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Abstract. In this article, we design and analyze a Galerkin finite element method (FEM) to solve the 

nonlinear Klein-Gordon equation in 𝑑(𝑑 = 1,2,3) dimensions. The scheme is proved to preserve well the total 

energy in the discrete sense, which is consistent with the conservative property possessed by the original  

problem. Numerical results are reported to show the high accuracy of the numerical methods and confirm the 

energy conservation.  
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1 Introduction 

The Klein-Gordon (KG) equation is the basic equation in relativistic quantum mechanics and quantum 

field theory. The specific form of the KG equation is as follows 
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Where 𝑢 = 𝑢(𝒙, 𝑡) is the unknown real-valued filed,𝛥 is Laplace operator,𝜙, 𝜓 and 𝑓 are given real-valued 

function. In fact, the above KG equation is also known as the relativistic version of the Schrödinger equation 

under proper non-dimensionalization [13-15] and it is used to describe the motion of a spinless particle [3,17]. 
The KG equation is one of the important equations in solitons studies, particularly in the examination of 

solitons interactions for a collisionless plasma and the recurrence of initial states [6,21]. It is clear that the KG 

equation (1.1) is time symmetric or time reversible, it also preserves energy conservation as 
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where 
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Extensive mathematical and numerical studies of the KG equation have been carried out in the literature. 

For instance, standard finite difference time domain (FDTD) methods such as energy conservative, semi-

implicit and explicit finite difference discretization were proposed and analyzed in [8,16,18] Finite element or 
spectral discretization were also studied in [5,19]. Comparisons of different methods in this regime were 

carried out [7,16]. The Fourier collocation method was employed to obtain the numerical solution of the Klein-

Gordon equation in the literature [1], a symplectic finite difference scheme was investigated in [4], S. Li and 
L. Vu-Quoc analyzed some conservative finite difference methods, and the related error estimates was also 

derived in the literatures [9,20]. 

In [10-12], in order to prove the unconditional convergence and establish the optimal error estimate of 
several traditional implicit FEMs for some important partial differential equations, Li and Sun creatively 

proposed a technical analysis method. They split the error into two parts, the temporal error and the spatial 

error. Since the spatial error is 𝜏 -independent, the numerical solution can be bounded in 𝐿∞-norm by an inverse 

inequality unconditionally. Then, the optima 𝐿2 error estimate can be obtained by a routine method.  

In [22,23], Wang used Li-Sun's analysis method to establish the unconditional and optimal 𝐿2  error 

estimates of several linearized FEMs for solving the general nonlinear Schrödinger equation and a nonlinear 
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Schrödinger-Helmholtz system. In [2], the authors also used Li-Sun's analysis method to build the 

unconditional and optimal 𝐿2 error estimate of a linearized Euler FEM for the nonlinear Schrödinger equation 
equation. 

In this paper, we introduce linearized Galerkin finite element method for solving nonlinear Klien-Gordon 

equation (1.1). In addition, we prove the conservation of the scheme.  
The outline of this paper is arranged in the following way. In Section 2, we propose a new linearized 

Galerkin finite element method for solving the KG equation, and prove the conservation properties of FEM. 

In Section 3, we report several numerical results to show the high accuracy of the numerical methods and 
confirm the conservation lows. 

2 Finite element scheme and energy conservation 

In practical computation, the KG equation (1.1) is usually truncated on a bounded interval 𝛺 = (𝑎, 𝑏) in 

1D, or a bounded rectangle 𝛺 = (𝑎, 𝑏) × (𝑐, 𝑑) in 2D, or a bounded box 𝛺 = (𝑎, 𝑏) × (𝑐, 𝑑) × (𝑒, 𝑓) in 3D. 

In this paper, we deal with the case in 2D, with homogeneous Dirichlet boundary conditions. Extension to the 

case in three dimensions or reduction to that in one dimension is direct with small modification. Then, we 

consider the initial-boundary value problem of the KG equation (1.1) truncated on the computational interval 

𝛺 = (𝑎, 𝑏) × (𝑐, 𝑑) as follows 

( , , ) ( , , ) ( , , ) ( ) 0, , ) , , ( 0tt hu x y t u x y t u x y t f u x y t− + + =                     (2.1) 

( , ,0) ( , ), ( , ,0) ( , ), ( , ) ,tu x y x y u x y x y x y = =                                     (2.2) 

( , , ) 0, ( , ) .u x y t x y=                                                                                       (2.3) 

The weak formulation of the KG equation (2.1)-(2.3) can be specified as follows: to find 𝑢 ∈ 𝐻0
1(𝛺) such 

that ∀𝑡 > 0, 

( ) ( ) ( ) ( ) 1

0, , , ( ), 0, ( ),tt h hv u v u v f u v vu H+   + + =                                   (2.4) 

with the initial condition 𝑢0 ∈ 𝐻0
1. 

