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Abstract. Based on the air quality status of 161 cities in China, this paper studies the temporal and spatial 

distribution characteristics of PM2.5 concentration of major pollutants affecting air quality index (AQI). We 

use improved functional clustering analysis methods and add priori information about location and human 

factors to make the clustering results more accurate. The improved functional clustering model is compared 

with the basic sparse data function clustering method, k-centres functional clustering method, functional 

principal component analysis and traditional K-means clustering method by repeated simulation. Finally, we 

use the PM2.5 concentration of selected 161 cities in China as an illustrative example. 
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1. Introduction 

Air quality influences human health and economic development. Nowadays air quality is measured by air 

quality index (AQI), which is typically a temporal-spatial data. This research is motivated by an air quality 

influences human health and economic development. 
Many existing studies have analyzed air quality but they are limited to use simple statistical methods and 

spatial correlations [1, 2]. And some researches just consider dozens of cities such as Chen used EPLS method 

to analysis air quality of 31 provincial capitals in China mainland [3]. Hamedian [4] mainly used fuzzy C-
mean clustering to find the main pollutants which can influence the air quality. In this article, air quality is 

measured by Air Quality Index (AQI) and PM2.5, PM10, SO2, O3, CO, NO2 six pollutants of 161 cities in 

China. We leverage new statistical methods for estimating and describing air quality trends and distribution 
that can be used to inform about spatial and temporal distribution characteristics. 

Cluster analysis is the art of identifying groups in data. Traditional clustering methods are focus on 

multivariate data and many clustering algorithms have been proposed when the data are curves or functions. 
In this context, Functional Data Analysis has received increasing attention recently [5]. 

Several clustering methods for functional data have been researched in recent years. The two-stage 

approach was proposed by Maharaj [6] and used by Iorio et al. [7] to handle time course data with observed 
measurements. P-splines smoothers was used to model the observed measurements and then to cluster 

functions by the optimal spline coefficients. They added penalty term based on the general basis expansion 

and fitted the curves well by choosing smoothing parameter. Traditional approaches based on clustering basis 
coefficients choose the same basis functions for all clusters to use the fitted coefficients to be clustered. There 

are some problems because basis functions should be chosen then the fitted coefficients can adequately adapt 

cluster differences. For the model-based clustering method, Same  ́ and Bouveyron used this approach in 
mixture model based on high dimensional data [8, 9]. Basically, the model parameters are always estimated 

by the maximum likelihood method solved by an Expectation-Maximization (EM) algorithm [10]. When the 

observations are sparse, irregularly spaced, or occur at different time points for each subject, James and Sugar 
proposed a particularly effective model-based approach for clustering functional data [11]. They produced 

low-dimension representation of the curves and then provided low-dimension graphical representations to 

show some direct clustering results in the pictures. In fact, various model-based approaches are under certain 
probability model assumptions. Just considering the information of curves themselves without some correlated 

variables may not cluster well. Chiou and Li [12] proposed a k-centres functional clustering method which can 

greatly improve cluster quality compared with the conventional clustering algorithms. The k-centres functional 
clustering method does not rely on any distribution assumptions and the mean and covariation structures of 

each cluster are explored using this approach. 
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This study is concerned with functional data clustering where the number of observations is 161 cities in 
China and the recording times are the same for individuals. Thus, the algorithm for sparse samples should be 

improved and we consider to add the position information as prior when fit the air quality curves. A logistic 

function and its similar form were considered to be probability by many model-based functional clustering 
approaches [13]. It is worth noting that the determination of a clustering technique is even more difficult under 

the possible presence of outlying curves. One possibility to improve the robustness of clustering algorithm is 

through the application of trimming tools. In this study, low-dimension representation and visual exhibition 
are considered. Combining logistic prior information and robust trimming tools, we compare with two typical 

functional clustering methods: k-centres functional clustering and sparsely functional clustering. 

