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Abstract: In this paper, we investigate the effect of chemical reaction on peristaltic flow of a Jeffrey fluid 

in a tapered asymmetric channel with induced magnetic field and thermal radiation. The flow is analysed by 

long wavelength and low Reynolds number approximations. The reduced equations are solved by using the 

Adomian Decomposition Method and the expressions for velocity, stream function axial induced magnetic 

field and pressure gradient are obtained. The effect of pertinent parameters are illustrated graphically.  
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1. Introduction 

One of the major chemical mechanisms for fluid transport in many biological systems well known to 

physiologists is peristalsis. Peristalsis is a mechanism of series of wave-like muscle contractions and 

relaxations that moves bio-fluids in different processes. Some examples of peristaltic phenomenon include 
urine movement from kidney to gallbladder, bile transport in duct, chyme transport in small intestine, food 

processing in digestive tract, flow of blood in small vessels, locomotion of worms and many others. 

Peristalsis finds numerous applications in medical and industrial systems which include various devices like 
rollers, hose and tube pumps, dialysis, open-heart by pass and heart-lung machines etc. Latham [1] was the 

first who initially investigated the motion of fluid in peristaltic pump. Shapiro et al. [2] studied the peristaltic 

activity for flow of viscous fluid in a tube and channel employing the long wavelength and low Reynolds 
number approximations. Some recent contributions describing the peristaltic mechanism of Newtonian and 

non-Newtonian fluids may be mentioned in references [3-7].  

Recently, peristaltic flow with magnetic particles has grabbed the attention of several researchers due 
to its emerging applications in engineering and medical processes. MHD (Magnetohydrodynamics) is 

employed in magnetic drug targeting, pumping of blood, reduction of bleeding during surgery, continue 

casting process, hyperthermia, magnetic resonance imaging (MRI) and magnetotherapy etc. Few of the 
industrial applications include heat exchangers, pump meters, radar systems, magnetic devices for cell 

separation, magnetic drug targeting and magnetic tracers. Kothandapani and Srinivas [8] investigated the 

peristaltic transport of a Jeffrey fluid under the effect of magnetic field. Later Hayat and Ali [9] studied the 
influence of magnetic field on Jeffrey fluid in a tube, Vajravelu et.al [10] analysed the peristaltic transport of 

a conducting Jeffrey fluid in an inclined asymmetric channel. Mahmouda et.al [11] explained the MHD 

peristaltic transport of a Jeffrey fluid in a porous medium.  
The topic of blood flow (or Hemodynamics) problems have received a considerable attention due to 

its major importance in physiopathology. For a long time, blood is treated as a vital fluid. Blood circulation 

performs various types of function in the human body such as transport of nutrients, transport of oxygen, 
removal of metabolic products and removal of carbon dioxide. Mekheimer [12] examined the effects of 

magnetic field on peristaltic blood flow of couple stress fluid in a non-uniform channel. Akbar [13] analyzed 

the blood flow of Prandtl fluid model in tapered stenosed arteries. 
Matter interacts to form new products through a process called chemical reaction. Everyday a lot of 

chemical reactions takes place in the human body. Furthermore various industrial processes include 

chemical reactions such as Haber’s process (chemical binding of Nitrogen from air to make ammonia), 
disinfectant (chemical treatment to kill bacteria and viruses) and pyro processing (chemically combine 
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materials like cement).Barika and Dash [14] studied the chemical reaction effect of a magneto-micropolar 

fluid in a porous medium.  Hayat et.al [15] analysed the chemical reaction in peristaltic transport of a MHD 
couple stress fluid with Soret and Dufour effects. Hayat et.al [16] have analysed the Jeffrey fluid model for 

convective boundary conditions. 

