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Abstract. In this study, we propose an effective numerical algorithm to study the Covid-19 epidemic 
model that is in the form of a system of the coupled ordinary differential equation. This algorithm includes 
the collocation method and truncated Laguerre wavelet. Here, we reduce the system of a differential equation 
into a set of algebraic equations which are having unknown Laguerre wavelet coefficients. Moreover, the 
modeling of the spreading of a Covid-19 disease in a population is numerically solved by the present method. 
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1. Introduction 
Since the first reports of novel pneumonia (COVID-19) in Wuhan, Hubei province, China [1], there 

has been considerable discussion on the origin of the causative virus, SARS-CoV-2 also referred to as 
HCoV-19. Infections with SARS-CoV-2 are now wide. The spread of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) has already taken on pandemic proportions, affecting over 100 countries in a 
matter of weeks.  A study in Italy the patients who died, 42.2% were aged 80–89 years, 32.4% were aged 
70–79 years, 8.4% were aged 60–69 years, and 2.8% were aged 50–59 years, those aged >90 years made up 
14.1% [2]. The potential risk factors of older age, high SOFA score Wuhan Pulmonary Hospital December 
2019, Wuhan, China was carried out and found out those increasing odds of in-hospital death associated 
with older age [3]. Because of the COVID-19 world health emergency, various governments suggested the 
WHO to have an “Immunity Passport” or “risk-free certificate” to provide work or travel permits.  
However no evidence that people who have recovered from COVID-19 and have antibodies are protected 
from a second infection. 

Mathematical model of severe SARS-CoV-2 to assess the potential for sustained human-to-human 
transmission with four datasets from within and outside of Wuhan was addressed between December 2019, 
and February 2020 [4].   In another stochastic transmission model, parameterized to the COVID-19 outbreak.  
The model used to quantify the potential effectiveness of contact tracing and isolation of cases at controlling 
a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-like pathogen. This could lead to having 
the success of controlling outbreaks using isolation and contact tracing and quantified the weekly maximum 
number of cases traced to measure the feasibility of public health effort [5].  In Wuhan, China, a novel and 
alarmingly contagious primary atypical (viral) pneumonia broke out in December 2019. It has since been 
identified as a zoonotic coronavirus, similar to SARS coronavirus and MERS coronavirus and named 
COVID-19. As of 8 February 2020, 33 738 confirmed cases and 811 deaths have been reported in China. 

 A review on the basic reproduction number [𝛽

𝛾
= 𝑅0] of the COVID-19 virus. R0 is an indication of 

the transmissibility of a virus, representing the average number of new infections generated by an infectious 
person in a naïve population. For [𝛽

𝛾
= 𝑅0 > 1] , the number infected is likely to increase, and for [

𝛽

𝛾
=

𝑅0 < 1] , the transmission is likely to die out. The basic reproduction number is a central concept in 
infectious disease epidemiology, indicating the risk of an infectious agent concerning epidemic spread [6].  

To examine how changes in population mixing have affected outbreak progression in Wuhan, we used 
synthetic location-specific contact patterns in Wuhan and adapted these in the presence of school closures, 
extended workplace closures, and a reduction in mixing in the general community. Using these matrices and 
the latest estimates of the epidemiological parameters of the Wuhan outbreak, the simulated the ongoing 
trajectory of an outbreak in Wuhan using an age-structured susceptible-exposed-infected-removed (SEIR) 
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model for several physical distancing measures. The latest estimates of epidemic parameters from a 
transmission model to data on local and internationally exported cases from Wuhan in an age-structured 
epidemic framework and investigated the age distribution of cases. The simulated lifting of the control 
measures by allowing people to return to work in a phased-in way and looked at the effects of returning to 
work at different stages of the underlying outbreak (at the beginning of March or April) [7].  

