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Abstract. The main aim of this manuscript is to investigate the control issue for a Lorenz system with time 

delay applying a hybrid control method based on state feedback and parameter perturbation. By choosing the 

time delay as the bifurcation parameter and utilizing stability theory for delay differential equation, the local 

stability in two different cases with time delay equal to 0 and not equal to 0 is discussed. With the help of Hopf 

bifurcation theorem, the beingness of Hopf bifurcation is established by combining the distribution results of 

the characteristic roots. And the hybrid control method can availably postpone the Hopf bifurcation by 

numerical simulations.  
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1. Introduction  

Chaos and bifurcation control have been extensively studied in the domains of physics, mathematics, 

biology, and engineering in the last years. When chaos has deleterious consequences in some engineering 

applications, then chaos can be eliminated by control, which shows great potential in many practical use. For 

example, information processing, power system protection, biomedical systems, encryption and 

communication, etc [1-6]. The mainly explored emphasis of the bifurcation control is how to delay or eliminate 

the bifurcation phenomenon, in order to avoid negative consequences and purposefully establish or strengthen 

beneficial bifurcations for people to employ. 

At present, the commonly utilized control method is feedback control method [7-9].  Cheng and Cao [7] 

shown the control issue of Hopf bifurcation of a delayed complex networks system. In [8], Ou et al. discussed 

a linear feedback controller with state variables, which is used to control the equilibrium point and periodic 

orbit of Lorenz system. In 2003, Luo et al. [10] firstly put forward a completely new control measure, which 

described by the state feedback and parameter perturbation are linked to govern the period-doubling bifurcation 

and chaos of discrete nonlinear systems. Liu [11] further analyzed the continuous system without time delay 

by utilizing a hybrid control strategy. Peng and Zhang [12-13] presented the Hopf bifurcation control of two 

predator-prey models by applying hybrid control method. 

2. The delayed Lorenz system with control 

In [14], Lian et al. proposed a Lorenz system with a time delay: 
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where zyx ,,  are state variables, dcba ,,, are parameters  of system above,  denotes time delay, which can 

be understood as the hunting delay of predator to prey or delay time of signal transmission, etc. They discussed 

the corresponding bifurcation of system (1). 

In this manuscript, in the light of the discussions above and inspired by Lian et al. [14], we design a 

controller which is devoted to delay the Hopf bifurcation for system (2), the corresponding mathematical model 

is described as: 
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 where 0p and Rq is control parameter. 

This manuscript is arranged as below. In the next Section, the beingness and local stability of equilibrium 

point are qualitatively analyzed and the intrinsic bifurcation is postponed by discussing the relevant 

characteristic equation. In Section 4, we check the effectiveness and correctness of theoretical analysis by 

using numerical simulations. Finally, a concise conclusion is provided. 

3. Existence, stability of equilibrium and Hopf bifurcation analysis 

3.1. Existence of equilibrium 
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x , the system (2) has unique equilibrium 

)0,0,0(*E . 

3.2. Stability of equilibrium and Hopf bifurcation analysis 

Here, we analyze the stability of system (2) at the equilibrium )0,0,0(*E . 

By linearizing the system (2), then we obtain 
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The Jacobian matrix of linearized system (3)can be written by 
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Then the characteristic equation is given by 
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Next, we will discuss the local stability of the equilibrium and the conditions when Hopf bifurcation occurs. 

Owing to the existence of time delay in the system (2), the following two cases are considered. 

Case 1: 0= . The characteristic equation (4) becomes  

0)( 2312
2

1
3 =+++++ nmnmm  .                                           (5) 

If the condition  (H1) 12231231 )(,0,0 nmnmmnmm +++  is satisfied, then the total roots of 

Eq.(5) possess negative real parts. 

Hence, when the condition (H1) holds, the equilibrium point )0,0,0(*E is locally asymptotically stable on 

the basis of Routh-Hurwitz criteria. 

Case 2: 0 .  
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Let  
1iw (

1 0w  ) be the root of Eq. (4), substituting it into the Eq.(4) and separating the real and imaginary 

part, we obtain  
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Taking square of both sides of Eq. (6), this implies that 
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Make vw =2
, Eq.(7) is represented the following form: 
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And, define  
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According to Eq. (9), and it is easy to know that 
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Since 3)0( ef = , +=
+→

)(lim vf
v

, if the condition 03 e holds, then Eq.(9) possesses at least one positive 

root. 

