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Abstract. This paper proposes a new class of nonlinear systems called generalized Lorenz-like systems 

which can be used to describe many usual three-dimensional chaotic systems such as Lorenz system, Lü 

system, Chen system, Liu system, etc. Then the control and synchronization problems for generalized 

Lorenz-like system via a single input are studied and two control laws are proposed based on partial feedback 

linearization with asymptotically stable zero dynamics. Finally, the numerical simulations demonstrate the 

correctness and effectiveness of the proposed control strategies. 
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1. Introduction  

In the past three decades, the topic of control and synchronization for chaotic systems has attracted 

increasing attentions because of its possible applications in secure communication [1-2], biomedical 

Engineering [3] and etc. The chaos synchronization was introduced, in 1990, by Pcora and Carroll [4], 

which is used to synchronize two identical chaotic systems with different initial conditions. Since then, a 

wide variety of methods of the control and synchronization for chaotic systems have been proposed, such as 

linear feedback control method [5-6], sliding mode control [7], adaptive control method [8-9], backstepping 

control method [10-11] and so on. 

It is well known that if a nonlinear control system is partial feedback linearizable and its 

corresponding zero dynamics is asymptotically stable, then the control that stabilizes the linear sub-system 

will stabilize the original system [12-15]. In this paper, a class of generalized Lorenz-like system is 

introduced which can describe many usual chaotic systems such as Lorenz system, Chen system, Liu system, 

Lü system and etc. Our object is to realize the control and synchronization, for any given initial conditions, 

of generalized Lorenz-like system by one input. Two one-input control strategies are proposed for the 

control and synchronization, respectively, based on partial feedback linearization with asymptotically stable 

zero dynamics of the corresponding error systems. 

This paper is organized as follows. In Section 2, the generalized Lorenz-like system is introduced and 

moreover, useful notations and problem statement is also given. The main results are presented in Section 3. 

Numerical simulations are shown in Section 4 to verify the effectiveness and correctness of the proposed 

one-input control strategies. Finally, concluding remarks are given in Section 5. 

2. Preliminaries and problem statement 

2.1 Zero dynamics [12-13]  

Consider a single-input single-output nonlinear system 

𝛴:    {
𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢
𝑦 = ℎ(𝑥)

 

where the state 𝑥 ∈ ℝ𝑛, the control 𝑢 ∈ ℝ and the entries 𝑓, 𝑔 are smooth vector fields on ℝ𝑛. Let𝑦 = ℎ(𝑥) 

be an output of 𝛴 with relative degree 𝑟 < 𝑛 at some point 𝑥0, then locally there exist a regular static state 

feedback 𝑢 = 𝛼(𝑥) + 𝛽(𝑥)𝑣  and a state transformation 𝑧 = (𝑧1, 𝑧2) = (𝛷1(𝑥), 𝛷2(𝑥)) = 𝛷(𝑥) , where 

𝑧1 = (𝑧1, … , 𝑧𝑟)⊤, 𝑧2 = (𝑧𝑟+1, … , 𝑧𝑛)⊤ , and 𝛷  is a diffeomorphism, such that in the 𝑧 −coordinates, the 

system 𝛴 reads, locally, 
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Definition 1. The zero dynamics of system 𝛴  is defined by the dynamics 𝑧̇2 = 𝜂(0, 𝑧2) which are the 

internal dynamics consistent with the constraint that 𝑦(𝑡) ≡ 0. 

Lemma 2. If the zero dynamics of system 𝛴 is asymptotically stable, then the control 𝑢 that stabilizes the 

linear sub-system will stabilize the system 𝛴.  

2.2 Generalized Lorenz system 

Consider a nonlinear autonomous system defined on ℝ3 

𝛬:   𝑥̇ = 𝐴𝑥 + 𝑓(𝑥), 
where the state 𝑥 = (𝑥1, 𝑥2, 𝑥3)𝑇 , the smooth vector field 𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥))𝑇 , is the quadratic 

nonlinear part of system and 𝐴 is a constant matrix which is in the following form: 

𝐴 = (

𝑎11 𝑎12 0
𝑎21 𝑎22 0

0 0 𝑎33

). 

Definition 3. The nonlinear system is called a generalized Lorenz-like system if it satisfies 𝑎33 < 0, 𝑎12 ≠ 0 

and 𝑓1(𝑥) = 0,  𝑓2(𝑥) = 𝑓2(𝑥1, 𝑥3),  𝑓3(𝑥) = 𝑓3(𝑥1, 𝑥2). In other words, the generalized Lorenz-like system 

is in the following form 

                               {

𝑥̇1 = 𝑎11𝑥1 + 𝑎12𝑥2

𝑥̇2 = 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑓2(𝑥1, 𝑥3)
𝑥̇3 = 𝑎33𝑥3 + 𝑓3(𝑥1, 𝑥2).