In real-time, estimates of the case fatality ratio (CFR) and infection fatality ratio (IFR) can be biased 
upwards by under-reporting of cases and downwards by failure to account for the delay from confirmation 
to death. Collecting detailed epidemiological information from a closed population such as the quarantined 
Diamond Princess Cruise ship in Japan can produce a more comprehensive description of asymptomatic and 
symptomatic cases and their subsequent outcomes. We aimed to estimate the IFR and CFR of coronavirus 
disease (COVID-19) in China, using data from passengers of the Diamond Princess while correcting for 
delays between confirmation and death and for the age structure of the population [8]. 

The novel 2019 coronavirus, SARS-CoV-2 (COVID-19), emerged towards the end of 2019 in the city 
of Wuhan in the province of Hubei in the People’s Republic of China, and it has spread to the entire world 
very fast and in a very short time. This study aimed to investigate the course of the pandemic by 
mathematical modeling based on the information that the time-dependent change (spreading) rate of the H 
number of individuals who have caught a contagious disease is proportional to the multiplication of the 
numbers of those who have caught the disease and those who have not. According to the results of the 
mathematical modeling in our study, in the case that sufficient precautions are not taken, or precautions are 
reduced, the course of the pandemic may show a very fast change in the negative direction. For this reason, 
every precaution, individual or social, will be significant in terms of the course of the COVID-19 pandemic 
[9]. 

The outbreak of novel coronavirus-caused pneumonia (COVID-19) in Wuhan has attracted worldwide 
attention. Here, we propose a generalized SEIR model to analyze this epidemic. Based on the public data of 
the National Health Commission of China from Jan. 20th to Feb. 9th, 2020, we reliably estimate key 
epidemic parameters and make predictions on the inflection point and possible ending time for 5 different 
regions. According to optimistic estimation, the epidemics in Beijing and Shanghai will end soon within two 
weeks, while for most of China, including the majority of cities in Hubei province, the success of anti -
epidemic will be no later than the middle of March. The situation in Wuhan is still very severe, at least 
based on public data until Feb. 15th. We expect it will end up at the beginning of April. Moreover, by 
inverse inference, we find the outbreak of COVID-19 in Mainland, Hubei province and Wuhan all can be 
dated back to the end of December 2019, and the doubling time is around two days at the early stage. 

Wavelets are special functions in a limited domain that is, a wave function instead of oscillating 
forever it drops to zero. Recently, we have facing different kinds of wavelets which are depending on two 
parameters such as, n is dilation parameter and k is the translation parameter [10]. The theory and 
application of wavelets is a comparatively young branch in signal processing and mathematical field. It has 
been applied in engineering disciplines, such as signal analysis, time-frequency analysis, and engineering 
mathematics [11-17]. 

In this study, we proposed a new algorithm to obtain numerical solutions for the system of ordinary 
differential equations with different constraints. it is very important to obtain numerical solutions for the 
system of nonlinear ordinary differential equations in many different fields of science and engineering such 
as chemical physics, fluid mechanics, solid-state physics, plasma physics, and plasma waves. Most realistic 
systems of ordinary differential equations do not have exact solutions, therefore, we need numerical 
techniques  [18]. Consider the system of an ordinary differential equation is of the form [16]:  

 𝑦𝑝1
𝑑 (𝑥) = 𝑓(𝑥, 𝑦1

𝑛1 , 𝑦2
𝑛2 , . . . , 𝑦𝑝

𝑛𝑝
) (1.1) 

Where, 𝑑 ≥ 𝑛𝑖 ∈ {0}𝑈𝑁, 𝑝1 𝑎𝑛𝑑 𝑖 = 1, . . . , 𝑝, 𝑝 is any natural number, 𝑑 and 𝑛𝑖 represents the order of the 
derivatives. Corresponding initial conditions are as follows,  

 𝑦𝑝1

𝑑1(𝑎1) = 𝑏𝑗,   𝑗, 𝑑1 = 0,1, . . . , 𝑑 − 1, (1.2) 

