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Abstract: Laguerre wavelet based numerical method is developed for the solution of Abel’s integral 

equations. This method is based on Laguerre wavelets basis. Laguerre wavelet method is then utilized to reduce 

the Abel’s Integral Equations into the solution of algebraic equations. Illustrative examples are shows that the 

validity, efficiency and applicability of the proposed technique. This algorithm provides high accuracy and 

compared with other existing methods.  
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1. Introduction 

Wavelets theory is a relatively new and an emerging tool in applied mathematical research area. It has 

been applied in a wide range of engineering disciplines; particularly, signal analysis for waveform 

representation and segmentations, time-frequency analysis and fast algorithms for easy implementation. 

Wavelets permit the accurate representation of a variety of functions and operators. Moreover, wavelets 

establish a connection with fast numerical algorithms [1, 2]. Since from 1991 the various types of wavelet 

method have been applied for numerical solution of different kinds of integral equation, a detailed survey on 

these papers can be found in [3]. Such as Lepik et al. [3] applied the Haar wavelets. Maleknejad et al. proposed 

Legendre wavelets [4], Rationalized haar wavelet [5], Hermite Cubic splines [6], Coifman wavelet as scaling 

functions [7]. Yousefi et al. [8] have introduced a new CAS wavelet. Shiralashetti and Mundewadi [9] applied 

the Bernoulli wavelet for the numerical solution of Fredholm integral equations.  

Abel’s integral equation finds its applications in various fields of science and engineering. Such as 

microscopy, seismology, semiconductors, scattering theory, heat conduction, metallurgy, fluid flow, chemical 

reactions, plasma diagnostics, X-ray radiography, physical electronics, nuclear physics [10-12]. 

In 1823, Abel, when generalizing the tautochrone problem derived the following equation: 

      ∫  
𝑦(𝑡)

√𝑥−𝑡

𝑥

0
𝑑𝑡 = 𝑓(𝑥),                 0 ≤ 𝑥, 𝑡 ≤ 1                                                      (1.1) 

where f(t) is a known function and y(t) is an unknown function to be determined. This equation is a particular 

case of a linear Volterra integral equation of the first kind. For solving Eq. (1.1) different numerical based 

methods have been developed over the past few years, such as product integration methods [13, 14], collocation 

method [15], homotopy analysis transform method [16]. The generalized Abel’s integral equations on a finite 

segment appeared for the first time in the paper of Zeilon [17]. Baker [18] studied the numerical treatment of 

integral equations. Operational matrix method based on block-pulse functions for singular integral equations 

[19]. Baratella and Orsi [20] applied the product integration to solve the numerical solution of weakly singular 

volterra integral equations. Some of the author’s, have solved for Abel’s integral equations using the wavelet 

based methods, such as Legendre wavelets [21] and Chebyshev wavelets [22]. Shahsavaran et al [23] has 

solved Abel’s integral equation of the first kind using piecewise constant functions and Taylor expansion by 

collocation method. Shiralashetti [24] Theoretical study on continuous polynomial wavelet bases through 

wavelet series collocation method for nonlinear Lane–Emden type equations. Shiralashetti [25] applied the 

Laguerre wavelets collocation method for the numerical solution of the Benjamina–Bona–Mohany equations. 

In this paper, we introduced the Laguerre wavelets based numerical method for solving Abel’s integral 

equations of first and second kind.  

The article is organized as follows: In Section 2, the basic formulation of Laguerre wavelets and the 

function approximation is presented. Section 3 includes the convergence and error analysis. Section 4 is 
 

 Corresponding author: E-mail: rkmundewadi@gmail.com, Mobile : +91-8861532308 



Journal of Information and Computing Science, Vol. 14(2019) No. 4, pp 250-258 

 

 

251 

devoted the method of solution. In section 5, numerical results are demonstrated the accuracy of the proposed 

method by some of the illustrative examples. Lastly, the conclusion is given in section 6.  

