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Abstract: Accurate diagnosis of Alzheimer's disease (AD) and its prodromal stage mild cognitive 

impairment (MCI) is very important for patients and clinicians. There are many useful medical data have 

been discovered to be remarkable for diagnosis i.e., structural MR imaging (MRI), functional imaging (e.g., 

FDG-PET and FIB-PET). Multimodal classification model is needed to combine these biomarkers to improve 

the diagnose performance. Some methods have been proposed such as linear mixed kernel, combined 

embedding and nonlinear graph fusion. These methods have efficiently employed the multimodal data, but 

they ignore the influence of noise and outliers. Noise is easily generated in image analysis and measurement. 

To enhance robustness, mixture distributions were applied in nonlinear regression models. Gaussian mixture 

model is successfully applied in many domains. In this paper, we generalize nonlinear multimodal 

classification model based on GMM. The performance on real dataset: 22 AD, 23 MCI and 25 NC (health) is 

comparable to other methods. 

Keywords: Robust nonlinear regression, Outlier, Kernel method, Classification. 

1. Introduction 

Alzheimer's disease (AD) is the most common form of dementia in elderly people. AD greatly affects 

the cognitive ability of the elderly [1]. Thus, it is important to diagnose AD as soon as possible from its 

early stage mild cognitive impairment MCI. In the clinic, many medical images and biological indicators are 

used for diagnosis. Such as MRI (MR image) [2], functional imaging (FDG-PET, FIB-PET) [3] and 

quantification of specific proteins measured through CSF [2].  

Different biomarkers can contain different feature of AD patient, thus may provide complementary 

information for diagnosis [4-6]. In [5, 7], linear mixed kernel is proposed independently. Paper [5] learn the 

kernel weight by grid search while paper [7] take the kernel weight as model parameter and learn it by 

optimization. Similarities from multiple modalities are combined to generate an embedding, which contain 

information of multimodal data [6]. In paper [4], similarity matrix for classification is calculated by 

nonlinear graph fusion. In this paper, kernel method is also used for multimodal data, and the construction 

of the combined kernel matrix is the same as the mixed kernel of paper [5]. 

After the construction of the mixed kernel, which contains sample information completely, efficient 

classification is needed. There are many classification models have been proposed such as logistic 

regression, k-nearest neighbor, naïve bayes, decision tree, SVM [8-10] and so on. However, most of those 

classification models do not model the noise directly except support vector machine. Support vector 

machine model the noises and outliers with the slack variable. In SVM, the input data is mapped into a 

higher dimensional space to make it separable. SVM can solve two-class classification, and the goal is to 

maximize the decision bound. This method is totally influenced by the support vectors on the decision 

bound, if most of those support vectors are polluted by noises, the model will be not proper enough. 

Therefore, the slack variable is proposed to make the decision bound more robust. Kernel method is 

improved to deal with the nonlinear case. 

Based on the traditional SVM, Least-Squares SVM (LSSVM) [11] is proposed. The LSSVM changes 

the equality constraint in SVM to the inequality constraint. As a result, the convex quadratic programming is 

replaced to convex linear problem. In Least-Squares SVM, the slack variables are proportional to the errors. 

Mixture models are successfully applied in many domains due to their excellent robustness. In paper 

[12, 13], mixture of t and skew normal distribution is applied separately to fit the noise term in the linear 
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regression model. In [14, 15], Gaussian mixture models (GMMs) based classification models are applied in 

medical research. Paper [16] uses the Gaussian mixture models (GMMs) for multiple limb motion 

classification using continuous myoelectric signals. Besides, mixture model applied in machine learning 

[17]. 

In real world, the data is usually polluted by outliers and heavy-tailed noises, the slack variable in 

Least-Squares SVM can’t be well characterized. In this paper, we develop a nonlinear classification model 

while the feature of noise is fitted by Gaussian mixture model (GMM). The linear mixed kernel method is 

employed which contains the multimodal data. In order to get the optimal parameter, EM algorithm and 

Lagrange multiplier method are applied. The experiment results are comparable to other multimodal-based 

classification methods. 