 Or boundary conditions (only for a system having second-order differential equations) are of the form,  
 𝑦𝑝1

(𝑎2) = 𝑏𝑗,   𝑦𝑝1
(𝑎3) = 𝑐𝑗  (1.3) 

Where 𝑏𝑗 and 𝑐𝑗 are constant. Many mathematicians already contributed some methods towards the solution 
of the system of ordinary differential equations they are as follows, Adomian decomposition method [19], 
operational matrix method with Chebyshev polynomials [20], Modification of Adomian Decomposition 
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Method [21], Approximation Algorithm [22], Modified Differential Transform Method [23], Matrix free 
method [24], Block hybrid second derivative method [25], Continuous block backward differentiation 
formula [26], homotopy perturbation method [27] and Laplace Adomian Decomposition Method [28]. 

The motivation of this article is to illustrate the present algorithm in solving the Covid-19 epidemic 
model. The proposed algorithm is useful for obtaining numerical solutions of the system of both linear and 
nonlinear differential equations. Especially, this algorithm yields an exact solution for a system of ordinary 
differential equations which are having solutions as a polynomial of finite degree. The obtained results are 
compared with the exact solution and the Adomian decomposition method (ADM). 

The organization of the rest of the paper is as follows. In section 2, Preliminaries of Laguerre wavelets 
are discussed. Covid-19 epidemic SIR model is generated in section 3. Section 4 contains a description of 
the proposed technique and applications of the proposed method is implemented in section 5. Finally, 
conclusions are drawn in section 6.  

2. Preliminaries of Laguerre wavelet 
Wavelets constitute a family of functions constructed from dilation and translation of a single function 

called mother wavelet. When the dilation parameter 𝑎 and translation parameter 𝑏 varies continuously, we 
have the following family of continuous wavelets:  

 𝜓𝑎,𝑏 (𝑥) = |𝑎|−1/2𝜓(
𝑥−𝑏

𝑎
), ∀  𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0. 

If we restrict the parameters 𝑎 and 𝑏 to discrete values as 𝑎 = 𝑎0
−𝑘 , 𝑏 = 𝑛𝑏0𝑎0

−𝑘 , 𝑎0 > 1, 𝑏0 > 0. We have 
the following family of discrete wavelets  

 𝜓𝑘 ,𝑛 (𝑥) = |𝑎|1/2𝜓(𝑎0
𝑘𝑥 − 𝑛𝑏0), ∀𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0, 

where 𝜓𝑘 ,𝑛 form a wavelet basis for 𝐿2(𝑅). In particular, when 𝑎0 = 2 and 𝑏0 = 1,then 𝜓𝑘 ,𝑛 (𝑥) forms an 
orthonormal basis. Laguerre wavelets are defined as:  

 𝜓𝑛,𝑚(𝑥) = (
2

𝑘
2

𝑚!
𝐿𝑚(2𝑘𝑥 − 2𝑛 + 1),

𝑛−1

2𝑘−1
≤ 𝑥 <

𝑛

2𝑘−1

0, otherwise

 (2.1) 

where 𝑚 = 0,1, … , 𝑀 − 1 and 𝑛 = 1,2, . . . , 2𝑘−1 where 𝑘 is assumed any positive integer. Here 𝐿𝑚(𝑥) are 
Laguerre polynomials of degree m concerning weight function 𝑊(𝑥) = 1 on the interval [0, ∞) and satisfies 
the following recurrence formula 𝐿0(𝑥) = 1, 𝐿1(𝑥) = 1 − 𝑥,  

 𝐿𝑚+2(𝑥) =
(2𝑚+3−𝑥)𝐿𝑚+1(𝑥)−(𝑚+1)𝐿𝑚(𝑥)