This paper is organized as follows. In section 2, we define the proposed model, also detail the method of 
parameter estimations, the curve clustering and model selection. In section 3, we compare the improved 

functional clustering model with other clustering methods through repeated simulations. In section 4, we 

conducted a cluster analysis of PM2.5 concentrations in selected 161 cities in China, and compared the 
differences in air quality between different types of cities. Finally, some conclusions are presented in section 

5. 

2. Methodology 

2.1. The model 
Let 𝑓𝑖(𝑡) be the value for the 𝑖-th smooth underlying curve. The observed data can be expressed as 

                                                 ( ) 1 , 1ij i ij ij iy f t i n j n= +  =   =                                                      (1) 

where 𝒚𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑛𝑖)
𝑇  are the vectors of observed values at time points 𝒕𝑖 = (𝑡𝑖1, … , 𝑡𝑖𝑛𝑖)

𝑇  and 𝜺𝑖 =

(𝜀𝑖1, … , 𝜀𝑖𝑛𝑖)
𝑇 are measurement errors following 𝑁(0, 𝜎2𝑰𝑛𝑖). The subject-specific random function 𝑓𝑖(𝑡) is a 

Gaussian process, which can be approximated as  

                             ( ) ( ) ,T

i if t t= s η                                                                          (2) 

where 𝒔(𝑡) is p-dimensional vector of spline basis function with 𝜼𝑖 is coefficient vector of the spline basis, 

which can be modeled using the following Gaussian distribution  

                                                     
1 ( )

iki z k i i kN= = +   η μ γ γ 0 Γ                                                         (3) 

where the latent label 𝑧𝑖𝑘 denotes the cluster membership vector for the 𝑖-th individual, when 𝑧𝑖𝑘 = 1 , 𝑓𝑖(𝑡) 
belongs to the 𝑘-th cluster and 𝑧𝑖𝑘 = 0 otherwise.  

In model-based clustering it is assumed that the observations  𝒚1, … , 𝒚𝑛 follow a mixture distribution with 

𝐾  components. In addition, 𝒛𝑖 = (𝑧𝑖1, … , 𝑧𝑖𝐾)
𝑇 follows a multinomial distribution with parameter 

(𝜋𝑖1, … , 𝜋𝑖𝐾)
𝑇 and 𝜋𝑖𝑘  is the probability of the 𝑖-th observation belongs to the 𝑘-th cluster. Suppose there 

exists a 𝑝𝑤  dimensional covariates 𝒘𝑖 = (1,𝑤1𝑖 , … , 𝑤𝑝𝑤−1,𝑖
)𝑇  which can influence the categorical latent 

variable 𝒛𝑖 through a logistic model  
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where 𝒗𝐾 = 𝟎 for identifiability and ∑ 𝜋𝑖𝑘
𝐾
𝑘=1 = 1. Thus, the functional clustering model can be written as  
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where 𝑺𝑖 = (𝒔(𝑡𝑖1),… , 𝒔(𝑡𝑖𝑛𝑖))
𝑇 is the spline basis matrix for the 𝑖-th curve.  

2.2. Parameter estimation 
We recommend using the EM-algorithm to obtain the MLE of all the parameters. Since the 𝒛𝑖’s and 𝜸𝑖’s 

are assumed independent each other, the combined density distribution of the complete data {𝒚, 𝜸, 𝒛} can be 

expressed as  

                                                 
1
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where  
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Let  𝑝𝑘(𝒚|𝜽𝑘;𝜎
2) be the density of the 𝑘-th cluster where 𝜽𝑘 = {𝜞𝑘 , 𝝁𝑘 , 𝒗𝑘}, 𝛩 = {𝛩𝑘|𝑘 = 1,2,… ,𝐾} 

where 𝛩𝑘 = {𝜽𝑘 , 𝜎
2}. The penalized log-likelihood of the complete data is given by  
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where 𝑫𝑑  is a 𝑑 -th order difference penalty matrix such that 𝑫𝑑𝝁𝑘 = 𝛥𝑑𝝁𝑘  constructs a vector of 𝑑 -th 

differences of 𝝁𝑘, and 𝜆 is a nonnegative tuning parameter to control the degree of smoothness of the fitting 

curve.  