2. Methodology 

2.1 Nonlinear classification model 

Given the training set {(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑛 , where 𝒙𝑖 ∈ 𝑅

𝑑 is the input data , 𝑦𝑖 ∈ {−1，1} is the label. The 

objective function of support vector machine is: 

                                                           𝑓(𝑥) = 𝑠𝑖𝑔𝑛[∑ 𝛼𝑖𝑘(𝑥𝑖, 𝑥)
𝑛
𝑖=1 + 𝑏]                                                     (1) 

where 𝛼𝑖 is the parameter of Lagrange multiplier method, 𝑘(𝑥𝑖 , 𝑥) is the kernel function, 𝑏 is the bias.  

Assuming that  

{
𝝎𝑇𝜙(𝒙𝑖) + 𝑏 = 1 − 𝑒𝑖
𝝎𝑇𝜙(𝒙𝑖) + 𝑏 = −1 + 𝑒𝑖

 

then, we have 

(𝝎𝑇𝜙(𝒙𝑖) + 𝑏)𝑦𝑖 = 1 − 𝑒𝑖,  𝑖 = 1,2,⋯ , 𝑛 

where 𝜙(⋅)is the map function, 𝑒𝑖 is the error. 

The objective function of SVM is: 

  𝑚𝑖𝑛
𝑤,𝑒

 
1

2
‖𝝎‖2

2 +
𝛾

2
‖𝒆‖2

2 

                                                                   𝑠. 𝑡.  𝑮𝑇𝝎+ 𝑏𝒚 = 𝟏𝑛 − 𝒆                                                          (2) 

where 𝑮 = (𝑦1𝜙(𝑥1), 𝑦2𝜙(𝑥2),… , 𝑦𝑛𝜙(𝑥𝑛)) ∈ 𝑅
𝑑 × 𝑛 , 𝒆 = (𝑒1, 𝑒2, … , 𝑒𝑛) is the error, 𝛾  is a regularized 

parameter. 

2.2 GMM based nonlinear classification model 

Gaussian mixture model: 

                                                                   𝑝(𝑒) = ∑ 𝜋𝑘𝑁(𝑒|0, 𝜎𝑘
2)𝐾

𝑘=1                                                         (3) 

where K is the number of independent Gaussian distribution in GMM model. 𝑁(𝑒|0, 𝜎𝑘
2) is the Gaussian 

distribution with zero mean, variance 𝜎𝑘
2, 𝜋𝑘 is the weight coefficient that satisfied: ∑ 𝜋𝑘 = 1, 𝜋𝑘 ≥ 0𝐾

𝑘=1 . 

Theoretically, we need to define the form of the map function 𝜙(𝑥) in advance. However, this will 

increase the number of coefficient and computation complexity, in the same time, choosing a mapping 

function is complicated. Similar to LS-SVM, we will use the Lagrange multiplier method in the optimize 

step. So the map function always appears as 𝜙(𝑥)𝑇𝜙(𝑥). Therefore, we can introduce kernel function 

𝑘(𝑥, 𝑦) = 𝜙(𝑥)𝑇𝜙(𝑦). In this paper, RBF kernel is employed: 

                                                                     𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝( −
‖𝑥−𝑦‖2

2𝜎2
)                                                        (4) 

The optimal values of parameter can be obtained by maximum likelihood estimation, the likelihood 

function of 𝑒 can be expressed as: 

                                                   𝑝(𝑒|𝛩) = ∏ 𝑝(𝑒𝑖|𝛩)
𝑛
𝑖=1 = ∏ ∑ 𝜋𝑘𝑁(0, 𝜎𝑘

2)𝐾
𝑘=1

𝑛
𝑖=1                                    (5) 

where 𝛩 is the parameter set. Then the log-likelihood function is calculated as: 

                                          𝐿(𝑒|𝛩) = ∑ 𝑙𝑜𝑔 𝑝 (𝑒𝑖|𝛩)
𝑛
𝑖=1 = ∑ (𝑙𝑜𝑔∑ 𝜋𝑘𝑁(0, 𝜎𝑘

2)𝐾
𝑘=1 )𝑛

𝑖=1                              (6) 

Due to the complex expression of log-likelihood function, it is difficult to calculate directly. The EM 

algorithm is an efficient algorithm to solve such problems. 