2. Properties of Laguerre wavelet  

2.1 Wavelets  
In recent years, wavelets have found their way into many different fields of science and engineering. 

Wavelets constitute a family of functions constructed from dialation and translation of a single function called 

mother wavelet. When the dialation parameter 𝑎 and translation parameter 𝑏 varies continuously, we have the 

following family of continuous wavelets:  

𝜓𝑎,𝑏(𝑥) = |𝑎|−1/2𝜓 (
𝑥 − 𝑏

𝑎
) , ∀ 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0. 

If we restrict the parameters a and b to discrete values as 𝑎 = 𝑎0
−𝑘 , 𝑏 = 𝑛𝑏0𝑎0

−𝑘, 𝑎0 > 1, 𝑏0 > 0. We have the 

following family of discrete wavelets  

𝜓𝑘,𝑛(𝑥) = |𝑎|1/2𝜓(𝑎0
𝑘𝑥 − 𝑛𝑏0), ∀ 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0. 

where 𝜓𝑘,𝑛(𝑥)  form a wavelet basis for 𝐿2(𝑅). In particular, when 𝑎0 = 2 𝑎𝑛𝑑 𝑏0 = 1 then 𝜓𝑘,𝑛(𝑥) forms 

an orthonormal basis. 

2.2 Laguerre Wavelets 
Laguerre wavelets 𝜓𝑛,𝑚(𝑥) = 𝜓(𝑘, 𝑛, 𝑚, 𝑥) have four arguments; 𝑛 = 1,2,3, … , 2𝑘−1  , k can assume 

any positive integer, m is the order of the Laguerre polynomials and x is the normalized time. They are defined 

on the interval [0, 1) as: 

𝜓𝑛,𝑚(𝑥) = {
2𝑘/2𝐿̅𝑚(2𝑘𝑥 − 2𝑛 + 1),

𝑛−1

2𝑘−1
 ≤ 𝑥 <  

𝑛

2𝑘−1
,

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
                                 (2.1) 

where 𝐿𝑚
̅̅ ̅̅ (x) = 

𝐿𝑚

𝑚!
, m = 0,1,2,...,M-1. In Eq. (2.1) the coefficients are used for orthonormality.  

Here, 𝐿𝑚(𝑥) are the well-known Laguerre polynomial of order m with respect to the weight function w(x) = 

1 on the interval [0, ∞) and satisfy the following recursive formula, 

𝐿0(𝑥) = 1, 

𝐿1(𝑥) = 1 − 𝑥, 

𝐿𝑚+2(𝑥) =
(2𝑚 + 3 − 𝑥)𝐿𝑚+1(𝑥) − (𝑚 + 1)𝐿𝑚(𝑥)

𝑚 + 2
, 𝑚 = 0,1,2 … 

2.3 Function Approximation 
A function 𝑓(𝑥) defined over [0, 1) can be expanded as a Laguerre wavelet series as follows: 

𝑓(𝑥) = ∑ ∑ 𝑐𝑛,𝑚𝜓𝑛,𝑚(𝑥),∞
𝑚=0

∞
𝑛=1  

    (2.2) 

where, 𝐶𝑛,𝑚 denotes inner product of 𝑓(𝑥) and 𝜓𝑛,𝑚(𝑥) 

                     
i.e., 𝐶𝑛,𝑚 = (𝑓(𝑥), 𝜓𝑛,𝑚(𝑥)).                      (2.3) 

If the infinite series in (2.2) is truncated, then (2.2) can be rewritten as: 

𝑓(𝑥) = ∑ ∑ 𝑐𝑛,𝑚𝜓𝑛,𝑚(𝑥) = 𝐶𝑇Φ(𝑥),𝑀−1
𝑚=0

2𝑘−1

𝑛=1     (2.4) 

where C and Φ(𝑥) are 2𝑘−1𝑀 × 1  matrices given by: 

C = [c10, c11, … , c1,M−1, c20, … , c2,M−1, … , c2k−1,0, … , c2k−1,M−1]
T

 

     = [c1, c2, … , c2k−1,M]T, 

     (2.5) 