The EM algorithm consists of iteratively maximizing the expected value of the log-likelihood (7) by 

giving 𝒚𝑖 with respect to the parameters. Using the conditional property of multi-normal distribution, we have  

                                   2 1 1 1 2 11 (( ) ( ) ( ) )T T T
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The expected value of 𝑧𝑖𝑘 given 𝒚𝑖 is 
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The covariance matrix 𝜞𝑘 can be calculated using that  
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Then we maximize the expected value of (7) and obtain that 
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where  𝛾𝑖𝑘 = 𝐸[𝛾𝑖|𝑦𝑖 , 𝑧𝑖𝑘 = 1] can be calculated by (8).  

The final step is to set  
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2.3. Curve clustering and model selection 
Most of the existing curve clustering methods are based on curve shape clustering. The functional data 

clustering method in this chapter is not only based on curve shape, but also considers the influence of covariates 

on responses. Assuming that the data has been generated by (5) with K clusters, the model can be fitted by the 

method described in the previous section. Denote the parameter set 𝜃 = {Γ̂𝑘 , 𝜇̂𝑘 , 𝑣𝑘} and 𝒗𝐾 = 𝟎. Therefore, 

given the observation curve 𝒚∗ and the covariate 𝒘∗ corresponding to the curve, the posterior distribution of 

the latent variable 𝑧∗ = (𝑧1
∗, … , 𝑧𝐾

∗ )𝑇 is  
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when 𝑘 = 𝑘∗, 𝑘 = 1,2,… ,𝐾, 𝑃(𝑧𝑘
∗ = 1|𝒚∗) takes the maximum value, then the curve is divided into the 𝑘∗-th 

cluster.  

In this chapter, the parameter fitting is carried out by means of the basis function in the nonparametric 

method. The commonly used basis functions include the Fourier basis function and the B-spline basis function. 
Due to the good properties of the derivatives of the B-spline basis function, it is the first choice in this paper. 

The determination of the position of the node and the selection of the order of the basis function are two major 

problems faced when using the B-spline for curve fitting. This chapter selects the cubic spline basis function 
and fits the curve better by penalizing the base coefficient.  

For the determination of the penalty coefficient, Chen et al. takes the penalty coefficient as a parameter 

and uses the likelihood function to estimate it [14]. This chapter uses traditional generalized cross-validation 
methods to determine the penalty coefficient.  

Choosing the number of clusters is an important but difficult problem in cluster analysis, which is to 

determine the value of 𝐾. This chapter focuses on the study of functional clustering methods. Therefore, for 

the determination of the number of clusters, the traditional computationally simple BIC criterion is used for 

discriminating [15].  
ˆ2 ( ) ( )BIC L Glog N= − +θ , 

where 𝐿(𝜽̂) is the value of the log-likelihood function, 𝐺 is the total number of all unknown parameters, and 

𝑁 is the sample size. 

3. Simulation study 

This section illustrates the practicality of functional clustering methods through simulation studies. The 

simulation process gives the correct category information in advance, and measures the clustering quality by 

comparing the clustering results with known criteria. This section uses two indicators to measure cluster quality. 
The first is the correct classification rate (cRate). cRate is defined as the maximum possible ratio of the correct 

classification object to the total number of objects to be aggregated. The correct clustering refers to the known 

category information. The second discriminant indicator is the adjusted Rand (aRand) indicator proposed by 

Hubert and Arabie [16], this indicator is a revised version of Rand index [17]. The value of Rand index is [0,1]. 
When the value is larger, the clustering result is more consistent with the real situation, indicating that the 
clustering result is more accurate and the purity within each class is higher. The Rand index is further adjusted 

by aRand, so that its expected value is 0 and the range is [−1,1]. A larger value means that the clustering result 

is more consistent with the real situation. The simulation generates 60 curves, each of which contains 30 nodes. 