                   (1) 

Remark 4. Many usual chaotic systems can be described by the generalized Lorenz-like system. For 

example, when 𝑎11 < 0, 𝑎12 = −𝑎11, 𝑓2(𝑥1, 𝑥3) = 𝑙𝑥1𝑥3 and 𝑓3(𝑥1, 𝑥2) = ℎ𝑥2
2 , it becomes Multi-wing 

system [16]. Moreover, it is easy to see that Lorenz system [17], Chen system [2], Liu system [18], Lü 

system [19], etc., can also be described by this class. 

Remark 5. In [20], a similar nonlinear control system called generalized Lorenz system was introduced in 

which the elements of 𝑓(𝑥) were defined by 𝑓1(𝑥) = 0, 𝑓2(𝑥1, 𝑥3) = 𝑥1𝑥3, 𝑓3(𝑥1, 𝑥2) = −𝑥1𝑥2. Therefore, 

the system (1) is more generalized than that in [20]. 

2.3 Problem statement 
In this paper, the control and synchronization by one input for the generalized Lorenz-like system is studied 

and the control strategies are proposed based on the partial feedback linearization with asymptotically stable 

zero dynamics. More precisely, we add a control variable to the second equation of (1),  

                                                                {

𝑥̇1 = 𝑎11𝑥1 + 𝑎12𝑥2

𝑥̇2 = 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑓2(𝑥1, 𝑥3) + 𝑢
𝑥̇3 = 𝑎33𝑥3 + 𝑓3(𝑥1, 𝑥2).

    (2) 

which is called the slave system with 𝑎33 < 0, 𝑎12 ≠ 0 and the master system denotes the original system in 

variable 𝑦: 

                                                                {

𝑦̇1 = 𝑎11𝑦1 + 𝑎12𝑦2

𝑦̇2 = 𝑎21𝑦1 + 𝑎22𝑦2 + 𝑓2(𝑦1, 𝑦3)

𝑦̇3 = 𝑎33𝑦3 + 𝑓3(𝑦1, 𝑦2).
     (3) 

The object of this paper is to solve the following control and synchronization problems for generalized 

Lorenz-like system (1) via single input: 

(i) For any equilibrium point (𝑥1
∗, 𝑥2

∗, 𝑥3
∗), find a suitable control u such that 𝑙𝑖𝑚

𝑡→∞
|𝑥 − 𝑥∗| = 0 for any 

initial condition (𝑥1(0), 𝑥2(0), 𝑥3(0)); 

(ii) Find a suitable control 𝑢 such that 𝑙𝑖𝑚
𝑡→∞

|𝑥 − 𝑦| = 0 for any initial conditions (𝑥1(0), 𝑥2(0), 𝑥3(0)) 

and(𝑦1(0), 𝑦2(0), 𝑦3(0)). 
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3. Main results 

Lemma 6. The second dimensional linear control system [21][22] 

{
𝑥̇1 = 𝑥2,
𝑥̇2 = 𝑢,

 

can be globally stabilized in finite time under the feedback control law   

𝑢 = −𝑘1sign(𝑥1)|𝑥1|𝛼1 − 𝑘2sign(𝑥2)|𝑥2|𝛼2. 

where 𝑘1, 𝑘2 > 0, 𝛼1 ∈ (0,1), 𝛼2 =
2𝛼1

1+𝛼1
.  

Theorem 7. The control problem by one input of the generalized Lorenz-like system, given by (1), can be 

achieved by the following control law 

𝑢1 =
1

𝑎12
(−𝑘1sign(𝑥1 − 𝑥1

∗)|𝑥1 − 𝑥1
∗|𝛼1 − 𝑘2sign(𝑎11𝑥1 + 𝑎12𝑥2)|𝑎11𝑥1 + 𝑎12𝑥2|𝛼2 

      − (𝑎11
2 + 𝑎12𝑎21)𝑥1) − (𝑎11 + 𝑎22)𝑥2 − 𝑓2(𝑥1, 𝑥3). 

