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Abstract: Some techniques are available to solve numerically higher order boundary value problems. The
aim of this paper is to apply Galerkin weighted residual method (GWRM) for solving eleventh order linear
and nonlinear boundary value problems. Using GWRM, approximate solutions of eleventh-order boundary
value problems are developed. This approach provides the solution in terms of a convergent series.
Approximate results are given for several examples to illustrate the implementation and accuracy of the
method. The results are depicted both graphically and numerically. All results are compared with the
analytical solutions to show the convergence of the proposed algorithm. It is observed that the present
method is a more effective tool and yields better results. All problems are computed using the software
MATLAB R2017a.
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1. Introduction

Higher order boundary value problems (BVPs) occur in the study of fluid dynamics, astrophysics,
hydrodynamic, hydro magnetic stability, astronomy, beam and long wave theory, induction motors,
engineering, and applied physics. The boundary value problems of higher order have been examined due to
their mathematical importance and applications in diversified applied sciences [1-2]. Twizell et al [3]
developed numerical methods for eight, tenth and twelfth order eigenvalue problems arising in thermal
instability. Scott and Watts [4] developed a numerical method for the solution of linear BVPs using a
combination of superposition and orthonormalization. Siddigi et al [5] used Variational iteration technique
to obtain numerical approximations for eleventh-order BVPs by converting the original problem into a
system of integral equations. Very recently Amjad Hussain et al [6] derived the numerical solutions of
eleventh-order BVPs using differential transformation method. Siddigi and Ghazala [7-10] presented the
solutions of eight, tenth and twelfth order boundary value problems using spline and Non-polynomial spline.

In the present paper, the eleventh order boundary value problems are solved using the Galerkin
weighted residual method. The problem has the foIIowi?g form:

11 10 9 8 7 6 4 3 2
Cnic_ll;"'Cw%*' C9%+C837:+C7271;+C6%+ C5%+C4%+C3%+C2%+ clz—z+c0u=r, a<x<
b (1a)
subject to the following boundary conditions:
u(a) = Ay, u(b) = By, u'(a) = Ay, u'(b) =By, u'(a) = A, u"(b) =B,, u"'(a) = A,
u'"'(b) = B;, u™(a) = A, u™(b) = B,, u(a) = A; (1b)
Where A;,i = 0,1,2,3,45and Bj,j = 0,1,2,3,4 are finite real constants and c;,i = 0,1,...,11 and r are all
continuous and differentiable functions of x defined on the interval [a, b].

The paper is organized in four sections. In section 2, we give a short description on Bezier
polynomials. The analysis of Galerkin weighted residual method is discussed in section 3. In section 4, three
numerical examples are presented to assess the efficiency of the Galerkin weighted residual technique.

2. Bezier Polynomials
The general form of the Bezier polynomials of nth degree over the interval [0, 1] is defined by

Bin() = Lo () ¥/ (1= 0" 7P, 0 < x < 1
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(n) _ n!
j (n—py!
The points P; are called control points for the Bezier curve.
We write first few Bezier polynomials over the interval [0,1]:
By(x) = (1—x)', B;(x) =19(1—x)8x,B,(x) = 171(1 — x)Y"x?%, By (x) = 969(1 — x)°x3
B,(x) = 3876(1 — x)°x* Bs(x) = 11628(1 — x)**x° B4 (x) = 27132(1 — x)*3x®,B,(x) = 50388(1 — x)*2x”
Bg(x) = 75582(1 — x)*x8, By(x) = 92378(1 — x)*°x°®, B, (x) = 92378(1 — x)°x1°B;;(x) = 3876(1 — x)8x1?
B;,(x) = 75582(1 — x)”x'2, By3(x) = 27132(1 — x)®x'3,B;,(x) = 11628(1 — x)°x* B, (x) = 3876(1 — x)*x15
Big(x) =969(1 — x)3x16, B;,(x) = 171(1 — x)?x7, Big(x) = 19(1 — x)x8, B (x) = x1°
Note that each of these n + 1 polynomials having degree n satisfies the following properties:
(1) Bi,(x)=0if j<Oorj>n
(i) j=oBin(x) =1
(iii) Bj‘n(a) =Bj,(b) =0, j=12,..,n—1
For these properties, Bezier polynomials are used in the trail functions satisfying the corresponding
homogeneous form of the essential boundary conditions in the Galerkin weighted residual method to solve a
BVP.