𝑡 is equally distributed in [0,1], and the observation value 𝑦𝑖 is generated by  

                                                                   ( ) ( )( ) ( )T

i k k i iy t t t= + +s μ γ ,                                                          (13) 

where 𝑘 = 1,2,3 , ie category 𝐾 = 3. In different classes, 𝑠(𝑡) select 4 order B-spline basis function, the 

number of nodes is set to 10. Let 𝝁𝑘~𝑁(𝟎, 𝑰𝑞), 𝜸𝑖~𝑁(𝟎,𝜞𝑘), where 𝜞𝑘 = 𝜎𝑘
2𝑰𝑞, 𝑰𝑞 is the 𝑞 dimension unit 

matrix, 𝜎1
2 = 0.1, 𝜎2

2 = 0.2, 𝜎3
2 = 0.5 . The random error 𝜀𝑖(𝑡)~𝑁(0, 𝜎𝜀

2), 𝜎𝜀
2~𝑈(0,0.8) . In addition, the 

number of curves in different classes is determined by the logistic structure of the form (4). The priori 

information 𝒘consists of the 𝟏 vector and the one-dimensional column vector, which follows the uniform 

distribution on [−1,1]. The coefficient 𝑣 = ((0,2)𝑇, (0,1)𝑇, (0,0)𝑇). So, the three types of curves generated 
are shown in Fig. 1. Fig. 2 shows the clustering results using the functional data clustering model (newCFDA) 

described in this paper.  
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Fig. 1: Simulate the generation of 3 types of curve shapes. 

Like James and Sugar [11], the low-rank expression shown in Fig. 2(b) uses the following formula (14) 

to convert 𝝁𝑘 into the lower-dimensional 𝛼𝑘 for drawing.  

0 ,k k= +μ λ Λα                                                                           (14) 

where 𝛌0 and 𝛂𝑘 are the 𝑞 dimension vector and the ℎ dimension vector respectively, 𝚲 is a 𝑞 × ℎ matrix, ℎ ≤
𝑚𝑖𝑛(𝑞,𝐾 − 1), in this article, we take ℎ = 2. This low rank expression makes it very straightforward to see 

that 60 curves are divided into 3 categories. The points of different shapes in the figure are the centralized 

projection of 𝒚𝑖  on the ℎ  dimension space, and the solid origin is the estimated value of 𝜶̂𝑘  for different 

categories. 

Fig. 2: Clustering result. (a) Various cluster center curves (b) Low rank expression 
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The generated simulation data is used for the functional clustering model (CFDA) of the sparse data [11], 
the new CFDA model described in this article, k-centres functional clustering model (KCFC) of Chiou and Li 

[12], functional principal component analysis (FPCA) [18] and K-means clustering method. Repeat 500 

experiments and record the average cRate and aRand indicators of several methods. The results are shown in 
Table 1. 

 

Table 1: Comparison of the accuracy of several clustering methods. 

Model 
aRand  cRate 

mean Standard deviation     mean     Standard deviation 

New CFDA 0.90 0.08  0.94 0.06 

CFDA 0.82 0.12 
 

0.90 0.08 

KCFC 0.47 0.23 
 

0.41 0.38 

FPCA 0.81 0.06  0.87 0.05 

K-means 0.71 0.12  0.83 0.08 

 

It is not difficult to see from Table 1. For comparison, for the three model based functional clustering 
methods, the improved functional clustering method (newCFDA) has the best clustering result, and the average 

accuracy rate is reached 94%, and the fluctuation is relatively stable, the functional clustering method (CFDA) 

of sparse data is second, the accuracy rate is 90%, and the k-centres functional clustering method has a poor 
clustering effect on the simulated data, and the error rate is higher, the fluctuation range is relatively large, 

relatively unstable, and the other two are not based on the model, the functional principal component analysis 

method that only clusters from the data has an average accuracy of 87%, which is relatively stable, and based 
on the K-means method of clustering discrete data is relatively inaccurate because it simply clusters the 

distance between vectors. 

Through the above simulation analysis, it is not difficult to find that for the clustering study of functional 
data, adding valid prior information and considering the variance of the different types of data can effectively 

improve the clustering accuracy. The next section will examine the actual data using the new CFDA method 

improved in this paper. 

