
 

Published by World Academic Press, World Academic Union 

ISSN 1746-7659, England, UK 

Journal of Information and Computing Science 

Vol. 14, No. 3, 2019, pp.163-169 

 

 
 

 

 

Finite-time chaos synchronization of the delay hyperchaotic Lü 

system with disturbance  

Yan Zhou, Juanjuan Huang, Zuolei Wang, Xuerong Shi 

School of Mathematics and Statistics, Yancheng Teachers University, Yancheng, 224002, China 

(Received January 04 2019, accepted May 29 2019) 

Abstract. In this paper, the dynamics and the finite-time synchronization of the delay hyperchaotic Lü 

system with disturbance are discussed. Based on the finite-time stability theory, a control law is put forward to 

realize finite-time chaos synchronization of the delay hyperchaotic Lü system with disturbance. Finally, 

numerical simulation results are provided to demonstrate the effectiveness and robustness of the proposed 

scheme.  

Keywords: Chaos, delay system, disturbance, finite-time synchronization 

1. Introduction 

Chaos synchronization has attracted due attention of many researchers since the seminal work of Pecora 

and Carroll [1]. From then on, chaos synchronization has been developed in an extensive and intensive manner 

due to its potential application in varied fields, like secure communication [2, 3], complex networks [4-7], 
biotic science [8-13] and so on [14-26]. 

Nowadays, most of the major findings about chaos control and synchronization are derived based on the 

asymptotic stability of the chaotic systems. In fact, it is more valuable to control or synchronize chaotic systems 
as soon as possible. To obtain faster convergence, the finite-time control approach is an effective technique. 

In addition, the finite-time techniques have been demonstrated to show better robustness and disturbance 

rejection properties than those of asymptotic methods [27-37]. Therefore, the finite-time chaos control and 
synchronization have gained a great deal of attention over the past few decades. Mohammad et al. brought in 

an adaptive control scheme for chaos suppression of non-autonomous chaotic rotational machine systems with 

fully unknown parameters in finite time [38]. Gao et al. proposed a zero error system algorithm on the basis of 
automatic control theory and finite-time control principle [39]. Wang et al. employed a nonlinear controller to 

control chaos in a BLDCM system within the frameworks of the finite-time stability theory and the Lyapunov 

stability theory [40]. Several finite-time synchronization methods have been put forward in [41–43]. 
On the other hand, it is difficult to know the external disturbance always occurs in  system. Thus, the 

chaos control and synchronization of chaotic system in the presence of external disturbance are effectively 

crucial in practical applications. 
The present paper intends to present a controller with a view to realizing finite-time synchronization of 

delay hyperchaotic Lü system with disturbance. The controller is robust and simple to be constructed. 

Numerical simulations are presented to reveal the effectiveness and robustness of the proposed scheme. 
The rest of the paper is organized as follows. Section 2 offers a brief account of the preliminary definitions 

and lemmas. Section 3 investigates the dynamics of delay hyperchaotic Lü system with disturbance and 

proposes the finite-time controllers. Simulation results are presented in Section 4 and the conclusion of the 
whole paper is drawn in Section 5. 

2. Preliminary definitions and lemmas 

By finite-time synchronization, it is meant that the state of the slave system can track that of the master 
system after a finite-time. 

Definition 1. Consider the following two chaotic systems: 

𝑥̇𝑡 = 𝑓(𝑥𝑡), 
                                                                                        𝑥̇𝑠 = ℎ(𝑥𝑡, 𝑥𝑠),                                                                            (1) 
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where 𝑥𝑡, 𝑥𝑠are two 𝑛 -dimensional state vectors. The subscripts ‘t’ and ‘s’ stand for the master and slave 

systems, respectively. 𝑓: 𝑅𝑛 → 𝑅𝑛and ℎ: 𝑅𝑛 → 𝑅𝑛are vector-valued functions. If there exists a constant 𝑇 >
0, such that  

𝑙𝑖𝑚
𝑡→𝑇

‖𝑥𝑡 − 𝑥𝑠‖ = 0, 

and ‖𝑥𝑡 − 𝑥𝑠‖ ≡ 0, if 𝑡 ≥ 𝑇, then synchronization of the system (1) is achieved in a finite-time. 