Proof. Let (𝑥1
∗, 𝑥2

∗, 𝑥3
∗) denote an equilibrium point of the generalized Lorenz-like system and the control 

errors are defined by 𝑒𝑖
∗ = 𝑥𝑖 − 𝑥𝑖

∗. Thus the error dynamics can be obtained in the following form: 

                    {

𝑒̇1
∗ = 𝑎11𝑒1

∗ + 𝑎12𝑒2
∗

𝑒̇2
∗ = 𝑎21𝑒1

∗ + 𝑎22𝑒2
∗ + 𝑎21𝑥1

∗ + 𝑎22𝑥2
∗ + 𝑓2(𝑒1

∗ + 𝑥1
∗, 𝑒3

∗ + 𝑥3
∗) + 𝑢1

𝑒̇3
∗ = 𝑎33𝑒3

∗ + 𝑎33𝑥3
∗ + 𝑓3(𝑒1

∗ + 𝑥1
∗, 𝑒2

∗ + 𝑥2
∗).

    (4) 

It is easy to see that the error system (4) can be partial linearized into following form  

                     {

𝑧̇1 = 𝑧2

𝑧̇2 = 𝑣1

𝑧̇3 = 𝑎33𝑧3 + 𝑎33𝑥3
∗ + 𝑓3(𝑧1 + 𝑥1

∗, 𝑎12
−1(𝑧2 − 𝑎11𝑧1) + 𝑥2

∗)
     (5) 

under the invertible change of coordinates 

  {

𝑧1 = 𝑒1
∗

𝑧2 = 𝑎11𝑒1
∗ + 𝑎12𝑒2

∗

𝑧3 = 𝑒3
∗

          (6) 

and the feedback 𝑢1 = 𝑣1 − (𝑎21𝑒1
∗ + 𝑎22𝑒2

∗ + 𝑎21𝑥1
∗ + 𝑎22𝑥2

∗ + 𝑓2(𝑒1
∗ + 𝑥1

∗, 𝑒3
∗ + 𝑥3

∗)). Note that the zero 

dynamics of (5) is given by 

𝑧̇3 = 𝑎33𝑧3 + 𝑎33𝑥3
∗ + 𝑓3(𝑥1

∗, 𝑥2
∗). 

Since (𝑥1
∗, 𝑥2

∗, 𝑥3
∗)  is an equilibrium point, we have clearly 𝑎33𝑥3

∗ + 𝑓3(𝑥1
∗, 𝑥2

∗) = 0 . Therefore, the zero 

dynamics of (5) is given by just 𝑧̇3 = 𝑎33𝑧3 that is asymptotically stable due to 𝑎33 < 0. By Lemma 6, the 

control law  

                                                       𝑣1 = −𝑘1sign(𝑧1)|𝑧1|𝛼1 − 𝑘2sign(𝑧2)|𝑧2|𝛼2     (7) 

stabilizes the variable 𝑧1, 𝑧2 in finite time 𝑇∗. According to Lemma 2, the control law (7) will also stabilize 

the system (5). Since that the change of coordinates (5) is invertible globally, we have 𝑧1 = 𝑧2 = 0 if and 

only if 𝑒1
∗ = 𝑒2

∗ = 0 and consequently, the control law  

1 2

1 2 1 3

1 1

1 1 21 22 21 1 22 2 2 1 3

1 1 1 2 11 1 12 2 11 1 12 2

12

2

11 12 21 1 11 22 2 2 1 3
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will stabilize the error systems (4).    □ 

Theorem 8. The synchronization problem of the generalized Lorenz-like system, given by (1), can be 

achieved by the following control law 

𝑢2 =
1

𝑎12
(−𝑘1sign(𝑥1 − 𝑦1)|𝑥1 − 𝑦1|𝛼1 

      − 𝑘2sign(𝑎11𝑥1 + 𝑎12𝑥2 − 𝑎11𝑦1 − 𝑎12𝑦2)|𝑎11𝑥1 + 𝑎12𝑥2 − 𝑎11𝑦1 − 𝑎12𝑦2|𝛼2 
      − (𝑎11

2 + 𝑎12𝑎21)(𝑥1 − 𝑦1)) − (𝑎11 + 𝑎22)(𝑥2 − 𝑦2) − (𝑓2(𝑥1, 𝑥3) − 𝑓2(𝑦1, 𝑦3)). 
Proof. It is easy to see that the output ℎ(𝑥) = 𝑥 has relative degree 2 and clearly, under the change of 

coordinates 𝑧 = 𝛷(𝑥) in the form 
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                  {

𝑧1 = 𝑥1

𝑧2 = 𝑎11𝑥1 + 𝑎12𝑥2

𝑧3 = 𝑥3

    (8) 

and the feedback 𝑢2 = 𝑣2 − 𝑎21𝑥1 − 𝑎22𝑥2 − 𝑓2(𝑥1, 𝑥3), the slave system (2) can be transformed into the 

following form 

                                  {

𝑧̇1 = 𝑧2

𝑧̇2 = 𝑣2

𝑧̇3 = 𝑎33𝑧3 + 𝑓3(𝑧1, 𝑎12
−1(𝑧2 − 𝑎11𝑧1)).