In thermodynamics, thermal radiation also known as heat is the emission of electromagnetic waves 
from all matter that has a temperature greater than absolute zero. Heat transfer takes place in the human 

body by conduction, convection, evaporation and radiation. Transport of heat by the circulatory system 

makes heat transfer in the body. Ajaz et.al [17] analysed the radiation effects on micropolar fluid. Hayat 
et.al [18] studied the entropy generation rate for a peristaltic pump of a Jeffrey fluid. Selvi et.al. [19] 

discussed the effect of heat transfer on peristaltic flow of Jeffrey fluid in an inclined porous stratum. Asha 

and Deepa [20] analysed the entropy generation for peristaltic blood flow of a magneto-micropolar fluid 
with thermal radiation in a tapered channel. 

The word taper means diminish or reduce in thickness towards one end. The tapered asymmetric 

channel is normally created due to the intra-uterine fluid flow induced by myometrical contractions and it 
was stimulated by asymmetric peristaltic fluid flow in a two-dimensional channel. Ajaz [21] studied the 

peristaltic flow of nanofluids in a tapered asymmetric porous channel. Asha and Deepa [22] discussed the 

micro polar fluid flow in a tapered asymmetric channel. Asha and Deepa [23] analysed the impacts of hall 
and heat transfer with peristalsis. Asha and Deepa [24] also reported the thermo- diffusion and diffusion- 

thermo effects with peristaltic flow. 

In view of the above discussion the aim of this study is to analyse the chemical reaction effect on 
peristaltic blood flow of a magneto-Jeffrey fluid with thermal radiation in a tapered asymmetric channel. 

The Jeffrey model is relatively simpler linear model using time derivatives instead of convected derivatives, 

it represents a rheology different from the Newtonian. The problem is first modelled and then analysed by 
the long wavelength and low Reynolds number approximations. The reduced governing equations are 

solved by using the Adomian Decomposition Method (ADM) and the effect of various parameters are 

discussed and illustrated graphically. 

2. Mathematical modelling 

Consider the peristaltic flow of an incompressible, viscous and electrically conducting magneto-

Jeffrey fluid through a tapered asymmetric two dimensional channel with thermal radiation effects. The flow 

is generated by sinusoidal wave trains propagating with constant speed ‘c’ along the channel walls.  
 

 

Figure 1 A physical sketch of the problem 

We consider a rectangular coordinate system for the channel in which the X-axis is taken along the 

centreline of the channel and the Y-axis is transverse to it. An external transverse uniform constant magnetic 

field 𝐻0, induced magnetic field 𝐻′(ℎ𝑥
′,ℎ𝑦

′, 0) and therefore the total magnetic field 𝐻′+(ℎ𝑥
′, 𝐻0 + ℎ𝑦

′, 0), 

where ℎ𝑥
′
 and ℎ𝑦

′
 are the components of induced magnetic field along the co-ordinated axes. The geometry 

of the wall surfaces is given by, 

                               ℎ′1(𝑋
′, 𝑡 ′) = 𝑑 + 𝑚′𝑋 ′ + 𝑎1𝑠𝑖𝑛 [

2𝜋

𝜆
(𝑋 ′ − 𝑐𝑡′)], upper wall                                                             (1) 

                              ℎ′2(𝑋
′, 𝑡′) = −𝑑 − 𝑚′𝑋′ − 𝑎2𝑠𝑖𝑛 [

2𝜋

𝜆
(𝑋′− 𝑐𝑡′) + 𝜙], lower wall                                                (2) 
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Where 𝑎1 and 𝑎2 are the amplitudes of waves, 𝜆 is the wavelength, 𝜙(0 ≤ 𝜙 ≤ 𝜋) is the phase difference, 

𝑚′ is the coefficient of tapered parameter and 𝑑 is the half-width of the channel. 