4. Analysis of real data 

The data used in this section comes from the website  http://beijingair.sinaapp.com/.  The air quality index 

(AQI) is calculated from the concentration values of the six pollutants PM2.5, PM10, SO2, O3, CO, NO2. This 
section selects the concentration of pollutants in 161 cities from March 1, 2015 to February 29, 2016. The 

research period is the four seasons of spring, summer, autumn and winter. Studies have shown that human 

factors have an inseparable impact on urban air quality. Urban green space coverage, industrial sulfur dioxide 
emissions and industrial dust emissions can reflect to some extent the degree of human impact on urban air 

quality. The relevant variables are selected from 2016 China Urban Statistical Yearbook. 

According to the Air Quality Index, the Ministry of Environmental Protection divides China’s air quality 
into six grades, as shown in Table 2. Concerned about the air pollution situation in 161 cities, according to the 

air quality index of each city, the number of days of mild pollution, moderate pollution, severe pollution and 

particularly severe pollution appeared in the selected time interval. Draw as shown in Fig. 3. 
  

http://beijingair.sinaapp.com/
http://beijingair.sinaapp.com/
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Table 2: Air quality index levels and division criteria 

Air quality index Level Color Health impact 

0~50 Excellent Green No effect basically 

51~100 Well Yellow May have a weaker impact on the 

health of very few people 

101~150 Mild pollution Orange Symptoms in susceptible 

populations increase and irritations 

in healthy people 

151~200 Moderate pollution Red Further aggravating the symptoms 

of susceptible people, may affect the 

heart, respiratory system of healthy 

people 

201~300 Severe pollution Purple Heart disease, lung disease patients 

with symptoms, and symptoms in 

healthy people 

> 300 Particularly severe pollution Maroon Exercise tolerance in healthy people 

is reduced and certain diseases 

appear in advance 

It is not difficult to see from the Fig. 3, in Northeast China and North China, such as Shanxi and Hebei, 

there are more days of pollution in the year, and there are fewer times of pollution in southern China and 

Southwest China. Overall, the air quality in southern China is better than that in the north and the West is better 

than the East. This also shows that the development of a city’s economy and the type of pillar industry have a 

certain degree of impact on its air quality. The concentration of PM2.5 in the dusty air emitted by industri al 

production has become one of the main pollutants affecting China’s air quality. Table 3 is the air quality index 

level published by the environmental protection department according to the daily average PM2.5 

concentration range. 

 

Fig. 3. Air pollution in 161 cities in 2015 
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Table 3: PM2.5 concentration and air quality index level division criteria 

concentration (μg/m3) level 

0~35 Excellent 

35~75 Well 

75~115 Mild pollution 

115~150 Moderate pollution 

150~250 Severe pollution 

250~500 Particularly severe pollution 

In this section, we use the improved functional data clustering method to cluster the daily average PM2.5 

concentration values of 161 cities in China in the spring, summer, autumn and winter seasons of 2015-2016. 

Based on the above clustering method, considering that different categories should have large differences, this 

section is based on the functional data clustering method of sparse data proposed by James and Sugar (2003), 

let different categories have different variances. In addition, the urban air quality status is affected to some 

extent by human factors. Therefore, we use urban latitude and longitude, urban green area coverage, industrial 

sulfur dioxide emissions and industrial smoke dust emissions as priori information of clustering. When we fit 

the curve with the B-spline, we add a partial penalty factor to the base coefficient, and adjust the use of the 

basis function according to the penalty parameter, which further optimizes the fitting result of the B-spline. 

Fig. 4 shows the daily average PM2.5 concentration of 161 cities in China in the selected time range. 

From the figure, we can only roughly see that the concentration of PM2.5 of each city have peaks in winter, 

but it is difficult to understand the situation of each city. We use the functional clustering model presented in 

this paper to cluster the PM2.5 concentration in the selected city, and obtain the clustering results as shown in 

Fig.5. 