𝑚+2
     𝑤ℎ𝑒𝑟𝑒 𝑚 = 0,1,2, …  

3. Covid-19 epidemic SIR model 
Let 𝑦1  be the susceptible population, 𝑦2  be the Infected population and 𝑦3  represents a recovered 

population then the total population is 𝑛 = 𝑦1 + 𝑦2 + 𝑦3.  
𝑦1

′ = −β𝑦1𝑦2  

𝑦2
′ = 𝛽𝑦1𝑦2 − γ𝑦2 

𝑦3
′ = γ𝑦2 

Where β says that the rate of infection and γ represents the rate of recovery. β decreases as increasing the 
following factors such as border control, stay at home, observe hygiene and develop vaccines, γ increases as 
on better medicine.  

𝑑𝑦2

𝑑𝑦1

=
𝛽𝑦1𝑦2 − 𝛾𝑦2

−𝛽𝑦1𝑦2

= −1 +
𝛾

𝛽𝑦1

 

𝑦1 + 𝑦2 =
𝛾

𝛽
ln(𝑦1). 

𝑑𝑦2

𝑑𝑥
= 𝛽𝑦1𝑦2 − 𝛾𝑦2 

𝑑𝑦2

𝑦2
= (𝛽𝑦1(𝑥0) − 𝛾)𝑑𝑥  
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𝑦2 = 𝑒(𝛽𝑦1(𝑥0)−𝛾)𝑥  

The rate of infectives increases exponentially if  𝛽
𝛾

> 1, and its decay exponentially if  𝛽
𝛾

< 1. 
𝑑𝑦1

𝑑𝑥
= −𝛽𝑦1𝑦2(𝑥0) 

𝑑𝑦1

𝑦1

= −𝛽𝑦2(𝑥0)𝑑𝑥 

𝑦1 = 𝑒−𝛽𝑦2(𝑥0)𝑥. 

The rate of susceptible populations varies exponentially depends on the value of 𝛽.  
𝑑𝑦3

𝑑𝑥
= 𝛾𝑦2(𝑥0) 

𝑦3 = 𝛾𝑦2(𝑥0)𝑥 

The rate of recovery of the population always varies linearly depends on the value of 𝛾.  

4. Method of solution 
Consider the system of ordinary differential equations of the form:  

 𝑦𝑝1
𝑑 (𝑥) = 𝑓(𝑥, 𝑦1

𝑛1 , 𝑦2
𝑛2 , . . . , 𝑦𝑝

𝑛𝑝
)   (4.1) 

Where, 𝑑 ≥ 𝑛𝑖 ∈ {0}𝑈𝑁, 𝑝1 𝑎𝑛𝑑 𝑖 = 1, . . . , 𝑝, 𝑝 is any natural number, 𝑑 and 𝑛𝑖 represents the order of the 
derivatives. Corresponding initial conditions are as follows,  

 𝑦𝑝1

𝑑1(𝑎1) = 𝑏𝑗,   𝑗, 𝑑1 = 0,1, . . . , 𝑑 − 1, (4.2) 

Or boundary conditions (only for the system having second-order differential equations) are of the form,  
 𝑦𝑝1

(𝑎2) = 𝑏𝑗,   𝑦𝑝1
(𝑎3) = 𝑐𝑗  (4.3) 

Let assume that,  
 𝑦𝑝1

(𝑥) = ∑𝑀−1
𝑚=0 𝑎1,𝑚

𝑝1 𝜓1,𝑚(𝑥),   𝑀 𝑖𝑠 𝑎𝑛𝑦 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 (4.4) 

substitute (4.4) in (4.1) we get,  
∑𝑀−1

𝑚=0 𝑎1,𝑚
𝑝1 𝜓1,𝑚

𝑑 (𝑥) = 𝑓(𝑥, ∑𝑀−1
𝑚=0 𝑎1,𝑚

1 𝜓1,𝑚
𝑛1 (𝑥), ∑𝑀−1

𝑚=0 𝑎1,𝑚
2 𝜓1,𝑚

𝑛2 (𝑥), . . . , ∑𝑀−1
𝑚=0 𝑎1,𝑚

𝑝
𝜓1,𝑚

𝑛𝑝 (𝑥)) (4.5) 