The governing equations for magneto-Jeffrey fluid, are represented by the following set of equations 

                                                                                       𝛻. 𝑣 ′⃗⃗  ⃗ = 0,                                                                                   (3) 

                                                𝜌 (
𝜕𝑣′⃗⃗  ⃗

𝜕𝑡 ′
+ (𝑣 ′⃗⃗  ⃗. 𝛻) 𝑣 ′⃗⃗  ⃗) = 𝑑𝑖𝑣𝑇 − 𝛻 (𝑝′ +

1

2
 𝜇𝑒(𝐻

′+)
2
) − 𝜇𝑒(𝐻

′+. 𝛻)𝐻′+,                         (4) 

Where 𝑇 = −𝑝𝐼 + 𝑆in which the extra stress tensor for Jeffrey fluid is defined as 

𝑆 =
𝜇

1+ 𝜆1
(𝛾̇ + 𝜆2𝛾

¨
) 

The Maxwell’s equations, 

                                                             𝛻 × 𝐻′+ = 𝐽′⃗⃗ , 𝛻 × 𝐸′⃗⃗  ⃗ = −𝜇𝑒 (
𝜕𝐻′

+

𝜕𝑡 ′
)                                                               (5) 

along with the Ohm’s law 

                                                                          𝐽 ′⃗⃗ = 𝜎 (𝐸′⃗⃗  ⃗ + 𝜇𝑒 (𝑣
′⃗⃗  ⃗ × 𝐻′)),                                                                  (6) 

In addition, it should be noted that 

                                                                             𝛻.𝐻′ = 0 and 𝛻. 𝐸′ = 0,                                                                     (7) 

Now, combining equations (5)-(7) we get the induction equation, 

                                                                     
𝜕𝐻′

+

𝜕𝑡 ′
= 𝛻 × (𝑣 ′⃗⃗  ⃗ × 𝐻′+) +

1

𝜇𝑒𝜎
𝛻𝐻′,                                                            (8) 

Where 
1

𝜇𝑒𝜎
(= 𝜂) is the magnetic diffusivity and 𝑣 ′⃗⃗⃗   is the velocity vector, 𝑝′is the fluid pressure,  𝜌 the fluid 

density, 𝜎 the electrical conductivity, 𝜇𝑒 is the magnetic permeability, 𝐸′ is an induced electric field, 𝐽 is the 

current density, 𝐼 is the Cauchy stress tensor, 𝑆 is the extra stress tensor, 𝜇 is the dynamic viscosity, 𝜆1 is the 

ratio of relaxation to retardation time, 𝜆2 is the retardation time, and 𝛾̇ is the shear rate. 

The equations that govern the fluid motion for unsteady flow of an incompressible magneto-Jeffrey polar 
fluid in the cartesian co-ordinate system may be represented as, 

                                                                                    
𝜕𝑈′

𝜕𝑋′
+
𝜕𝑉 ′

𝜕𝑌′
= 0,                                                                              (9) 

            
𝜕𝑈′

𝜕𝑡′
+ 𝑈′ 𝜕𝑈′

𝜕𝑋′
+ 𝑉 ′ 𝜕𝑈′

𝜕𝑌′
=  −  

1

𝜌
 
𝜕𝑝′

𝜕𝑋 ′
+
𝜕(𝑆′

𝑋′𝑋′
)

𝜕𝑋 ′
+
𝜕(𝑆′

𝑋′𝑌′
)

𝜕𝑌′
−
𝜇𝑒

𝜌
(ℎ𝑥

′  
𝜕ℎ𝑥′

𝜕𝑋 ′
 +  ℎ𝑦

′   
𝜕ℎ𝑥′

𝜕𝑌′
)  −  

𝜇𝑒

𝜌
 𝐻0  

𝜕ℎ𝑥′

𝜕𝑌′
                (10) 

           
𝜕𝑈′

𝜕𝑡′
+ 𝑈′ 𝜕𝑈′

𝜕𝑋′
+ 𝑉 ′ 𝜕𝑈′

𝜕𝑌′
=  −  

1

𝜌
 
𝜕𝑝′

𝜕𝑋 ′
+
𝜕(𝑆′

𝑋′𝑋′
)

𝜕𝑋 ′
+
𝜕(𝑆′

𝑌′𝑌′
)