    (9) 

By the same change of coordinates 𝑤 = Φ(𝑦), the master system can be transformed into the form 

                                   {

𝑤̇1 = 𝑤2

𝑤̇2 = (𝑎11
2 + 𝑎12𝑎21)𝑤1 + (𝑎11 + 𝑎22)(𝑤2 − 𝑎11𝑤1) + 𝑎12𝑓2(𝑤1, 𝑤3)

𝑤̇3 = 𝑎33𝑤3 + 𝑓3(𝑤1, 𝑎12
−1(𝑤2 − 𝑎11𝑤1)).

               (10) 

Define errors by 𝑒𝑖 = 𝑧𝑖 − 𝑤𝑖, for 1 ≤ 𝑖 ≤ 3, and the error dynamics reads 

 {

𝑒̇1 = 𝑒2

𝑒̇2 = 𝑣̃2

𝑒̇3 = 𝑎33𝑒3 + 𝑓3(𝑧1, 𝑎12
−1(𝑧2 − 𝑎11𝑧1)) − 𝑓3(𝑤1, 𝑎12

−1(𝑤2 − 𝑎11𝑤1))
                   (11) 

where 𝑣̃2 = 𝑣2 − (𝑎11
2 + 𝑎12𝑎21)𝑤1 − (𝑎11 + 𝑎22)(𝑤2 − 𝑎11𝑤1) − 𝑎12𝑓2(𝑤1, 𝑤3) . By Lemma 6, the 

control law  

                                                      𝑣̃2 = −𝑘1sign(𝑒1)|𝑒1|𝛼1 − 𝑘2sign(𝑒2)|𝑒2|𝛼2                                      (12) 

stabilizes the variable 𝑒1, 𝑒2  in finite time 𝑇  which follows 𝑧1 = 𝑤1, 𝑧2 = 𝑤2,  for any 𝑡 ≥ 𝑇 and 

consequently 𝑓3(𝑧1, 𝑎12
−1(𝑧2 − 𝑎11𝑧1)) − 𝑓3(𝑤1, 𝑎12

−1(𝑤2 − 𝑎11𝑤1)) = 0 . Thus, the zero dynamics of the 

errors system (11) is given by 𝑒̇3 = 𝑎33𝑒3 which is, obviously, asymptotically stable due to 𝑎33 < 0 . 

According to Lemma 2, the control law (12) will also stabilize the system (11), i.e., 𝑙𝑖𝑚
𝑡→∞

𝑧 = 𝑤  that is 

equivalent to 𝑙𝑖𝑚
𝑡→∞

𝑥 = 𝑦 for any given initial conditions. The control law that achieve the synchronization 

problem is given by 

𝑢2 =
1

𝑎12
(−𝑘1sign(𝑒1)|𝑒1|𝛼1 − 𝑘2sign(𝑒2)|𝑒2|𝛼2 

      − (𝑎11
2 + 𝑎12𝑎21)𝑒1 − (𝑎11 + 𝑎22)(𝑒2 − 𝑎11𝑒1) − 𝑎12(𝑓2(𝑧1, 𝑧3) − 𝑓2(𝑤1, 𝑤3))) 

   =
1

𝑎12
(−𝑘1sign(𝑥1 − 𝑦1)|𝑥1 − 𝑦1|𝛼1 

      − 𝑘2sign(𝑎11𝑥1 + 𝑎12𝑥2 − 𝑎11𝑦1 − 𝑎12𝑦2)|𝑎11𝑥1 + 𝑎12𝑥2 − 𝑎11𝑦1 − 𝑎12𝑦2|𝛼2 
      − (𝑎11

2 + 𝑎12𝑎21)(𝑥1 − 𝑦1)) − (𝑎11 + 𝑎22)(𝑥2 − 𝑦2) − (𝑓2(𝑥1, 𝑥3) − 𝑓2(𝑦1, 𝑦3)). 

4. Numerical simulations 

In order to verify the effectiveness of proposed controller design, we consider the following three 

dimensional autonomous chaotic system introduced in [23]: 

{

𝑥̇1 = 𝑎11𝑥1 + 𝑎12𝑥2

𝑥̇2 = 𝑎21𝑥1 + 𝑎22𝑥2 − 𝑥1𝑥3

𝑥̇3 = 𝑎33𝑥3 + 𝑥1
2.