 

 

Fig. 4: Daily observation PM2.5 concentration of 161 cities in 2015 
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Fig. 5: Clustering results of PM2.5 concentration in 161 cities. Discrete points represent PM2.5 concentration values, the 

thin line is the fitted curve for the PM2.5 concentration in each city, the thick line is the cluster center curve for each type 

of city. 

The clustering method clusters 161 cities into four categories, among which 34 cities such as Shijiazhuang, 

Tangshan and Zhengzhou are grouped into one category (Fig. 5(a)), the average PM2.5 concentration is 75 

micrograms per cubic meter, and the air quality has reached the pollution level. In many cities, the 

concentration of PM2.5 exceeds 500 micrograms per cubic meter, and even reaches 750 micrograms per cubic 

meter in winter. Then, 62 cities such as Beijing, Taiyuan, Shanghai and Nanjing are clustered into one category, 

as shown in the Fig. 5(b), with an average PM2.5 concentration of 51 micrograms per cubic meter, the PM2.5 

concentration values of such cities are basically below 500 micrograms per cubic meter. Fig. 5(c) indicates 

that the 30 cities of Zhangjiakou, Guiyang and Kunming are grouped into one category, and the average PM2.5 

concentration is 36 micrograms per cubic meter. Finally, in Fig. 5(d), 35 cities such as Lhasa, Zhangjiajie and 

Sanya are clustered into one class, and the average PM2.5 concentration is 25 micrograms per cubic meter, the 

PM2.5 concentration values of these cities are basically no more than 200 micrograms per cubic meter, which 

is a class of cities with better air quality. Overall, the proportion of cities with better air quality in the selected 

161 cities is about 22%. Most of the cities have poor air quality and it is urgent to improve the environmental 

quality. 

 
Fig. 6: PM2.5 concentration of urban cluster centre curve 
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In order to further analyze the time distribution of PM2.5 concentration in various cities, Fig. 6 shows the 

cluster center curve of various cities, the selected time interval is divided into spring, summer, autumn and 
winter seasons by vertical dashed lines. 

It can be seen from the Fig. 6 that the concentration fluctuations of different categories of PM2.5 are 

different. From the top to the bottom, in the first class of cities, the PM2.5 concentration peaked in the spring, 

and then showed a slow decline trend, which began to decrease significantly in the summer, and the valleys 

appeared in the early autumn. Finally, an apparent peak appears in winter and then drop sharply. The 

concentration of PM2.5 in the second category of cities showed peaks in spring and winter, and the peak was 

significantly higher in winter than in spring. For the third type of city, there are also two peaks, but the second 

peak appears earlier than the second category of cities, almost at the time of the autumn and winter handover, 

and the trough appears in the late summer. Different from the second and third categories of cities, the second 

peak of the PM2.5 concentration in the fourth category of cities appears in the autumn, the winter begins to 

decline slowly, and begins to rise again at the end of winter, and its trough period appears in the early summer. 

For the trend of PM2.5 concentration change with seasons in different types of cities, relevant departments 

can strengthen prevention before the concentration rises according to their own situation, and do a good job of 

precaution to delay the occurrence of the peak or control the peak value. 

5. Conclusion 

Clustering analysis is an effective method to simplify the data structure. Clustering analysis of functional 

data is more difficult than ordinary discrete data. Model-based clustering analysis is a widely used method. 

The functional data clustering method used in this paper is applicable to various functional data, even 

functional data with non-homogeneous or sparse time observations. 

Based on the functional clustering method of this paper, the simulation research is carried out. Both graph 

and numerical results show the practicability of the method, and it has unique advantages compared with other 

model-based clustering methods and data-based clustering methods. We use this clustering method in the 

cluster analysis of PM2.5 concentration in 161 cities in China, and divide the selected cities into four different 

categories. The analysis found that the concentration of PM2.5 in various cities showed different evolution 

trends with seasonal changes, which were related to various factors such as climate factors, economic situation, 

pillar industries and government policies. Finally, through cluster analysis to study the spatial and temporal 

trends of various cities PM2.5 concentration can provide some effective suggestions for the government 

governance environment to some extent. 
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