Φ(𝑥) = [𝜓10(𝑥), 𝜓11(𝑥), … , 𝜓1,𝑀−1(𝑥), 𝜓20(𝑥), … , 𝜓2,𝑀−1(𝑥), … , 𝜓2𝑘−1,0(𝑥), … , 𝜓2𝑘−1,𝑀−1(𝑥)]𝑇 

= [𝜓1(𝑥), 𝜓2(𝑥), … , 𝜓2𝑘−1,𝑀(𝑥)]𝑇 .      (2.6) 
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3. Convergence and Error Analysis 

Theorem 3.1. A Continuous function 𝑦(𝑥) in 𝐿2[0,1) be bounded then the Laguerre wavelets expansion of 

𝑦(𝑥) converges to it. 

Proof: Let 𝑦(𝑥) be a bounded real valued function on [0,1) the Laguerre coefficients of continuous functions 

𝑦(𝑥) is defined as, 

𝑐𝑛,𝑚 = ∫ 𝑦(𝑥)𝜓𝑛,𝑚(𝑥) 𝑑𝑥
1

0

  

𝑐𝑛,𝑚 = ∫ 𝑦(𝑥)
2

𝑘
2

𝑚!
𝐿𝑚(2𝑘𝑥 − 2𝑛 + 1) 𝑑𝑥

𝐼
,   where 𝐼 = [

𝑛−1

2𝑘−1 ,
𝑛

2𝑘−1). 

Put 2𝑘𝑥 − 2𝑛 + 1 = 𝑧.  

𝑐𝑛,𝑚 = ∫
2

𝑘
2

𝑚!
𝑦 (

𝑧 − 1 + 2𝑛

2𝑘
) 𝐿𝑚(𝑧)2−𝑘  𝑑𝑧

1

−1  

=
2

−𝑘
2

𝑚!
∫ 𝑦 (

𝑧 − 1 + 2𝑛

2𝑘
) 𝐿𝑚(𝑧) 𝑑𝑧

1

−1  

by GMVT(Generalized Mean Value Theorem) for integrals 

=
2

−𝑘
2

𝑚!
𝑦 (

𝑤 − 1 + 2𝑛

2𝑘
) ∫ 𝐿𝑚(𝑧)𝑑𝑧, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑤𝜖(−1,1).

1

−1  

𝑝𝑢𝑡 ∫ 𝐿𝑚(𝑧)𝑑𝑧 = ℎ.
1

−1

  

|𝑐𝑛,𝑚| = |
2

−𝑘
2

𝑚!
| |𝑦 (

𝑤 − 1 + 2𝑛

2𝑘
)| ℎ 

Since 𝑦 is bounded, therefore ∑ 𝐶𝑛,𝑚
∞
𝑛,𝑚=0   is absolutely convergent. 

Hence the Laguerre series expansion of 𝑦(𝑥) converges Uniformly. 

Theorem 3.2. Suppose that 𝑦(𝑥) ∈ 𝐶𝑚[0,1] and 𝐶𝑇Φ(𝑥) is the approximate solution using Laguerre wavelet. 

Then the error bound would be given by,  

‖𝐸(𝑥)‖ ≤ ‖
2

𝑚!4𝑚2𝑚(𝑘−1) max
𝑥∈[0,1]

|𝑦𝑚(𝑥)|‖.  

Proof: Applying the definition of norm in the inner product space, we have, 

‖𝐸(𝑥)‖2 = ∫[𝑦(𝑥) − 𝐶𝑇Φ(𝑥)]2 𝑑𝑥.

1

0

 

Divide interval [0, 1] into 2𝑘−1 subintervals 𝐼𝑛 = [
𝑛−1

2𝑘−1 ,
𝑛

2𝑘−1) , 𝑛 = 1,2,3, . . . , 2𝑘−1.  

‖𝐸(𝑥)‖2 = ∑ ∫ [𝑦(𝑥) − 𝐶𝑇Φ(𝑥)]2 𝑑𝑥.