Case I: If 𝑑 = 1 then there should be 𝑝 initial conditions. Now, collocate (4.5) by following collocation 
points. that is, {𝑥𝑖} = {

1

2
(1 + 𝑐𝑜𝑠(

(𝑖−1)𝜋

𝑀
))}, ∀𝑖 = 2,3, . . . , 𝑀. Then we get 𝑀 − 1 × 𝑝 number of equations 

and there are 𝑝 equations from (4.2). together we obtain a system of differential equations containing 𝑀 × 𝑝 
number of equations. On solving this system we get the values of 𝑀 × 𝑝 unknown coefficients, substitute 
these coefficients in (4.4) which will yield the numerical solution of (4.1). 
Case II: If 𝑑 = 2  then there should be 𝑑 × 𝑝  boundary conditions. Now, collocate (4.5) by following 
collocation points. that is, {𝑥𝑖} = {

1

2
(1 + 𝑐𝑜𝑠(

(𝑖−1)𝜋

𝑀−1
))}, ∀𝑖 = 2,3, . . . , 𝑀 − 1 . Then we get (𝑀 − 2) × 𝑝 

number of equations and there are 2 × 𝑝 equations from (4.3). together we obtain a system of differential 
equations containing 𝑀 × 𝑝  number of equations. On solving this system we get the values of 𝑀 × 𝑝 
unknown coefficients, substitute these coefficients in (4.4) which will yield the numerical solution of (4.1).  

5. Numerical Results 
Example 1: Let us consider the linear problem[11],  

 𝑦1
′′ + 𝑥𝑦1 + 𝑥𝑦2 = 2 (5.1) 

 𝑦2
′′ + 2𝑥𝑦2 + 2𝑥𝑦1 = −2 (5.2) 

with boundary conditions 𝑦1(0) = 0 = 𝑦1(1) and 𝑦2(0) = 0 = 𝑦2(1). The exact solutions of this problem 
are 𝑦1(𝑥) = 𝑥2 − 𝑥 and 𝑦2(𝑥) = 𝑥 − 𝑥2. Solving this problem by the present method we obtain the exact 
solution itself. 
Numerical implementation at 𝒌 = 𝟏, and 𝑴 = 𝟑: 
Let assume,  
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 𝑦1(𝑥) = ∑2
𝑚=0 𝑎1,𝑚𝜓1,𝑚(𝑥) (5.3) 

 𝑦2(𝑥) = ∑2
𝑚=0 𝑏1,𝑚𝜓1,𝑚(𝑥) (5.4) 

Substitute above equations in (5.1) and (5.2) we get,  
 ∑2

𝑚=0 𝑎1,𝑚𝜓1,𝑚
′′ (𝑥) + 𝑥 ∑2

𝑚=0 𝑎1,𝑚𝜓1,𝑚(𝑥) + 𝑥 ∑2
𝑚=0 𝑏1,𝑚𝜓1,𝑚(𝑥) = 2 (5.5) 

                           ∑2
𝑚=0 𝑏1,𝑚𝜓1,𝑚

′′ (𝑥) + 2𝑥 ∑2
𝑚=0 𝑏1,𝑚𝜓1,𝑚(𝑥) + 2𝑥 ∑2

𝑚=0 𝑎1,𝑚𝜓1,𝑚(𝑥) = −2                             (5.6) 

Now, collocate the above equations by points of the following sequence {𝑥𝑖} = {
1

2
(1 +

𝑐𝑜𝑠(
(𝑖−1)𝜋

2𝑘−1𝑀−1
))}   ∀𝑖 = 2,3, . . . , 𝑀 − 1. If 𝑀 = 3  then 𝑥2 =

1

2
, collocate (5.5) and (5.6) at 𝑥2  together with 

given boundary conditions, we get a system of equation containing six equations. Solving this system with 
suitable solvers we obtain unknown coefficients values as follows, 𝑎0 =