In order to simplify the solution process, we introduce 𝒁 = (𝑧1, 𝑧2, … , 𝑧𝑛)
𝑇 , where 𝑧𝑖 =

(𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖𝐾) is an indicator vector, if 𝑒𝑖 comes from the 𝑗th component, then 𝑧𝑖𝑗 = 1 the other elements 

of 𝑧𝑖 are 0. So ∑ 𝑧𝑖𝑘 = 1
𝐾
𝑘=1 , ∑ ∑ 𝑧𝑖𝑘 = 1

𝐾
𝑘=1

𝑛
𝑖=1 . 

𝑧𝑖 obeys multi-point distribution: 
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𝑧𝑖~𝑀𝑁(1, 𝝅),  𝝅 = (𝜋1, 𝜋2, … , 𝜋𝐾) 
There exist latent variable 𝑢𝑖 , 𝑖 = 1,2,… , 𝑛 that satisfies: 

                                                            𝑝(𝑒𝑖|𝑧𝑖𝑘 = 1) = 𝑁(0, 𝜎𝑘
2)                                                                  (7) 

Then the parameter set is 𝜒 = (𝑒, 𝑧1, … , 𝑧𝑛).The log-likelihood function is calculated as 

                                      𝐿(𝜒|𝛩) = ∑ ∑ 𝑧𝑖𝑘 [𝑙𝑜𝑔   𝜋𝑘 −
1

2
𝑙𝑜𝑔   𝜎𝑘

2 −
1

2𝜎𝑘
2 ⋅ 𝑒𝑖

2]𝐾
𝑘=1

𝑛
𝑖=1 .                                    (8) 

2.3  Parameter estimation 

In the E step of EM algorithm, based on the obtained parameter 𝛩and the observe data calculated in 

the last step, 𝑄(𝛩𝑡|𝛩𝑡−1) can be obtained by computing the conditional expectation of 𝐿(𝜒|𝛩) with respect 

to 𝑧𝑖𝑘. 

Based on 𝑧𝑖𝑘 obeys multi-point distribution, its expectation can be obtained as follows: 

                                                          𝛾ik = 𝐸(𝑧𝑖𝑘|𝑒𝑖) =
𝜋𝑘⋅𝑁(𝑒𝑖|0,𝜎𝑘

2)

∑ 𝜋𝑘⋅𝑁(𝑒𝑖|0,𝜎𝑘
2)𝐾

𝑘=1
.                                                     (9) 

The Q function 𝑄(𝛩𝑡|𝛩𝑡−1) is: 

                           𝑄(𝛩𝑡|𝛩𝑡−1) = ∑ ∑ 𝛾𝑖𝑘 [𝑙𝑜𝑔   𝜋𝑘 −
1

2
𝑙𝑜𝑔   𝜎𝑘

2 − ∑ ∑
𝑒𝑖
2

2𝜎𝑘
2

𝐾
𝑘=1

𝑛
𝑖=1 ]𝐾

𝑘=1
𝑛
𝑖=1                             (10) 

In the M step of EM algorithm, we will update the parameter space by maximizing the Q function. 

Update 𝜋 

Take ∑ 𝜋𝑘 = 1, 𝜋𝑘 ≥ 0
𝐾
𝑘=1  as a constraint, employing the Lagrange multiplier method, the update 

formula of 𝜋 is: 

                                                                 𝜋𝑘 =
∑ 𝛾𝑖𝑘
𝑛
𝑖=1

𝑛
, 𝑘 = 1,2, … , 𝐾.                                                       (11) 

Update 𝛴 

                                                                          𝜎𝑘
2 =

∑ 𝛾𝑖𝑘⋅𝑒𝑖
2𝑛

𝑖=1

∑ 𝛾𝑖𝑘
𝑛
𝑖=1

                                                                   (12) 

Update e 

𝑒 should be update by maximize the following: 
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