𝑛

2𝑘−1

𝑛−1

2𝑘−1

2𝑘−1

𝑛=1

 

‖𝐸(𝑥)‖2 = ∑ ∫ [𝑦(𝑥) − 𝑃𝑚(𝑥)]2 𝑑𝑥.

𝑛

2𝑘−1

𝑛−1

2𝑘−1

2𝑘−1

𝑛=1

 

Where 𝑃𝑚(𝑥) is the interpolating polynomial of degree m which approximates  𝑦(𝑥) on 𝐼𝑛. 

By using the maximum error estimate for the polynomial on  𝐼𝑛, then 

‖𝐸(𝑥)‖2 ≤ ∑ ∫ [
2

𝑚! 4𝑚2𝑚(𝑘−1)
max
𝑥∈𝐼𝑛

|𝑦𝑚(𝑥)|]
2

𝑑𝑥.

𝑛

2𝑘−1

𝑛−1

2𝑘−1

2𝑘−1

𝑛=1
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‖𝐸(𝑥)‖2 = ∫ [
2

𝑚! 4𝑚2𝑚(𝑘−1)
max

𝑥∈[0,1]
|𝑦𝑚(𝑥)|]

2

𝑑𝑥.
1

0

 

‖𝐸(𝑥)‖2 ≤ ‖
2

𝑚! 4𝑚2𝑚(𝑘−1)
max

𝑥∈[0,1]
|𝑦𝑚(𝑥)|‖ 

which, we have used the well-known maximum error bound for the interpolation. 

4. Method of Solution 

Consider the Abel integral equation of the form, 

𝜆𝑦(𝑥) = 𝑓(𝑥) + ∫
𝑦(𝑡)

√𝑥 − 𝑡
𝑑𝑡,

𝑥

0

   0 ≤ 𝑥, 𝑡 ≤ 1                               (4.1) 

where 𝜆 = 0 or 𝜆=1. We first approximate y(x) as truncated series defined in Eq. (2.4). That is, 

𝑦(𝑥) ≈ ∑ ∑ 𝐶𝑛,𝑚𝜓𝑛,𝑚(𝑥) = 𝐶𝑇ɸ(𝑥)                                   (4.2)

𝑀−1

𝑚=0

2𝑘−1

𝑛=1

 

where C and ɸ(𝑥) are defined similarly to Eqs. (2.5) and (2.6). Then substituting Eq. (4.2) in Eq. (4.1), we 

get 

𝜆𝐶𝑇ɸ(𝑥) = 𝑓(𝑥) + ∫
𝐶𝑇ɸ(𝑡)

√𝑥 − 𝑡
𝑑𝑡                                               (4.3)

𝑥

0

 

Now assume Eq.(4.3) is precise at following collocation points 𝑥𝑖 =
2𝑖−1

2𝑘𝑀
, 𝑖 = 1,2, … , 2𝑘−1𝑀. Then we obtain, 

𝜆𝐶𝑇ɸ(𝑥𝑖) = 𝑓(𝑥𝑖) + ∫
𝐶𝑇ɸ(𝑡)

√𝑥𝑖 − 𝑡
𝑑𝑡.                                          (4.4)

𝑥𝑖

0

 

Now, we get system of algebraic equations with unknown coefficients. By solving this system of equations, 

we get Laguerre wavelet coefficients and then substituting these coefficients in Eq. (4.2), we get the 

approximate solution of Eq. (4.1). 

5. Illustrative examples 

In this section, we present Laguerre wavelet based method for the numerical solution of Abel’s integral 

equations to demonstrate the capability of the present method. 