−1

6
,   𝑎1 = 0,   𝑎2 =

√5

30
,   𝑏0 =

1

6
,   𝑏1 = 0,   𝑏2 =

−√5

30
. On substituting these values in (5.3) and (5.4) will contribute exact solutions of 

example 1 as follows 𝑦1(𝑥) = 𝑥2 − 𝑥  and 𝑦2(𝑥) = 𝑥 − 𝑥2 . Fig. 1 represents Graphical interpretation 
between the numerical and exact solutions.  

 

  Fig. 1 Graphical comparison between the numerical and exact solutions  

Example 2: Here, we consider the problem of spreading a COVID-19 disease in a population that is 
assumed to have constant size throughout the epidemic is considered in  [16].  

 𝑦1
′ = −β𝑦1𝑦2 

 𝑦2
′ = 𝛽𝑦1𝑦2 − γ𝑦2 

 𝑦3
′ = γ𝑦2 

with initial conditions 𝑦1(0) = 𝑘1, 𝑦2(0) = 𝑘2, 𝑦3(0) = 𝑘3. 𝑦1(𝑥) represents susceptibles that are, those so 
far uninfected and therefore liable to infection, 𝑦2(𝑥) represents infectives that are those who have to suffer 
from the disease and 𝑦3(𝑥) represents an isolated population that is, who have recovered and are therefore 
immune. Here, all 𝑦1(𝑥) , 𝑦2(𝑥)  and 𝑦3(𝑥) are a function of time 𝑥. We solve this model by assuming that 
there is a steady constant rate between susceptibles and infectives and that a constant proportion of these 
constant results in transmission.  
Case 1: Numerical values for the following parameters are considered as: 
𝑘1 = 20 denotes initial population of 𝑦1(𝑥), who are susceptible. 𝑘2 = 15 denotes initial population of 
𝑦2(𝑥)  , who are infective. 𝑘3 = 0 denotes initial population of 𝑦3(𝑥) , who is immune. 𝛽 = 0.05 denotes 
the Rate of change of susceptibles to infective population. 𝛾 = 0.06 denotes the Rate of change of infectives 
to the immune population. This system says that in the total population 20 members are susceptibles, 15are 
infective and there is no recovery.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

 

 

Exact solution y1

Num solution y1

Exact solution y2

Num solution y2
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Fig. 2: Plot of the susceptible, infective, and recovered population for case 1. 

Case II: Numerical values for the following parameters are considered: 
𝑘1 = 20 denotes initial population of 𝑦1(𝑥), who are susceptible. 𝑘2 = 15 denotes initial population of 
𝑦2(𝑥)  , who are infective. 𝑘3 = 5 denotes initial population of 𝑦3(𝑥) , who is immune. 𝛽 = 0.05 denotes 
the Rate of change of susceptibles to infective population. 𝛾 = 0.06 denotes the Rate of change of infectives 
to the immune population. This system says that recovery begins.  

 

Fig. 3: Plot of the susceptible, infective, and recovered population for case 2. 

Table 1. Numerical Comparison between the Adomian decomposition method [3] with the present method for Example 
2 case III.  