Where the binomial coefficients are given by

3. Matrix Formulation of Eleventh-order BVPs

In this section, we first derived the matrix formulation for eleventh-order linear BVP and then we
extend our idea for solving nonlinear BVP. To solve the boundary value problem (1) by the Galerkin
weighted residual method we approximate #(x) as
@(x) = 6o(x) + Xi5 By Bi(x) ,n =2 )
Here 6,(x) is specified by the essential boundary conditions and B; (a) = B;(b) =0, for each i =
1,2,3,..,n—1.

Using (2) into (1), the Galerkin weighted residual equations are'

f: [cn Zl; + ¢y Zliu + cgd I c8 + c7 + c6 =+ c5 -+ c4 + c3 S+ cz ~+ c1 + coll — r]B (x)dx=0, j=12,..,n—1 (3)

Integratlng by parts the terms up to second derlvatlve on the Ieft hand side of (3), we get

b b

[ e S By (0 dx = — [ [e1 By (0] ] Sl @) ] - [Slaas@) 5]
b

+ [E [CllBj(x)]JJa [ x5 [CHB (x)] dx4] + [dx6 [CllB (x)] dx.] [dx7 [CllB (x)] dx3]
+ [;_88 [CnB‘(x)]%qb [dxg [e11B; (x)] ] + fa m[CnB-(x)]—dx 4
f Clod 7o Bj(x)dx = [ [CloB 0 dxs] + [dxz [CloB (x)] dx7] [dx3 [CloB (x)] dxﬁ]
[ B 01T - [dxs 05, <x>1dx4] T [ QU E YL
+ [;_; [Clij(x)]Z_:]: - fa 2 [CloB (x)] (5)

fb ngig .(x)dx - [i [CgB.(x)] ] + [dx2 [(,‘9 J(x)] dxs] [dx3 [ € J( )] ]
[ [C"B (x)]dx4] [dxs [C"B (x)]dx3] + [d 6 ch ()] dxz] [dx7 [¢s ](x)] ]

[0 eoBy (0] 5 ®)
beBZiZBf(wdw—[itCSB(x)lZZL‘] +[dxz By 5], [ leuB >1ZZZ‘]
+ [ 2 eaB, )]~ [ [eay ] + [ [eaBy O] 2] 22 [eaBy )] 22 )

fb q%B-(x)dx = [ [c7B; (x)]dxs] + [d ~[c7B; (x)]dx4] [d = [c7B;(x )] ]
[ ~[¢;B; (x)]dxz] [ -[c;B; (x)] ] +fal E[q&-(x)];dx (8)
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f C6 dx6 Bj(x)dx = _[ [C6B (x)]dx4] + [d 2 CGB (x)]dx_] [dx3 [C6B (x)] ]
+ [ﬁ [cﬁBj(x)];]a bd [ ceB; (x)]—dx €)]

a dxs

f Csa s Bj(x)dx = [ [csB; (x)] ] [d; [CSB}-(X)]%]: [dx3 [csB; (x)] ] +fa ot [CSB (x)]

(10)
fab 042 2 Bj(x)dx = —[ [C4B €3] axZ] + [de C4B; (x)] ] —fab;—; [C4Bj(x)]Z—de (12)
fb 3 %B-(x)dx =— [— [C3Bj(x)] E]i + fab % [c3B]-(x)] de (12)
f c2 — Bj(x)dx = —f [csz(x)]Z—:dx (13)

Putting equations (4) to (13) into equation (3) and using approximation for #(x) given in equation (2)
and after applying the boundary conditions given in equation (1b) and rearranging the terms for the resulting
equations we get a system of equations in matrix form as

YEIM i Bi=N;, j=12,..,n—1 (14a)
Where
My = [ (e B 0] - [cloB O]+ L5 [eoBy (0] = 5 [e5B(0)] + 2z [e7B, ()] — - [ 6B, ()] +

L [esB 0] - [C4Bj(x)] + L [esB,(0] - 2 [e2B,(0)] + clBj(x)]d% [B,(0)] + 0B, (0B, ()} dx -