Lemma 1 [32]. Assume that a continuous, positive-definite function 𝑉(𝑡) satisfies differential inequality  

                                                            𝑉̇(𝑡) ≤ −𝑐𝑉𝜂(𝑡), ∀𝑡 ≥ 𝑡0, 𝑉(𝑡0) ≥ 0,                                               (2) 

where 𝑐 > 0,0 < 𝜂 < 1are constants, then, for any given 𝑡0, 𝑉(𝑡) satisfies inequality 

                                              𝑉1−𝜂(𝑡) ≤ 𝑉1−𝜂(𝑡0) − 𝑐(1 − 𝜂)(𝑡 − 𝑡0), 𝑡0 ≤ 𝑡 ≤ 𝑡1,                                   (3) 

and 

       𝑉(𝑡) ≡ 0,∀𝑡 ≥ 𝑡1， 

with 𝑡1 given by 

                                                                          𝑡1 = 𝑡0 +
𝑉1−𝜂(𝑡0)

𝑐(1−𝜂)
.                                                                 (4) 

Proof. Consider differential equation 

                                                             𝑋̇(𝑡) = −𝑐𝑋𝜂(𝑡), 𝑋(𝑡0) = 𝑉(𝑡0),                                                    (5) 

although differential equation (6) does not satisfy the global Lipschitz condition, the unique solution of Eq.(6) 
can be found as 

                                                         𝑋1−𝜂(𝑡) = 𝑋1−𝜂(𝑡0) − 𝑐(1 − 𝜂)(𝑡 − 𝑡0).                                                 (6) 

Therefore, from the comparison Lemma, one obtains 

                                                𝑉1−𝑛(𝑡) ≤ 𝑉1−𝑛(𝑡0) − 𝑐(1 − 𝜂)(𝑡 − 𝑡0), 𝑡0 ≤ 𝑡 ≤ 𝑡1,                                (7) 

and 

𝑉(𝑡) ≡ 0,∀𝑡 ≥ 𝑡1. 

with 𝑡1 given in (5). 

Lemma 2 [34]. If 𝛼 > （
2

3
）

2

3, it can be gotten that  

（𝛼|𝑥1| +
1

2
𝑥2

2）
3

2 + 𝑥1𝑥2 ≥ 0,                                                (8) 

where 𝑥1 and 𝑥2 are any real numbers . 

Corollary 1 [34]. If 𝛼 > （
2

3
）

2

3 , it can be obtained that  

                                                              |𝑥1𝑥2| ≤ （𝛼|𝑥1| +
1

2
𝑥2

2）
3

2,                                                 (9) 

where 𝑥1 and 𝑥2 are any real numbers . 

Lemma 3 [44]. Let 0 < 𝑐 < 1. Then for positive real numbers 𝑎 and 𝑏, the following inequality holds  

                                                                      (𝑎 + 𝑏)𝑐 < 𝑎𝑐 + 𝑏𝑐.                                                   (10) 

3. Main results  

A chaotic system is of tremendous sensitivity to disturbance. In actual situation, the system is disturbed 

and cannot be exactly predicted. These uncertainties will in turn destroy the synchronization and even break 

it. Therefore, it is of great importance and necessity to study the synchronization of systems with disturbance. 
In this section, the dynamic behaviors of the delay hyperchaotic Lü system is to be explored, and the finite-

time synchronization of the delay hyperchaotic Lü systems will be discussed as well. 