Example 1. Consider the Abel’s integral equation of first kind [22], 

 
2

105
√𝑥(105 − 56𝑥2 + 48𝑥3) = ∫

𝑦(𝑡)

√𝑥−𝑡
𝑑𝑡

𝑥

0
                                              (5.1) 

We apply the present method to solve Eq. (5.1) with k = 1 and M = 4. Then we get truncating approximate 

solution with unknowns as, 

𝑦(𝑥) ≈ ∑ 𝑐1,𝑚𝜓1,𝑚(𝑥)

3

𝑚=0

= 𝐶𝑇𝛹(𝑥)                                                      (5.2) 

Then applying the procedure discussed in the section 3. We get a system of four algebraic equations with four 

unknowns and solving this system, we obtain the Laguerre wavelet coefficients as, 𝑐1,0 =
−43√2

8
, 𝑐1,1 =

−21√2

16
, 𝑐1,2 =

5√2

4
, 𝑐1,3 =

−9√2

4
and substituting in Eq. (5.2), we obtain: 

𝑦(𝑥) =
−43√2

8
𝜓10(𝑥) −

21√2

16
𝜓11(𝑥) +

5√2

4
𝜓12(𝑥) −

9√2

4
𝜓13(𝑥)    

On simplifying, we get 𝑦(𝑥) = 𝑥3 − 𝑥2 + 1, which is exact solution of Eq. (5.1). 

Example 2. Consider the Abel’s integral equation of the first kind [22], 
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𝑥 = ∫
𝑦(𝑡)

√𝑥 − 𝑡
 𝑑𝑡.                                                             (5.2)

𝑥

0

 

which has the exact solution 𝑦(𝑥) =
2

𝜋
√𝑥. We solved the Eq. (5.2) using the present method and obtained 

approximate solution is compared with exact and other existing methods which reflects in table 1 and figure 

1. Error analysis is shown in table 2 and figure 2.  

Table 1. Numerical results for Example 2. 

x Exact solution Present method 

 (k = 1, M = 8) 

Method [22] 

(k = 1, M = 8) 

Method [23] 

(m = 16) 

0.1 0.201317 0.199701 0.200128 0.200460 

0.2 0.284705 0.284883 0.286092 0.297987 

0.3 0.348691 0.348550 0.347394 0.337588 

0.4 0.402634 0.402578 0.404161 0.405769 

0.5 0.450158 0.450155 0.449568 0.464014 

0.6 0.493124 0.493043 0.492704 0.490550 

0.7 0.532634 0.532679 0.532315 0.539721 

0.8 0.569410 0.569339 0.569156 0.562698 

0.9 0.603951 0.603611 0.603742 0.606044 

 

Figure 1. Comparison of numerical solutions with exact solutions of example 2. 

Table 2. Error analysis of example 2. 

x Present method 

 (k = 1, M = 8) 

Method [22] 

(k = 1, M = 8) 

Method [23] 

(m = 16) 

0.1 1.61e-03 1.18e-03 8.576e-04 

0.2 1.78e-04 1.38e-03 1.32e-02 

0.3 1.40e-04 1.29e-03 1.11e-02 

0.4 5.50e-05 1.52e-03 3.13e-03 

0.5 3.14e-06 5.90e-04 1.38e-02 

0.6 8.00e-05 4.19e-04 2.57e-03 

0.7 4.56e-05 3.19e-04 7.08e-03 

0.8 7.10e-05 2.54e-04 6.71e-03 

0.9 3.38e-04 2.08e-04 2.09e-03 
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Figure 2. Comparison of error analysis of example 2. 

Example 3. Consider the following Abel’s integral equation of the second kind [22], 

4𝑦(𝑥) =
4

√𝑥+1
− 𝑎𝑟𝑐𝑠𝑖𝑛 (

1−𝑥

1+𝑥
) +

𝜋

2
− ∫

𝑦(𝑡)

√𝑥−𝑡
𝑑𝑡, 0 ≤ 𝑥 < 1.

𝑥

0
             (5.3) 

which has the exact solution 𝑦(𝑥) =
1

√𝑥+1
. Applying the Laguerre wavelet method for solving Eq. (5.3), then 

obtained approximate solution is compared with the exact solution and method in [23] as shown in table 3 and 

figure 3. Error analysis is shown in table 4. 