 As usual, for any two complex-valued functions 𝑢, 𝑣 ∈ 𝐿2(Ω), we define the 𝐿2(Ω) inner product as 

follows 
*( , ) ( )( ( )) ,u v u x v x dx


=   

where 𝑣∗denotes the conjugate of 𝑣. Let 𝑅ℎ:𝐻0
1(𝛺) → 𝑉ℎ be a Ritz projection operator defined by 

( ( ), ) 0, for all .h hv R v V  −  =                                                   (2.5) 

For a positive integer 𝑁, choose time-step 𝜏 = 𝑇/𝑁 and denote time steps 𝑡𝑛 = 𝑛𝜏, 𝑛 = 0,1⋯𝑁, where 

0 < 𝑇 < 𝑇𝑚𝑎𝑥  with 𝑇𝑚𝑎𝑥  the maximal existing time of the solution. We denote 𝑢𝑚 = 𝑢(𝑥, 𝑡𝑚) . For a 

sequence of functions {𝜔}𝑛=0
𝑁 , we define 
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With above notations, a linearized three-level Galerkin FEM is: to seek 𝑢ℎ
𝑛 ∈ 𝑉ℎ such that 
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where 𝐺(𝑧1, 𝑧2) is defined for 𝑧1, 𝑧2 ∈ ℂ as 
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with 𝑢ℎ
0 = 𝛱ℎ𝑢0. 

This is a three-level scheme which could not start by itself, so we need another two-level scheme to 

compute 𝑢ℎ
1. One method to compute 𝑢ℎ

1 is applying Taylor's expansion to 𝑢1 at the point (𝒙, 0), we obtain 
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Theorem 2.1 (conservation properties of FEM) The FEM scheme (2.6) with (2.7) and (2.8) conserves the 

discrete energy as 
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Proof Choosing 𝑣 = 𝛿𝑡
+(𝑢ℎ

𝑛+1−𝑢ℎ
𝑛−1) as the test function at (2.6) , we get 
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Then, we expend the above equation combine with integration by part method, it is easy to see the each part 

as 
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Combine the above four parts , we have 
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Then, taking summation for 1,2,⋯ , 𝑛, we conclude that 
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3 Numerical results 

In this section, we report numerical results to show the high accuracy of the numerical methods and 
conservation laws in 2D. 
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Example 4.1 To test the high accuracy of the proposed scheme, we consider the following KG equation with 

homogeneous Dirichlet boundary. 

( , , ) ( , , ) ( , , ) ( ) , ( , ) (0,2) (0,2), 0,

( , ,0) sin sin , ( , ,0) 0, ( , ) [0,2] [0,2],

( , , ) 0, ( , ) .
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u x y t u x y t u x y t f u g x y t
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Here, we choose 𝑓(𝑢) = 𝑢2 and 𝑔 is chosen correspondingly to the exact solution 

sinsin cosu x ty =  . 

We solve the above system by the linearized three-level Galerkin FEM in (2.6)-(2.8) with a linear FE 

approximation and a quadratic FE approximation. A uniform triangular partition with 𝑀 + 1 nodes in each 

direction is used, where ℎ = √2/𝑀 . we choose 𝜏 = 1/𝑀  for the linear FEM and 𝜏 = (1/𝑀)3/2  for the 

quadratic FEM. We define Rate(𝑗)=log(Error(j-1)/Error(𝑗))/log(ℎ(j-1)/h(𝑗)) , where 𝑗 = 2,3,4 ,and 

Rate(1) doesn't exist. We present numerical results in Table 1 and Table 2 at time 𝑡 = 1.0.To show the energy 

conservation of the FEM, we take 𝑔 = 0 at the example and present numerical results in Figure 1.It is clear to 

see our methods have high accuracy and energy is conservative. 

Table 1: 𝐿2 errors of FEM at t=1.0 (Example 4.1) 

L-FEM 1/ M =  2( , ) n

n h L
u t u −‖ ‖    

 M=10 M=20 M=40 M=80 

Error 2.3809e-01 6.4910e-02 1.6674e-02 4.2065e-03 

Rate - 1.8750 1.9608 1.9869 

 

Table 2: 𝐿2 errors of quadratic FEM at t=1.0 (Example 4.1) 

Q-FEM 3/2(1/ )M =  2( , ) n

n h L
u t u −‖ ‖    

 M=32 M=40 M=64 M=80 

Error 4.2312e-05 2.0959e-05 5.2213e-06 2.5632e-06 

Rate - 3.1482 2.9570 3.1885 
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Figure 1:Total energy and its difference from the initial value computed by FEM  

for Example 4.1 with 𝑔 = 0, 𝑡 = 5 
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