3.1 Dynamics of delay hyperchaotic Lü system with disturbance  
Delay hyperchaotic Lü system with disturbance is considered as 

𝑥̇1 = 𝑎(𝑥2 − 𝑥1), 

𝑥̇2 = 𝑐𝑥2 − 𝑥1𝑥3 + 𝑥4(𝑡 − 𝜏) + 𝐴𝑥2 𝑠𝑖𝑛 （𝜔𝑡）, 

𝑥̇3 = 𝑥1𝑥2 − 𝑏𝑥3, 

              𝑥̇4 = −𝑘𝑥1 − 𝑑𝑥2.                                                                                           (11) 
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where 𝑎, 𝑏, 𝑐, 𝜏, 𝑘, 𝜔, 𝑑,𝐴 are real positive constants. In this section, initial conditions of system (11) are 

chosen as (−2,4,2,3) and the parameters of the system are selected as 𝑎 = 35, 𝑏 = 1.3,𝑐 = 20 , 𝑘 = 1, 𝑑 =
1,𝐴 = 0.01,𝜔 = 0.01. Figs.1-5 depict the dynamics of system (11) for different values of 𝜏. Fig.1 and Fig.5 

indicate that the delay Lü system with disturbance is chaotic for 𝜏 = 0.3and 𝜏 = 1.3612.Fig.2, Fig.3 and Fig.4 

show that the system has periodic solutions for 𝜏 = 0.4, 𝜏 = 0.47and 𝜏 = 1.3. Fig.4 (c) indicates that the 

amplitude of the system is similar the same, but the amplitude of the system is gradually to zero in Fig.5 (c). 

 
Fig.1. The phase portrait and time series of variables in system (11) for𝜏 = 0.3, 

(a)   phase portrait of 𝑥1 and𝑥2, (b) phase portrait of 𝑥1 and𝑥3, (c) time series of𝑥1. 

 
Fig.2. The phase portrait and time series of variables in system (11) for𝜏 = 0.4,  

(a) phase portrait of 𝑥1 and𝑥2, (b) phase portrait of 𝑥1 and𝑥3, (c) time series of𝑥1. 

 
Fig.3. The phase portrait and time series of variables in system (11) for𝜏 = 0.47,  

(a) phase portrait of 𝑥1 and𝑥2, (b) phase portrait of 𝑥1 and𝑥3, (c) time series of𝑥1. 

 
Fig.4. The phase portrait and time series of variables in system (11) for𝜏 = 1.3,  

(a)  phase portrait of 𝑥1 and𝑥2, (b) phase portrait of 𝑥1 and𝑥3, (c) time series of𝑥1. 

 
Fig.5. The phase portrait and time series of variables in system (11) for𝜏 = 1.3612,  

(a) phase portrait of 𝑥1 and𝑥2, (b) phase portrait of 𝑥1 and𝑥3, (c) time series of𝑥1. 

3.2 Finite synchronization of delay Lü system with disturbance 
System (11) is considered as the master system and the slave system is the controlled system as  

𝑦̇1 = 𝑎(𝑦2 − 𝑦1), 
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𝑦̇2 = 𝑐𝑦2 − 𝑦1𝑦3 + 𝑦4(𝑡 − 𝜏) + 𝐴𝑦2 𝑠𝑖𝑛( 𝜔𝑡) + 𝑢1, 

𝑦̇3 = 𝑦1𝑦2 − 𝑏𝑦3 + 𝑢2, 

 𝑦̇4 = −𝑘𝑦1 − 𝑑𝑦2 + 𝑢3.                                                                                           (12) 

Let 𝑒1 = 𝑦1 − 𝑥1 ,𝑒2 = 𝑦2 − 𝑥2 ,𝑒3 = 𝑦3 − 𝑥3 ,𝑒4 = 𝑦4 − 𝑥4  and subtract Eq.(11) from Eq.(12), the error 

system between systems (11) and (12) can be gotten as 

𝑒̇1 = 𝑎(𝑒2 − 𝑒1), 

𝑒̇2 = 𝑐𝑒2 − 𝑦1𝑒3 − 𝑒1𝑦3 + 𝑒1𝑒3 + 𝑒4(𝑡 − 𝜏) + 𝐴𝑒2 𝑠𝑖𝑛( 𝜔𝑡) + 𝑢1, 

𝑒̇3 = 𝑦1𝑒2 + 𝑒1𝑦2 − 𝑒1𝑒2 − 𝑏𝑒3 + 𝑢2, 

𝑒̇4 = −𝑘𝑒1 − 𝑑𝑒2 + 𝑢3.                                                                                               (13) 