Utilizing the analysis of zero distribution of the transcendental characteristic equation by Ruan and Wei 

[15], the relevant consequences are obtained as below. 

Lemma 1 For the polynomial equation (4), we get the following conclusions: 

(1) If (H21) 03,0 2

2
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We assume Eq. (8) exists three positive roots, which described by 21, vv and 3v , then Eq. (7) also possesses 

three positive roots kk vw = , 1,2,3k = . 

In accordance with Eq. (6), we define 
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Thus 
kiw is a pair of purely imaginary roots of Eq. (4) with 

( )j
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Let ( ) ( ) ( )iw    = + be a root of Eq. (4) satisfying  
0( ) 0  = , 

0 0( )w w = , and the transversal 

condition is given below and proved. 

Lemma 2 If  (H3) 0+ BDAC holds, then 
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 Substituting 
0iw = into above formula, and separating the real part, we obtain 
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if (H3) 0+ BDAC satisfies. The proof about the transversal condition is 

complete. 

Therefore, on the basis of Lemma 1.2 and Hopf bifurcation theory [16], the following results can be 

summarized. 

Theorem 1 For the system (2), suppose that (H1) is valid, we have the conclusions as below. 

(1) If (H21) is satisfied, then the equilibrium
*E  is asymptotically stable for total 0  . 

(2) If (H22) or (H23) holds, then the equilibrium
*E is asymptotically stable for total 

0[0, )  . 

(3) If condition (2) above and (H3) hold,  the equilibrium
*E is unstable for 

0  . Furthermore, a Hopf 

bifurcation happens at the equilibrium 
*E  when 0 = . 

4. Numerical simulation  

In this part, for the sake of to prove the availability of the theoretical analysis above, the  numerical example 

by Matlab software is presented. 

To easy to compare, choosing a same group of parameters in [14] 4,5.2,8,10 ==−== dcba . When 

0,0.1 == qp , the system (2) becomes uncontrolled system, the corresponding bifurcation analysis has been 

studied in [14]. 

We take the parameters 1.0,3.0 == qp , then the system (2) is represented by the following form: 
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By calculation, we obtain 01588.4
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x , then system 

(13) has unique equilibrium )0,0,0(*E . When 0= , condition (H2) is satisfied and then the equilibrium 
*E

of the system (13) is asymptotically stable. For 0 , we get 4483.0,0311.2 00 == w . According to the 

Theorem 1, when 40.00 = , the equilibrium 
*E is asymptotically stable; for 4483.00 = , the stability of 

system is disappear, and the Hopf bifurcation occurs at the equilibrium 
*E ; for 46.00 = , the equilibrium 

*E is unstable, which are shown in Figure 1, 2, 3, respectively. 
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Remark: For the convenience of observing the limit cycles, Fig. 2 gives the xoy plane phase diagram when 

.4483.00 =  

In the light of the hybrid control method, and comparing Figures 1, 2 and 3 in this manuscript with Figures 

2, 3 and 4 in [14], it is clearly discovered that the Hopf bifurcation is postponed. And, we find that the time 

delay increases from 1477.00 =  to 4483.00 = via computation. 

 

Fig. 1: The equilibrium 
*E  of the controlled system (13) is locally asymptotically stable 

 when 4483.040.00 = . 

 

Fig. 2: The equilibrium 
*E  of the controlled system (13) undergoes a Hopf bifurcation when 4483.00 = . 
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Fig. 3: The equilibrium 
*E  of the controlled system (13) is unstable when 4483.046.00 = . 

5. Conclusion 

In this manuscript, the bifurcation control of a delayed Lorenz system is explored. By utilizing the hybrid 

control strategy and comparing Reference [14] with this work, it is observed that the unstable equilibrium of 

uncontrolled system in [14] turns into asymptotically stable in controlled system (13). That is to say, the hybrid 

control method can postpone the bifurcation. The simulation numerical results check the effectiveness of 

theoretical analysis. Compared to the regular state feedback method, hybrid control method obviously further 

explores the control effect of parameter perturbation. This method can postpone the bifurcation point of 

original system, so as to better control the bifurcation.  
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