                                                    (14) 

When the parameters of systems (14) are given by 𝑎11 = −15, 𝑎12 = 20, 𝑎21 = 20, 𝑎22 = −1 and 

𝑎33 = −8, the system (14) is chaotic [23]. Obviously, this system belongs to the generalized Lorenz-like 

system with 𝑓2(𝑥1, 𝑥3) = −𝑥1𝑥3 and 𝑓3(𝑥1, 𝑥2) = 𝑥1
2. 

4.1 Control to the equilibria 
Solving the equations 𝑥̇1 = 𝑥̇2 = 𝑥̇3 = 0 in (14), we obtain the three equilibria of the system (14) as 

(0,0,0), (√154, 0.75√154, 19.25), (−√154, −0.75√154, 19.25). By Theorem 7, for any equilibrium point 

𝑥∗ of system (14), the states (𝑥1, 𝑥2, 𝑥3) can be controlled to x

from any initial condition by the following 

control strategy 

𝑢1 =
1

𝑎12
(−𝑘1sign(𝑥1 − 𝑥1

∗)|𝑥1 − 𝑥1
∗|𝛼1 − 𝑘2sign(𝑎11𝑥1 + 𝑎12𝑥2)|𝑎11𝑥1 + 𝑎12𝑥2|𝛼2 

      − (𝑎11
2 + 𝑎12𝑎21)𝑥1) − (𝑎11 + 𝑎22)𝑥2 + 𝑥1𝑥3. 
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For the numerical simulations, we assume that the initial condition is given by 

(𝑥1(0), 𝑥2(0), 𝑥3(0)) = (−1,2,3). We choose values for the constants 𝑘1 = 2, 𝑘2 = 3, 𝛼1 =
1

3
, 𝛼2 =

1

2
  and 

choose (√154, 0.75√154, 19.25) as the target equilibrium point. The simulation results are shown in Fig.1. 

 

Fig.1 Lorenz-like system converge to equilibrium point 

4.2 Synchronization between two identical generalized Lorenz-like systems 
Assume that the slave system and the master system are taken, respectively, as follows  

                         slave system:     {

𝑥̇1 = 𝑎11𝑥1 + 𝑎12𝑥2,
𝑥̇2 = 𝑎21𝑥1 + 𝑎22𝑥2 − 𝑥1𝑥3 + 𝑢2,

𝑥̇3 = 𝑎33𝑥3 + 𝑥1
2,

               (15) 

master system:     {

𝑦̇1 = 𝑎11𝑦1 + 𝑎12𝑦2,
𝑦̇2 = 𝑎21𝑦1 + 𝑎22𝑦2 − 𝑦1𝑦3,

𝑦̇3 = 𝑎33𝑦3 + 𝑦1
2,

                                                      (16) 

By Theorem 8, for any initial conditions, the above two systems are globally synchronized by the control 

law  

𝑢2 =
1

𝑎12
(−𝑘1sign(𝑥1 − 𝑦1)|𝑥1 − 𝑦1|𝛼1 

       − 𝑘2sign(𝑎11𝑥1 + 𝑎12𝑥2 − 𝑎11𝑦1 − 𝑎12𝑦2)|𝑎11𝑥1 + 𝑎12𝑥2 − 𝑎11𝑦1 − 𝑎12𝑦2|𝛼2 
       − (𝑎11

2 + 𝑎12𝑎21)(𝑥1 − 𝑦1)) − (𝑎11 + 𝑎22)(𝑥2 − 𝑦2) + (𝑥1𝑥3 − 𝑦1𝑦3). 
For the numerical simulations, we assume that the initial condition is given by 

(𝑥1(0), 𝑥2(0), 𝑥3(0)) = (−1,2,3)  and (𝑦1(0), 𝑦2(0), 𝑦3(0)) = (1,1,1) . The values of the constants are 

chosen by 𝑘1 = 2, 𝑘2 = 3, 𝛼1 =
1

3
, 𝛼2 =

1

2
. Fig.2 and Fig.3 display the state response and synchronization 

errors of systems (14) and (15). It can be seen that the synchronization errors converge to zero rapidly.  
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Fig.3 The error state time responses 

 

Fig.4 synchronization systems 

5. Concluding remark 

In this paper, we proposed a class of nonlinear control systems called generalized Lorenz-like systems 

which can be used to describe many usual chaotic systems such as Lorenz system, Chen system, Liu system, 

Lü system, etc. For this class of systems, one input control laws which achieved the control and 

synchronization problems has been proposed based on partial feedback linearization with stable zero 

dynamics. Finally, the numerical simulations are provided to show the effectiveness and correctness of the 

proposed control strategies. 
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