
 ISSN 1746-7659, England, UK 

 
Journal of Information and Computing Science

Vol. 5, No. 4, 2010, pp. 314-320

A  Piecewise Modified Matrix Padé-type Approximation of 
Hybrid Order in the Interval [0, 1] 

 Beibei Wu    

 Department of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, China  

(Received July 31, 2010, accepted October 8, 2010) 

Abstract. In this paper, we introduce a piecewise modified matrix Padé-type approximation of hybrid 
order in the interval [0, 1]. It yields highly accurate results and exact values at some given points. The 
accuracy of this approximation increases as the order or the node increases. This method can be applied to 
approximate the exponential function. The explicit formula for computing the matrix exponential is presented. 
A numerical example is given to illustrate the effectiveness of this method.  
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1. Introduction  
Padé-type approximation has been widely used in various fields of mathematics, physics, and 

engineering since it was first introduced by Brezinski [1, 2]. In the last thirty years, it has received a lot of 
attention and has been generalized to many cases by some authors, for example, Arioka [3], Daras [4], Salam 
[8], Thukral [9], Gu and Shen [6].  

Following the idea of scalar Padé-type approximation [2], Gu [5] gave a matrix Padé-type approximation 
whose denominator is a scalar polynomial by means of a matrix-valued linear functional on the polynomial 
space. The matrix Padé-type approximation [5, 7] is a good approximation in a region near the origin, but 
may not be accurate at other points. To improve the accuracy of such approximation, we develop an 
interpolation technique for generating a new rational approximation with high accuracy. 

In this paper, matrix Padé-type approximation is modified by an interpolation polynomial. Based on the 
modified matrix Padé-type approximation, we construct a piecewise modified matrix Padé-type 
approximation of hybrid order in the interval [0, 1]. This new rational approximation to a matrix function 
gives more accurate results and exact values at certain selected points in the interval [0, 1]. In addition, we 
use this new method to approximate the matrix exponential. The practical formula for computing the matrix 
exponential is presented. It is shown by a numerical example of the matrix exponential that the accuracy of 
the approximation increases as the order or the node increases. 

2. Main Results  

Let  be a given power series at  with )(tF kt ss  matrix coefficients 
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with  for  0)( kt
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For the given power series (1), it follows from (2) that 
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Let  be an arbitrary polynomial of degree  v n
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Note that   acts on )( ktx   and  is a matrix polynomial of degree . Define mnW m
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Theorem 1. If  then ,0)( k
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Proof. Note that   is a matrix-valued linear functional on  , acting on )( ktx  . From (3), (5) and (6), 

we get 
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Thus, the result follows if  .0)( k
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Definition 1. Let  Then  is called a matrix Padé-type approximation of 
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where the matrix parameter  is determined by  0t
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which is called the i th approximant of the piecewise modified matrix Padé-type approximation of hybrid 
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Proof. The result follows immediately form Definition 3, Theorem 1 and (11). 

Remark 1. If in Definition 3, then the piecewise modified matrix Padé-type approximation of 
hybrid order will reduce to the modified matrix Padé-type approximation. For 

1N
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Proof. If  then  can be solved out by Cramer’s rule from the linear system of equations 
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Replacing by in (7) and (9), respectively, the MMPTA of trace form for is given by  F Ae Ate
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Table 2.  Some errors of the approximants for the  norm 
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In Table 3, we give the maximum errors of the constructed approximation and the matrix Padé-type 
approximation for the norm in the interval [0, 1/2] and [1/2, 1].  
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2 ]2/1,0[t  41079007.3   31012056.7   

2 ]1,2/1[t  41039429.1   21046647.6   

3 ]2/1,0[t  51071361.5   31021277.1   

3 ]1,2/1[t  51010192.2   21042242.2   

It is clear that the constructed method is a better method than the matrix Padé-type method for the same 
order to approximate the exponential function in the interval [0, 1]. 

5. Conclusions 
In this paper, a piecewise modified matrix Padé-type approximation of hybrid order in the interval [0, 1] 
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roximant of the piecewise modified matrix Padé-type approximation 

asel, 1980. 

rectional matrix Padé approximant in the inner product space. J. 

onal polynomials and its 

ethod and computation of matrix 

é-type approximants for accelerating the convergence of sequences. J. Comput. Appl. 
Math. 1999, 102: 287-302. 

has been presented.  This approximation has two advantages: highly accurate and locally controllable. We 
can improve the accuracy of the i th app
of hybrid order by increasing the order. 
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