Our aim is to design a controller that can achieve the finite-time synchronization of the delay Lorenz 

system (11) and the controlled system (12). The problem can be converted to design a controller to attain finite-

time stable of the error system (13).  
To achieve the finite-time stabilization, the controller is taken as 

𝑢1 = −𝑐𝑒2 + 𝑦1𝑒3 + 𝑒1𝑦3 − 𝑒1𝑒3 − ℎ1𝑠𝑖𝑔𝑛(𝑒1) − ℎ2𝑠𝑖𝑔𝑛(𝑒2), 

𝑢2 = −𝑦1𝑒2 − 𝑒1𝑦2 + 𝑒1𝑒2 + 𝑏𝑒3 − 𝑙1𝑠𝑖𝑔𝑛(𝑒3) − 𝑙2𝑠𝑖𝑔𝑛(𝑒4), 

𝑢3 = 𝑘𝑒1 + 𝑑𝑒2 + 𝑚1𝑒3...                                                                                           (14) 

where ℎ1, ℎ2, 𝑙1, 𝑙2, 𝑚1 are positive parameters to be designed. 

Substitute (14) into (13), we can get the closed-loop plant dynamics 

𝑒̇1 = 𝑎(𝑒2 − 𝑒1), 

𝑒̇2 = 𝑒4(𝑡 − 𝜏) + 𝐴𝑒2 𝑠𝑖𝑛( 𝜔𝑡) − ℎ1𝑠𝑖𝑔𝑛(𝑒1) − ℎ2𝑠𝑖𝑔𝑛(𝑒2), 

𝑒̇3 = −𝑙1𝑠𝑖𝑔𝑛(𝑒3) − 𝑙2𝑠𝑖𝑔𝑛(𝑒4), 

𝑒̇4 = 𝑚1𝑒3.                                                                                                                      (15) 

Choose a candidate Lyaupunov function for the system (15) as  

𝑉 = (𝛼|𝑒1| +
1

2
𝑒2

2)
3

2 + 𝑒1𝑒2 + (𝛽|𝑒4| +
1

2
𝑒3

2)
3

2 + 𝑒3𝑒4,                 

then the derivative of 𝑉along the trajectory of (15) can be derived as 

𝑉̇ =
3

2
（𝛼|𝑒1| +

1

2
𝑒2

2）
1
2(𝛼𝑠𝑖𝑔𝑛(𝑒1)𝑒̇1 + 𝑒2𝑒̇2) +

3

2
（𝛽|𝑒4| +

1

2
𝑒3

2）
1
2(𝛽𝑠𝑖𝑔𝑛(𝑒4)𝑒̇4 + 𝑒3𝑒̇3) 

    +𝑒̇1𝑒2 + 𝑒1𝑒̇2 + 𝑒̇3𝑒4 + 𝑒3𝑒̇4 

                 =
3

2
(𝛼|𝑒1| +

1

2
𝑒2

2）
1

2[𝛼𝑠𝑖𝑔𝑛(𝑒1)𝑎（𝑒2 − 𝑒1） + 𝑒2(𝑒4(𝑡 − 𝜏) + 𝐴𝑒2 𝑠𝑖𝑛( 𝜔𝑡) − ℎ1𝑠𝑖𝑔𝑛(𝑒1) −

                   ℎ2𝑠𝑖𝑔𝑛(𝑒2))] + 𝑎(𝑒2 − 𝑒1)𝑒2 + 𝑒1[𝑒4(𝑡 − 𝜏) + 𝐴𝑒2 𝑠𝑖𝑛( 𝜔𝑡) − ℎ1𝑠𝑖𝑔𝑛(𝑒1) − ℎ2𝑠𝑖𝑔𝑛(𝑒2)]  