[[an @]+ B(x)]] +[d4';[cqu(x)]j—;[Bi(x)]]
x=b

x=a

- [;— [e11B (0] [Bi(x)]] - [;— [e11B, (0] [&-(x)]] R [;— [e118, (0] -5 [Bi(x)]]

x=b x=a x=b

+[j—;[anj(x>]§,[Bi<x)]] + [ leuB ol B0l _ - [ lenB @] B _

x=a

[ ~[c11B; (x)] B(x)]] [[CmB (x)] -~ [B,(x)]
x=b

+[ [CloB (x)] s [B; (x)]]
=b x=a
+[ZleoB @S B - [Sladm] B (x)]] . [;— [chj(x)]%i[Bi(xn]
+ ;_;[CmBj(x)]ﬁ[Bi(x)]] [dx4 [C1oB (x)] B (x)]] [ [C9B (x)] [B ()] ] -

B @I LB+ [ e w] B<x>l] [dxz[%B @ B(")]]
- ;_ [cggj(x)]@wi(x)]] - [d— [%Bﬂx)];[&(x)]] . [d— [Cst(x)]a[Bi(")]] ]

+ [ [eoB 0] i B:])_ - [ﬁ [erB,(0)] 2 [, (x)]] (14b)
x=b
N; = f {rB (x) [d — [CMB (x)] [clOB (x)] + [CgB (x)] — [CBB (x)] +L s [C7B (x)]
o [C6B (x)] + [CSB (x)] = [C4B (x)] a’ [C3B (x)] [CZB (x)] + ¢ B; (x)] — Co0oB; (x)}
+ [ lens @] ‘Zfé’] L~ el ‘Zfé’] il o)) =IO N
[ e 1 52] - [ lean 12%] - [ 1%2]  + [ len001 ol
[dxs CllBj (x)] %] x=b + [dix [Clij (x)] %] =b [dx [CloB (x)] ljixeso] =a [dx2 [Clo J (x)] 131:70] =b
8o 3 690 ) 6o

{ C:B (X)d] Zi:ﬂ] =a + [ﬁ ClOB (:C)e]oc:ixe'] =b [dx3 [CloB ixg)o] LjixG] =a [dx4 [CloB (x)] (fixS] -

C9 (x)] dx7] =b [dx [CQB (x)] dx7] —a [dx2 [CQB (x)] dxf'] =b +
[d CgB (x)] dx6] =a + [dx3 [CgBj (x)] ilxgso] =b + [dx [CgB (x)] ljixeso] =b -
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oI5, - EelonIgH], + [len @5, -[Slanw]| -

x=a

X By — [:—; [cllBj(x)]] X As —

x=b x=a

X By — [;—; [cllBj(x)]

:—; enB@]|  x B+ [:—; [c11B,(x)]

1x=b

X Ay + [% [c11B; ()]

x=a
d® das

x=a

9
X A, + [% [anj(x)]

x=b

X Ay — [;_; [c10B; (x)]

xXx=a
dS
X By — [@ [c10B; ()] X Bs +
x=b

4 1 [ s
%[clij(x)] X Ag + %[clij(x)]

x=b x=a

X B, — [: - [cloB (x)]] X [de [cloB (x)]] X By +

x=a x=b

6 | [ 7
%[clij(x)] X As+ %[clij(x)]
- x=b

[coB; (x)]

X Ay +

d_Z[CmBj(x)] X A — ;‘—Z[chj(x)]] X As — [d_i

dx
dx=a _- x=a

X B, + [;—; [chj (x)]

x=b

d6
X By +|—[coBi(0]| x4, +

x=b x=a

x=a

& — [ch (x)] X Bs — S [C9B (x)] X A; — [%66 [chj(x)]]
Jx=b dx=a

X By —
x=b

Llemwl| x 8- [Llenw]| xa-|[Llanwl| x|l

‘x=b ‘x=a x=a

XBZ_
x=b

= [CSB ()] X Ay — = [cBB ()] X (b—a)®B; + [;—; [cgB; (x)]

Jx=a ‘x=b

X Az + [;—; [CBB]- (x)]

x=a

X Ay — [% [c7Bj(x)]]x=a X Ag—

x=a _

= 2[c7B @]| x B+ [C7B (x)] x A, + %[cmj(x)] X By — = L [csB; (x)] X Ay —

& — [CBB (x)] X A, — o — [CSB (x)] x(b—a)B; + [ [CSB (x)]