                                               (13) 

where 𝝀 = (𝜆1, 𝜆2, … , 𝜆𝑛)
𝑇  is weight vector, 𝜆𝑖 = √∑

𝛾𝑖𝑘

2𝜎𝑘
2

𝐾
𝑘=1 , ⊗ means the Hadamard product. 𝒘 and 𝑏 

should be obtained by maximizing 𝐽𝑤,𝑏. It can be transformed into  

𝑎𝑟𝑔𝑚𝑖𝑛
𝑤,𝑏,𝑒

 ‖𝝀⊗ 𝒆‖2
2 

                                                                𝑠. 𝑡.   𝒆 = 𝟏𝑛 − 𝑮
𝑇𝒘− 𝑏𝒚                                                           (14) 

Regularization coefficient should be add to avoid overfitting: 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑤,𝑏,𝑒

 
𝛽

2
‖𝝀⊗ 𝒆‖2

2 +
1

2
‖𝑤‖2

2 

                                                                𝑠. 𝑡.   𝒆 = 𝟏𝑛 − 𝑮
𝑇𝒘− 𝑏𝒚                                                           (15) 

Similar to LS-SVM , we employ Lagrange multiplier method, the Lagrange function is: 

                          𝐿(𝒘, 𝒆, 𝑏, 𝜶) =
1

2
‖𝒘‖2

2 +
𝛽

2
‖𝝀⊗ 𝒆‖2

2 − 𝜶𝑇(𝒆 − 𝟏𝑛 + 𝑮 𝒘𝑇 + 𝑏𝒚).                               (16) 

where 𝜶 = (𝛼1, 𝛼2, … , 𝛼𝑛)
𝑇 means Lagrange multiplier, according to KKT conditions: 

                                                           

{
  
 

  
 
𝜕𝐿

𝜕𝒘
= 0   ⇒ 𝒘 = 𝑮𝜶

𝜕𝐿

𝜕𝑏
= 0   ⇒ 𝜶𝑇𝒚 = 0

𝜕𝐿

𝜕𝒆
= 0   ⇒ 𝑑𝑖𝑎𝑔(𝒆) = 𝛽−1𝑑𝑖𝑎𝑔(𝝀)−2𝑑𝑖𝑎𝑔(𝜶)

𝜕𝐿

𝜕𝜶
= 0   ⇒ 𝑮𝑇𝒘+ 𝑏𝒚 − 𝟏𝑛 + 𝒆 = 𝟎𝑛

                           (17) 
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By eliminating 𝑤 and 𝑒 ,solution is given by the following set of linear equation: 

                                                                     [
𝟎 𝒚𝑇

𝒚 𝑯
] × [

𝑏
𝜶
] = [

0
𝟏𝑛
]                                                            (18)  

where 𝑯 = 𝑲+ 𝛽-1𝑑𝑖𝑎𝑔(𝝀)−2 ,𝐾 = 𝐺𝑇𝐺  is kernel function and 𝑲(𝒙, 𝒚) = 𝜙(𝒙)𝑇𝜙(𝒚) .  Let the 

solution be 𝑏̂, 𝜶̂, then the classification model is : 

                                                            𝑓(𝒙) = 𝑠𝑖𝑔𝑛(∑ 𝛼̂𝑖𝑦𝑖𝐾(𝒙, 𝒙𝑖)
𝑛
𝑖=1 + 𝑏̂)                                              (19) 

Then 𝑒 can be updated by the following equation: 

                                                                  𝐞 = 𝟏𝑛 − 𝒚𝒚
𝑇⊗𝐾(𝒙, 𝒙)𝜶 − 𝑏𝒚                                                (20) 

2.4 Kernel based multimodal classification 
It is easy to see in Eq.(18),(19),(20), train data is always in the kernel function. So the multimodal 

classification model can be construct if we turn 𝐾(𝒙, 𝒚) into: 

                                                         𝐾𝑚𝑖𝑥𝑒𝑑(𝒙, 𝒚) = ∑ 𝐾(𝒙, 𝒚)𝑚
𝑖=1                                                       (21) 

where m is the number of modal. 

The construct of the kernel based multimodal classification can be seen in fig1: 

 

 

 

 

 

 

 

 

 

 

 

Fig1: Overview of the proposed framework 

3.  Experiments and results 

3.1 Subject 
FDG-PET contains 90 features of 90 regions, FIB-PET contains 90 features of 90 regions, MRI 

contains 90 features from 90 regions. The description of 70 subject is in Table 1. 