𝜕𝑌′
−
𝜇𝑒

𝜌
(ℎ𝑥

′  
𝜕ℎ𝑥′

𝜕𝑋 ′
 +  ℎ𝑦

′   
𝜕ℎ𝑥′

𝜕𝑌′
)  −  

𝜇𝑒

𝜌
 𝐻0   

𝜕ℎ𝑥′

𝜕𝑌′
                 (11)                                                                                       

                                       𝜌 𝐶𝑝′ (
𝜕𝑇′

𝜕𝑡 ′
+ 𝑈′ 𝜕𝑇

′

𝜕𝑋 ′
+ 𝑉 ′ 𝜕𝑇

′

𝜕𝑌′
) = 𝑘 (

𝜕2𝑇′

𝜕𝑋 ′
2+

𝜕2𝑇′

𝜕𝑌′
2) −  

𝜕𝑞𝑟

𝜕𝑦′
− 𝑄′(𝑇 ′− 𝑇0)                                  (12) 

                                   (
𝜕𝐶 ′

𝜕𝑡 ′
+ 𝑈′ 𝜕𝐶

′

𝜕𝑋 ′
+ 𝑉 ′ 𝜕𝐶

′

𝜕𝑌′
) = 𝐷𝑚 (

𝜕2𝐶 ′

𝜕𝑋 ′
2+

𝜕2𝐶 ′

𝜕𝑌′
2) +

𝐷𝑚𝐾𝑇

𝑇𝑚
(
𝜕2𝑇′

𝜕𝑋 ′
2+

𝜕2𝑇′

𝜕𝑌′
2) − 𝑘2(𝐶

′ − 𝐶0)                      (13) 

With the following dimensional boundary conditions, 

𝜓′ =
𝑞′

2
, 
𝜕𝜓′

𝜕𝑦′
= 0, 

𝜕𝜉 ′

𝜕𝑦′
= 0, 𝑇 ′ − 𝑇0 = 0  and 𝐶′ − 𝐶0 = 0 at 𝑦 = ℎ1

′  

                                         𝜓′ = −
𝑞′

2
, 
𝜕𝜓′

𝜕𝑦′
= 0, 

𝜕𝜉 ′

𝜕𝑦′
= 0, 𝑇 ′ − 𝑇0 = 1and 𝐶′ − 𝐶0 = 1 at 𝑦 = ℎ2

′                                   (14) 

Further the flow field in laboratory frame (𝑋 ′, 𝑌 ′) and wave frame (𝑥′, 𝑦 ′) are treated as the unsteady and 

steady motion respectively. Considering the wave frame (𝑥 ′ , 𝑦 ′) moving with a velocity c away from a fixed 

frame (𝑋 ′, 𝑌 ′) that follows from the following transformations 
𝑥 ′ = 𝑋 ′ − 𝑐𝑡 ′,  𝑦 ′ = 𝑌′,  𝑢′(𝑥 ′, 𝑦 ′) = 𝑈′ − 𝑐,  𝑣 ′(𝑥 ′, 𝑦 ′) = 𝑉 ′ 

In which (𝑢′, 𝑣 ′) and (𝑈 ′, 𝑉 ′) are the respective velocity components in the laboratory and wave frames. 

