑔𝑝([ℱ(𝑓𝑐3(𝑥𝑙)) + 𝑓𝑐3(𝑥𝑙)])                                                   (1) 

𝑥𝑙+1 = 𝐹[𝑓𝑐3(𝑔𝑑(𝑥𝑙) ∘ 𝑦𝑙)] + 𝑓𝑐3(𝑔𝑑(𝑥𝑙) ∘ 𝑦𝑙)                                           (2) 

Equation (1) and equation (2) represent the results of block1 and block2, respectively. where 𝑥𝑙 and 𝑥𝑙+1 are 

input and output of the 𝑙-th layer. The 𝑔𝑝(⋅) denotes the Maxpooling with pool-size 2. The 𝑓𝑐3(⋅) denotes the 

convolution function followed by ReLU, whose kernel is 3 × 3. The ℱ(⋅) represents the residual function 

with three convolutions followed by ReLU, the three kernels of which are 1 × 1, 3 × 3 and 1 × 1. The 𝑔𝑑(⋅) 
denotes deconvolution function with stride 2. 𝑦𝑙 is the corresponding result of Dense Connection Block. The 

∘ is the concatenation. 
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Fig. 3. The residual connection block introduces a residual connection, the upper half is the residual connection block1, 

and the lower half is the residual connection block 2. 

C. Dense Connection Block 

 The design of this block is derived from the densenet[2]. In this block, dense connections are used 

between layers, which improves feature reuse and effectively suppresses overfitting. The calculation result of 

the block can be expressed as follows:  

𝑦𝑙+1 = 𝑓1′(𝑦𝑙 ∘ 𝑓1
′(𝑦𝑙) ∘ 𝑓2

′(𝑦𝑙) ∘ 𝑓3
′(𝑦𝑙) ∘ … ∘ 𝑓𝑛

′(𝑦𝑙))                                   (3) 

where 𝑦𝑙 and 𝑦𝑙+1 represent input and output of block, respectively. The 𝑓𝑛
′(𝑦𝑙) represents the result of the 

convolution of the 𝑦𝑙 after 𝑛 times, and each time the convolution is followed by BN[7] and ReLU. The ∘ 
denotes the concatenation. 

 
Fig. 4. The input of the dense connection block is derived from the output of the residual connection block before each 

downsampling. An n-layer block has a growth rate of n-1. The input of each layer concatenates the output of all 

previous layer. 

D. Model Training 

The data sets we chose for training and testing were from iSeg-2017 challenge 

(http://iseg2017.web.unc.edu), and the average age of these babies was 6 months[8] without any pathology. 

We concatenate the T1w images and the corresponding T2w images in the dataset as an input. We used the 

Adam optimizer in the model training. The batch size was set to 10 and the learning rate was set 0.0001. 

Furthermore, we adopt dropout and set the dropout[9] rate is 0.3 after the convolution and residual 

multiscale block. Our experimental code is based on Keras, and model is trained on a NVIDIA GeForce 

GTX 1080 Ti GPU(11GB). 

3. Experiments 

A. Evaluation criterions 
The Jaccard similarity(Js values)[10] is a metric, which can effectively help us evaluate the experimental results of 

the RDFCN and comparison methods. We express this metric: 𝐽𝑠(𝑆1, 𝑆2) = (𝑆1 ∩ 𝑆2)/(𝑆1 ∪ 𝑆2), where 𝑆1 represents 

the segmentation result and 𝑆2 represents the ground truth. 

 In Table 1, our model has the highest Js values on CSF, GM and WM, indicating the improvement of 

RDFCN's performance in segmentation results. 
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Table 1: Comparison of mean Js values of CSF, GM, WM% in three methods 

 CSF(%) GM(%) WM(%) 

U-Net[1] 87.96 80.70 72.24 

RDFCN(our) 88.25 81.49 74.58 

 We also calculate the accuracy(Acc) and variance(Var). The accuracy here removes the black 

background, which we define as:𝐴𝑐𝑐(𝑆1′, 𝑆2′) = (𝑆1′ ∩ 𝑆2′)/𝑆2′, where 𝑆1′ indicates the segmentation result 

after the removed background, and 𝑆2′ indicates the true value after the removed background. The variance 

to be calculated is the Js values. In Table 2, We find our model to have the highest accuracy and the lowest 

variance, which proves that our model is more robust. 
Table 2: Methods of accuracy(%) and variances(10-4) of Js values 

 Acc Var(Acc) Var(CSF) Var(GM) Var(WM) 

U-Net[1] 90.01 6.21 19.65 16.76 137.23 

RDFCN(our) 90.49 4.84 18.21 14.11 116.79 

B. Experiment Results 

We randomly selected a segmentation result from the experiment. In Fig. 5, the U-Net results show the 

fracture of the white matter belt, and our method can perform the segmentation well. 

 
Fig. 5. A and B represent one of the segmentation results of U-Net and RDFCN, respectively, and C represents the label. 

4. DISCUSSION AND CONCLUSION 

 In our model, we created a new residual connection module to replace the traditional convolution, which makes 

the model alleviate the problem of gradient dispersion and become easier to train. We also added dense connection 

blocks in the concatenation to enhance feature reuse, which allows the process of feature fusion to gather more 

information. These changes contribute to the improvement of network performance. Our model performed better than 

the other models in the experiment, and it was very obvious in the segmentation details. 
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