Jx=a -x=b

o 4[C7B (x)] X B, + d—:[c7Bj(x)] X A, + :—;[C7Bj(x)] X By — |- 5[C7B (x)] x Ay +

[CGB (x)]] X B, — [% [C6B]- (x)]] X A, — [;—; [C6Bj(x)]]

x=b

X By + [;7 [csB; (x)]] X As +

x=b x=a

o 3[CGB (x)] X B, — :—;[C6Bj(x)] X A, — o 4[C6B (x)] X B; + . 4[663 (x)] X A +

4x=b = 4x=b dx=a

[CSB (x)]] [ [csB; (x)]] X As — [d ~[esBj(x)]| X By + [ﬁ [csBj(x)] X Ay +

x=b

ﬁ ~[csB, ()]

X B — [@ [CSB]- (x)]

X A + [E [C4B]-(x)]] . X B, — [% [C4B]-(x)]- X A, —

x=b dx=a

:—;[C‘LB]-(JC)] X B, + [;—; [c4Bj ()]
x=b

1,2,..,n—1 (14c)

Solving the system (14a), we find the values of the parameters [3;, and then substituting these
parameters into equation (2), we get the approximate solution of the BVP (1).

For nonlinear eleventh-order BVP, we first compute the initial values on neglecting the nonlinear
terms and using the systems (14). Then using the Newton’s iterative method we find the numerical
approximations for desired nonlinear BVP.

x A+ i[C3Bj(x)] X By — i[C3Bj(x)]- X Ay J=
x=a ax x=b “

-Xx=a

4. Numerical Examples

To implement the method, three examples are considered.
Example 1: Consider the following eleventh order linear boundary value problem [5, 6]

o u=-22(5+x)e% 0sx<1 (15a)
subject to the boundary conditions:
u(0)=1, u(1)= 0, u'(0)=1, u'(1) = —2¢, u"(0) =-1, u'(1) = —6e, u"'(0) = -5,

u'"(1) = —-12e¢, u™(0) = —-11, u™ (1) = —20e, u®(0) = -19 (15b)

The analytic solution of the above problemis, u(x) = (1 — x?)e*.
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The comparison of the exact solution with the approximate solution, of the example 1, obtained using
the GWRM, is shown in Table 1.

On the contrary it is observed that the accuracy is found nearly the order 10~ in [5] by Siddigqi et al
and nearly the order 10~3in [6] by Amjad Hussain et al. We have shown the exact and approximate

solutions in figure 1 of example 1 for n = 15.

1.4

1.2 |

15

Exact, Approximate
[e] [e]
o

°
»
T

o
N
T

Exact Solution

o
o

Figure 1: Numerical vs analytical solutions for example 1.

Table 1: Comparison between approximate and exact solutions for exam

ple 1in u;

X

Exact
Solutions

15, Bezier polynomials

Approx.
Solutions

Absolute
Error

0.0

1.0000000000

1.0000000000

0.000000000

0.1

1.0941192089

1.0941192089

3.89 x 1071¢

0.2

1.1725466478

1.1725466478

1.65x 10716

0.3

1.2283715149

1.2283715149

488 x 10716

0.4

1.2531327460

1.2531327460

2.38x 10716

0.5

1.2365409530

1.2365409530

1.01x 10716

0.6

1.1661560322

1.1661560322

3.29x 10716

0.7

1.0270138808

1.0270138808

1.65x10°1°

0.8

0.8011947343

0.8011947343

5.39 x 1071¢

0.9

0.4673245911

0.4673245911

2.17 x 1071¢

1.0

0.0000000000

0.0000000000

0.000000000

Example 2: Consider the following eleventh order linear boundary value problem [5, 6]

Z;—11?+ u=22(xcosx + 5sinx) + (1 —x?)(cosx + sinx), 0 <x <1 (16a)
subject to the boundary conditions:

u(0)=1, u()=0, u'0)=0, u'(1)=-2cosl, u"(0)=-3, u'(1)=4sin1—2cosl, u'"'(0)=
0, u"(1)=6(sinl+cos1), u®@0)=13, u™(1)=-8sinl1+12cos1, u®0)=0 . (16b)

The analytic solution of the above problemis, u(x) = (1 — x?)cos x.

the GWRM, is shown in Table 2.