Table 1: Description of Subjects 

 AD MCI NC(health) 

Number 22 23 25 

 

3.2 Implementation details 
For all the experiments data, the input and target variables are normalized into the interval [0, 1]. The 

Gaussian distribution number of GMM 𝐾 = 2. The weights in the multi-kernel method are learned based on 

the training samples, through a grid search using the range from 0 to 1 at a step size of 0.1. The regularize 

parameter of the classification method 𝛽  and the kernel parameter 𝜎2  are learned from the set{2𝑖|𝑖 =
-16,-6,… ,0, … ,6,16} . Because the kernel weight parameter is dependent by the train data, while the 

regularize parameter and kernel parameter are dependent by the model, we train them separately. Firstly, we 

learn the kernel weight parameter with fixed 𝛽 = 1,𝜎2 = 1. Then, we train the model with the optimal 

kernel weight parameter. 

The model multiple kernel learning(MKL) [5], combined embedding(CE) [6], nonlinear graph fusion 

(NGF) [7] are used for compare. The classification is implement on AD vs. NC (47 samples) and MCI vs. 

NC (48 samples). They all randomly selected 30 samples for the training set and the rest for the test set. 

Since the training sample set is not rich enough, we have adopted Data Augmentation to prevent overfitting 
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by duplicate the training set 5 times. Experiments results are get by 5 fold cross-validation. The results are 

in Table2:  

       Table2: Comparison of results based on multi-modality classification 

Classification Metrics(%) MKL[5] CE[6] NGF[4] NLC-GMM 

AD VS. NC Accuracy 91.8 92.8 95.2 96.4 

Sensitivity 87.6 89.4 93.3 95.2 

Specificity 95.8 96.9 97.2 97.6 

      
MCI VS. NC Accuracy 70.0 74.4 75.7 78.8 

Sensitivity 72.4 69.6 77.6 77.3 

Specificity 68.6 80.0 74.1 79.6 

 

It is easy to see that the proposed GMM based nonlinear classification (NLC-GMM) is robust to the 

noise and outlier contained in the train data. As in the table 2, the accuracy, sensitivity and specificity is 

significantly higher than the linear kernel based MKL [5]. Our method is also better than CE [6] and NGF 

[7], which explains the effectiveness of GMM noise modeling. 

The output of the Eq. (19) is: 

                                                     out𝑝𝑢𝑡 = ∑ 𝛼̂𝑖𝑦𝑖𝐾(𝒙, 𝒙𝑖)
𝑛
𝑖=1 + 𝑏̂                                                    (22) 

The output is real number, which can be mapped into interval [0,1] by the sigmoid function: 

                                                                          𝑓(𝑥) =
1

1+𝑒𝑥𝑝(−𝑥)
                                                                 (23) 

𝑓(𝑜𝑢𝑡𝑝𝑢𝑡) is the probability that the sample belongs to AD (AD vs. NC) or MCI (MCI vs. NC). 

After getting the probability, we the ROC curve is in the Fig2: 

 

                Fig2: Roc curves of different methods. (a) AD vs. NC, (b) MCI vs. NC 

4. Conclusion and future work 

In this work, we focus on the performance of classification model on the data, which is contaminated 

by unknown noise and outliers. By introducing the powerful Gaussian mixture model (GMM), and the linear 

mixed kernel [5], the performance and robustness of the nonlinear classification model is significantly 

improved. This result shows that noise is inevitable during the data acquisition process. This phenomenon 

suggests that we should build a model that can automatically identify noise or select features before model 

training. 

In medical image data, a patient usually has many features, so it is likely to contain useless and 

redundant information. Therefore, the feature selection is necessary in this situation. Feature selection 

method based on t-test statistics is employed in [5].  

The information matrix based on sample similarity is proposed by [4, 6]. The performance of this 

method reveals that the information matrix carries more information than the RBF kernel. Therefore, it is 

interesting to replace the linear mixed RBF kernel to the information. In addition, many robust models based 

on mixed distributions have been proposed such as Mixture of t distribution [18] and scale mixture of skew-

normal [13]. The performance of those mixture models on the different dataset is worth studying. 
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