x   Five terms approximation of 

𝒚𝟏, its CPU time is 6.49 seconds 

 Present method numerical 

solution its CPU time is 5.49 

seconds  

 0.0   20.000000000000000   20.000000000000000  

0.1   19.699578126371996   19.699578126359864 

0.2  19.398425571303918   19.398425570548923 

0.3   19.096713023320397   19.096713014983408  

0.4   18.794612320125442   18.794612274799274  

0.5   18.492296068742188   18.492295901675334  

0.6   18.189937265652560   18.189936784339231  

0.7   17.887708916936980   17.887707747739420  

0.8   17.585783658414083   17.585781152859568  

0.9  17.284333375780378   17.284328499145154  

1  16.983528824749996   16.983520031505272  
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Case III: Numerical values for the following parameters are considered: 
𝑘1 = 20 denotes initial population of 𝑦1(𝑥), who are susceptible. 𝑘2 = 15 denotes initial population of 
𝑦2(𝑥)  , who are infective. 𝑘3 = 10 denotes initial population of 𝑦3(𝑥) , who is immune. 𝛽 = 0.01 
denotes the Rate of change of susceptibles to infective population. 𝛾 = 0.02 denotes the Rate of 
change of infectives to the immune population. On solving this system by the present method at a 
different value of M and compared with the Adomian decomposition method in [3]. 

Table 5. Numerical Comparison between the Adomian decomposition method  [3] with the present method for Example 
2 case III.  

x   Five terms approximation of 

𝒚𝟐, its CPU time is 6.49 

seconds 

 Present method numerical 

solution its CPU time is 5.49 

seconds  

0.0   15.000000000000000  15.000000000000000  

0.1   15.270151767739135   15.270151767750251 

0.2 15.540493694892319   15.540493695580388 

0.3   15.810854883914805   15.810854891481439 

0.4   16.081063632394240   16.081063673364717 

0.5   16.350947816046876   16.350947966422083 

0.6   16.620335271713763   16.620335703005775 

0.7   16.889054180356947   16.889055223041613 

0.8   17.156933450055682   17.156935673000067 

0.9   17.423803099002612   17.423807401460287 

1  17.689494638499998   17.689502349312846 

 

Table 3. Numerical Comparison between the Adomian decomposition method  [3] with the present method for Example 
2 case III. 

x   Five terms approximation of 

𝒚𝟑, its CPU time is 6.49 

seconds 

 Present method numerical 

solution its CPU time is 5.49 

seconds  

0.0   10.000000000000000   10.000000000000000 

0.1   10.030539859123818   10.030270105889885  

0.2  10.062158872362208   10.061080733870691 

0.3   10.094856190688018   10.092432093535155 

0.4   10.128630958790655   10.124324051836005 

0.5   10.163482311934377   10.156756131902572 

0.6   10.199409372816543   10.189727512654985 

0.7   10.236411248425934   10.223237029218968 

0.8   10.274487026900992   10.257283174140374 

0.9   10.313635774388130   10.291864099394566 

1  10.353856531900002   10.326977619181893 
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Fig. 4 The plot of the susceptible, infective, and recovered population at M = 9 for case 3. 

Results and discussion 
In the above section, we solved the Covid-19 epidemic model through the Laguerre wavelet method. 

Based on the observations on obtained results we analyze the data as follows: 
In case I we nullified the rate of recovery, this follows that the susceptible rate goes on decreases as 

increasing the rate of infectives by maintaining the rate of recovery is constant as shown in fig 1. That is the 
rate of susceptible is inversely proportional to the rate of infectives depends on the rate of recovery. Since, 
𝛽

𝛾
> 1 therefore, 𝑦2 is exponentially increase and never meets susceptible and infective curves. In case II the 

rate of recovery begins and it’s increasing linearly after a certain time susceptible and infective curves meet, 
that is those curves again reach the starting point. In case III the rate of recovery is high therefore 
susceptible and infective curves meet rapidly towards initial points.  

6. Conclusion 
 In this paper, we proposed a new algorithm to solve the system of the differential equation. The given 

system of the differential equation has been converted into an algebraic equation including unknown 
coefficients of Laguerre wavelet. The present algorithm provides exact solutions for the system of ODE 
which are having the polynomial solutions of finite degree is numerically proved by Example 1. Another 
example is given to demonstrate the effectiveness and accuracy of the present algorithm. Also, we discussed 
in each cases that how the rate of susceptible, infective, and recovery depends on each other. 
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