Table 3: Numerical results for example 3. 

x Exact solution 
Present method 

(k = 1, M = 8) 

Method [23] 

(m = 16) 

0.1 0.953462589245592 0.953464128446307 0.95646081381695 

0.2 0.912870929175277 0.912871888201732 0.90601007037324 

0.3 0.877058019307029 0.877058847823016 0.88361513925322 

0.4 0.845154254728517 0.845154959209069 0.84340093819493 

0.5 0.816496580927726 0.816497101668559 0.80822420481499 

0.6 0.790569415042095 0.790569829421686 0.79221049469412 

0.7 0.766964988847370 0.766965234716791 0.76284677221990 

0.8 0.745355992499930 0.745356093607430 0.74933888037055 

0.9 0.725476250110012 0.725476461420005 0.72434536240934 

 

Figure 3. Comparison of Numerical solutions for example 3. 
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Table 4. Error analysis of example 3. 

x Present method 

(k = 1, M = 8) 

Method [23] 

(m = 16) 

0.1 1.53e-06 2.99e-03 

0.2 9.59e-07 6.86e-03 

0.3 8.28e-07 6.55e-03 

0.4 7.04e-07 1.75e-03 

0.5 5.20e-07 8.27e-03 

0.6 4.14e-07 1.64e-03 

0.7 2.45e-07 4.11e-03 

0.8 1.01e-07 3.98e-03 

0.9 2.11e-07 1.13e-03 

 

Example 4. Consider the Abel’s integral equations of the second kind [22], 

𝑦(𝑥) = 2√𝑥 − ∫
𝑦(𝑡)

𝑥 − 𝑡
𝑑𝑡

𝑥

0

                                                      (5.4) 

which has the exact solution 𝑦(𝑥) = 1 − exp(𝜋𝑥) 𝑒𝑟𝑓𝑐(√𝜋𝑥). We solved the Eq. (5.4) by the present method, 

we get the approximate solution and is compared with exact and other existing methods as shown in table 5 

and figure 4. Error analysis is shown in table 6 and figure 5.  

Table 5: Numerical results for example 4. 

x Exact solution Present method  

(k = 1, M = 8) 

Method [22] 

(k = 0, M = 16) 

Method [23] 

(m = 16) 

0.1 0.414059 0.408765 0.415689 0.402472 

0.2 0.508352 0.507275 0.505528 0.519751 

0.3 0.564309 0.563442 0.566205 0.554755 

0.4 0.603347 0.602653 0.601908 0.605031 

0.5 0.632868 0.632420 0.634188 0.640487 

0.6 0.656323 0.655868 0.655109 0.654785 

0.7 0.675601 0.675301 0.676588 0.678700 

0.8 0.691842 0.691583 0.691596 0.688860 

0.9 0.705787 0.705067 0.704377 0.706495 

Table 6: Error analysis of example 4. 

x Present method  

(k = 1, M = 8) 

Method [22] 

(k = 0, M = 16) 

Method [23] 

(m = 16) 

0.1 5.29e-03 1.62e-03 1.15e-02 

0.2 1.07e-03 2.82e-03 1.13e-02 

0.3 8.65e-04 1.89e-03 9.55e-03 

0.4 6.93e-04 1.43e-03 1.68e-03 

0.5 4.47e-04 1.32e-03 7.61e-03 

0.6 4.55e-04 1.21e-03 1.53e-03 

0.7 2.99e-04 9.86e-04 3.09e-03 

0.8 2.58e-04 2.45e-04 2.98e-03 

0.9 7.19e-04 1.40e-03 7.08e-04 
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Figure 4. Comparison of Numerical solutions of example 4. 

 

Figure 5. Comparison of Error analysis of example 4. 

6. Conclusion 

The Laguerre wavelet method is applied for the numerical solution of Abel’s integral equations. The 

present method reduces an integral equation into a set of algebraic equations. Obtained results are higher 

accuracy with exact ones and existing methods [22, 23], which can be observed in section 4. The numerical 

result shows that the accuracy improves with increasing the values of M for better accuracy. Convergence 

theorem reveals that existence of solution.   
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