The comparison of the exact solution with the approximate solution, of the example 2, obtained using

On the contrary it is observed that the maximum absolute errors were found by Siddiqi et al [5] is

5.148 x 10712 in [6] and by Amjad Hussain et al [8] is 9.560 x 10~13. Now the exact and approximate
solutions are depicted in figure 2 of example 2 for n = 16.
Example 3: Consider the following eleventh order non-linear boundary value problem [5]

dllu

— = 11(cosx —sinx) — x(cosx +sinx) — u?+x?(1—2cosxsinx), 0<x <1 (17a)
subject to the boundary conditions:

u(0) =0, u(1l)= sinl—cos1, u'(0)=-1, u'(1)=2sin1, u"(0)=2, u"(1)=sinl+

3cos1, u”'(0)=3, u"(1)=—4sinl1+2cosl, u®0)=-4, u™1)=-3sinl1-

S5cos1, u®(0)=—5. (17b)

The analytic solution of the above problem is, u(x) = x(sinx — cos x).
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The comparison of the exact solution with the approximate solution, of the example 3, obtained using
the GWRM, is shown in Table 3.

Table 2: Comparison between approximate and exact solutions for example 2 in u;

X

Exact
Solutions

16, Bezier polynomials

Approx.
Solutions

Absolute
Error

0.0

1.0000000000

1.0000000000

0.000000000

0.1

0.9850541236

0.9850541236

6.93x 1071

0.2

0.9408639147

0.9408639147

1.11x 10716

0.3

0.8693562051

0.8693562051

469 x 10716

0.4

0.7736912350

0.7736912350

8.92x 10716

0.5

0.6581869214

0.6581869214

2.13x1071¢

0.6

0.5282147935

0.5282147935

5.71x 1071¢

0.7

0.3900695155

0.3900695155

7.98 x 10716

0.8

0.2508144154

0.2508144154

6.25x 10716

0.9

0.1181058940

0.1181058940

1.20x 10715

iy
o

0.0000000000

0.0000000000

0.000000000

Approximate

Exact,
© 0o o 0o o o o o0
N W A 00O N 0O © =
T

©
a
T

o
-

0.1 0.2 0.3

0.5 0.6
x

0.4

0.7

Exact Solution

ke

0.8 0.9 1

Figure 2: Numerical vs analytical solutions for example 2.

On the contrary it is observed that the maximum absolute errors were found by Siddigi et al [5]
is4.415 x 10719 Now the exact and approximate solutions are depicted in figure 3 of example 3 for n =
14.

Table 3: Comparison between approximate and exact solutions for example 3 in u;

Exact Solutions 14, Bezier polynomials
x Approx. Absolute
Solutions Error
0.0 0.0000000000 0.0000000000 0.000000000
0.1 | -0.0895170749 | -0.0895170749 | 3.96 x 107 1*
0.2 | -0.1562794494 | -0.1562794494 | 1.68x 107 1*
0.3 | -0.1979448847 | -0.1979448847 | 6.64 x 107 1*
0.4 | -0.2126570607 | -0.2126570607 | 6.94 x 10~ *
0.5 | -0.1990785116 | -0.1990785116 | 9.23 x 10~*°
0.6 | -0.1564158849 | -0.1564158849 | 5.35x 1071°
0.7 | -0.0844371500 | -0.0844371500 | 1.32x107*
0.8 | 0.0165195052 | 0.0165195052 2.61x107%
0.9 | 0.1455452472 | 0.1455452472 3.48x 1071
1.0 | 0.3011686789 | 0.3011686789 | 0.000000000
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Exact Solution

#  Bezier Approx.

Exact, Approximate

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3: Numerical vs analytical solutions for example 3.

5. Conclusions

In this paper, we derived the complete formulation of Galerkin weighted residual method for

eleventh-order linear and non-linear boundary value problems. The results are presented in a data structured
table and sketching graphically By observing all those figures and table, it is clear that the presented
outcome exhibits the higher estimated order of convergence of this method. So, we can conclude that the
present method is an accurate and reliable analytical technique for boundary value problems.
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