 +
3

2
(𝛽|𝑒4| +

1

2
𝑒3

2）
1

2[𝛽𝑚1𝑒3𝑠𝑖𝑔𝑛(𝑒4) + 𝑒3(−𝑙1𝑠𝑖𝑔𝑛(𝑒3) − 𝑙2𝑠𝑖𝑔𝑛(𝑒4))] + 𝑒4[−𝑙1𝑠𝑖𝑔𝑛(𝑒3) 

 −𝑙2𝑠𝑖𝑔𝑛(𝑒4)] + 𝑚1𝑒3
2 

                 ≤ −
3

2
（𝛼|𝑒1| +

1

2
𝑒2

2）
1

2|𝑒2|[(ℎ1 − 𝑎𝛼)𝑠𝑖𝑔𝑛(𝑒1𝑒2) − 𝑒4(𝑡 − 𝜏)𝑠𝑖𝑔𝑛(𝑒2) − 𝐴|𝑒2| 𝑠𝑖𝑛( 𝜔𝑡) +

                      ℎ2] + 𝑎𝑒2
2 − |𝑒1|[ℎ1 + ℎ2𝑠𝑖𝑔𝑛(𝑒1𝑒2) + 𝑎𝑒2𝑠𝑖𝑔𝑛(𝑒1) − 𝑒4(𝑡 − 𝜏)𝑠𝑖𝑔𝑛(𝑒1) −

                      𝐴𝑒2 𝑠𝑖𝑛( 𝜔𝑡)𝑠𝑖𝑔𝑛(𝑒1)] −
3

2
（𝛽|𝑒4| +

1

2
𝑒3

2）
1

2|𝑒3|[𝑙1 + (𝑙2 − 𝑚1𝛽)𝑠𝑖𝑔𝑛(𝑒3𝑒4)] + 𝑚1𝑒3
2 −

                      |𝑒4|[𝑙2 + 𝑙1𝑠𝑖𝑔𝑛(𝑒3𝑒4)]. 

Let ℎ1 − 𝑎𝛼 ≤ 0,𝑙2 − 𝑚1𝛽 ≤ 0, |𝑒2| ≤ 𝑀, |𝑒4| ≤ 𝑁, 𝑙2 > 𝑙1, 𝑙1 + 𝑙2 − 𝑚1𝛽 > 0, then we have 

      𝑉̇ ≤ −
3

2
（𝛼|𝑒1| +

1

2
𝑒2

2）
1

2|𝑒2|[𝑎𝛼 − ℎ1 − 𝐴𝑀 + ℎ2 − 𝑁] + 𝑎𝑒2
2 − |𝑒1|[−𝐴𝑀 + ℎ1 − ℎ2 − 𝑁 − 𝑎𝑀] −
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3

2
（𝛽|𝑒4| +

1

2
𝑒3

2）
1

2|𝑒3|[𝑙1 + 𝑙2 − 𝑚1𝛽] + 𝑚1𝑒3
2 − |𝑒4|[𝑙2 − 𝑙1]. 

Let  

𝑣1 = ℎ1 − 𝑎𝛼 − 𝐴𝑀 + ℎ2 − 𝑁 −
2

3
√2𝑎 > 0, 

𝑣2 = ℎ1 − ℎ2 − 𝑎𝑀 − 𝑁 − 𝐴𝑀 > 0, 

𝑣3 = 𝑙1 + 𝑙2 − 𝑚1𝛽 −
2

3
√2𝑚1 > 0, 

𝑣4 = 𝑙2 − 𝑙1 > 0, 

then we can arrive  

𝑉̇ ≤ −
3

2√2
𝑣1𝑒2

2 − 𝑣2|𝑒1| −
3

2√2
𝑣3𝑒3

2 − 𝑣4|𝑒4| ≤ −𝑝[(𝛼|𝑒1| +
1

2
𝑒2

2)
3

2]
2

3 − 𝑝((𝛽|𝑒4| +
1

2
𝑒3

2)
3

2)
2

3,          (16) 

where 𝑝 = 𝑚𝑖𝑛 {
𝑣2

𝛼
,

3𝑣1

√2
,

𝑣4

𝛽
,

3𝑣3

√2
}. 

Based on Corollary 1, we have 

𝑒1𝑒2 + (𝛼|𝑒1| +
1

2
𝑒2

2)
3

2 ≤ 2(𝛼|𝑒1| +
1

2
𝑒2

2)
3

2, 

(𝛽|𝑒4| +
1

2
𝑒3

2)
3

2 + 𝑒3𝑒4 ≤ 2(𝛽|𝑒4| +
1

2
𝑒3

2)
3

2.                                                        (17) 

Substituting (16) into (15) leads to the inequation 

𝑉̇ ≤ −𝑝
1

2
2
3

{[(𝛼|𝑒1| +
1

2
𝑒2

2)
3

2 + 𝑒1𝑒2)]
2

3 + [(𝛽|𝑒4| +
1

2
𝑒3

2)
3

2 + 𝑒3𝑒4)]
2

3}, 

Based on Lemma 3, we can arrive 

𝑉̇ ≤ −𝑝
1

2
2
3

[(𝛼|𝑒1| +
1

2
𝑒2

2)
3
2 + 𝑒1𝑒2 + (𝛽|𝑒4| +

1

2
𝑒3

2)
3
2 + 𝑒3𝑒4]

2
3    = −𝜉𝑉

2
3 

where 𝜉 = 𝑃
1

2
2
3

. 

By solving the above inequality, one gets  

                                                                           𝑉(𝑡) ≤ (𝑉0

1

3 −
𝜉𝑡

3
)3.                                                                   (18) 

Due to 𝑉(𝑡) ≥ 0, it follows that 
𝜉𝑡

3
≤ 𝑉0

1

3, which means that 𝑡 ≤
3

𝜉
𝑉0

1

3. Therefore, there exists constant 𝑇1 =

3

𝜉
𝑉0

1

3 such that 𝑙𝑖𝑚
𝑡→𝑇1

𝑒1 = 𝑙𝑖𝑚
𝑡→𝑇1

𝑒2 = 𝑙𝑖𝑚
𝑡→𝑇1

𝑒3 = 𝑙𝑖𝑚
𝑡→𝑇1

𝑒4 = 0. From Lemma 1, the error system (15) is finite-time 

stable. That is to say𝑒1 ≡ 0, 𝑒2 ≡ 0, 𝑒3 ≡ 0, 𝑒4 ≡ 0  after a finite-time 𝑇1 . Therefore, when 𝑡 > 𝑇1 , 𝑦1 ≡
𝑥1,𝑦2 ≡ 𝑥2,𝑦3 ≡ 𝑥3,𝑦4 ≡ 𝑥4. 

4. Simulation results 

In this section, initial conditions of the master system and slave system are chosen 

as(−2,4,2,3)and(−2.2,4.1,2.2,3.1), respectively. The system parameters of are taken as𝑎 = 35,𝑏 = 1.3,𝑐 =
20,𝑘 = 1,𝑑 = 1,𝐴 = 0.01,𝜔 = 0.01,ℎ1 = 1.7,ℎ2 = 1.5,𝑙1 = 1,𝑙2 = 1.9,𝑚1 = 1. Fig.6 shows the dynamical 

behaviors of error systems of the delay hyperchaotic Lü system for𝜏 = 0.3. 

 
Fig.6. Synchronization errors of the delay hyperchaotic Lü system when𝜏 = 0.3. 

5.Conclusion 
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This paper is concerned with finite-time synchronization of the delay hyperchaotic Lü system with 
disturbance. The dynamics and the finite-time synchronization of the delay hyperchaotic Lü system with 

disturbance are discussed. Based on the finite-time stability theory, a control law is put forward to realize 

finite-time chaos synchronization of the delay hyperchaotic Lü system with disturbance. Finally, numerical 
simulations are given to demonstrate the effectiveness and robustness of the proposed scheme.  
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