Introducing the following non-dimensional variables 

𝑥 =
𝑥 ′

𝜆
,  𝑦 =

𝑦 ′

𝑑
,  𝑢 =

𝑢′

𝑐
,  𝑣 =

𝜆𝑣 ′

𝑑𝑐
,  𝑤 =

𝑑𝑤 ′

𝑐
,  𝑝 =

𝑑2𝑝′

𝜆𝜇𝑐
,  𝑡 =

𝑐𝑡 ′

𝜆
,  𝜓 =

𝜓′

𝑐𝑑
,  𝐹 =

𝑞′

𝑐𝑑
, 

𝜉 =  
𝜉′

𝐻0𝑑
,  ℎ𝑥 =  

ℎ𝑥 ′

𝐻0
,  ℎ𝑦 =

ℎ𝑦′

𝐻0
,  𝑅𝑒 =

𝜌𝑑𝑐

𝜇
,  𝛿 =

𝑑

𝜆
,  𝑆1 =

𝐻0

𝑐
 √
𝜇𝑒

𝜌
,   𝑃𝑚 = 𝑝 +

1

2
𝑅𝑒𝛿 (

𝛿(𝐻+)2

𝜌𝑐2
), 

             𝐸 = −
𝐸 ′

𝜇𝑒𝑐𝐻0
,  𝑅𝑚 = 𝜎𝜇𝑒𝑑𝑐,  ℎ1 =

ℎ1′

𝑑
,  ℎ2 =

ℎ2′

𝑑
,  𝑎 =

𝑎1′

𝑑
,  𝑏 =

𝑎2′

𝑑
,  𝑚 =

𝜆𝑚′

𝜇
,  𝜃 =

𝑇′−𝑇0

𝑇1−𝑇0
                              (15) 

𝜙 =
𝐶 ′−𝐶0

𝐶1−𝐶0
 ,  𝛾 =

𝜇

𝜌
,𝑃𝑟 =

𝜇𝐶𝑝

𝐾
 ,  𝑆𝑟 =

𝜌𝐷𝑚𝐾𝑇(𝑇1−𝑇0)

𝑇𝑚𝜇(𝐶1−𝐶0)
,  𝑆𝑐 =

𝜇

𝜌𝐷𝑚
,  𝑁𝑟 =

16𝜎𝑇0
3

3𝑘′𝐾
,𝑆 =

𝑘2𝑑

𝑐
,𝑄0 =

 𝑄′𝑑2

𝐶𝑝𝜇
, 

𝑢 =  
𝜕𝜓

𝜕𝑦
, 𝑣 = −𝛿

𝜕𝜓

𝜕𝑥
, ℎ𝑥 =

𝜕𝜉

𝜕𝑦
,ℎ𝑦 = −𝛿

𝜕𝜉

𝜕𝑥
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Where 𝑃𝑟 is the Prandtl number, 𝑆𝑐 is the Schmidt number, 𝑆𝑟 is the Soret number, and 𝑁𝑟 is the thermal 

radiation parameter, S is the coefficient of chemical reaction, 𝑄0  is the coefficient of heat addition or 

absorption, 𝑆1 =
𝐻0

𝑐
√
𝜇𝑒

𝜌
  the Strommer’s number also known as magnetic force number, 𝑅𝑚 = 𝜎𝜇𝑒𝑑𝑐 the 

magnetic Reynolds number, 𝜉 is the magnetic force function. 

The total pressure in the fluid, which is equal to the sum of the ordinary and magnetic pressure given by 

𝑃𝑚 = 𝑝 +
1

2
𝑅𝑒𝛿 (

𝛿(𝐻 ′+)
2

𝜌𝑐2
) and 𝐸 = − (

𝐸′

𝜇𝑒𝑐𝐻𝑜
) is defined as the electrical field strength in non-dimensional 

form. 

Taking after the Rosseland diffusion approximation, the radiative flux 𝑞𝑟 for radiation is sculpted as 

                                                                               𝑞𝑟 =
−4𝜎′

3𝑘;

𝜕𝑇′
4

𝜕𝑦′
,                                                                                (16) 

Where 𝜎′  denotes Stefan-Boltzman constant and k′ is defined as mean absorption coefficient, 𝐾  is the 

thermal conductivity of the fluid. Supposing that the temperature variances within the flow are adequately 

small such that 𝑇 ′4 can be represented as the linear combination of temperature. This is practiced by 

expanding 𝑇 ′4 by using Taylor series about 𝑇0 as follows 

                                                           𝑇 ′4 = 𝑇0
4 + 4𝑇0

3(𝑇 ′ − 𝑇0) + 6𝑇0
2(𝑇 ′ − 𝑇0)

2+.  .  .  .                                      (17) 

By neglecting the higher order terms (second order onwards) in (𝑇′ − 𝑇0) we arrive at  

                                                                             3𝑇 ′4 ≈ −3𝑇0
4 + 4𝑇0

3𝑇 ′,                                                                 (18) 
Differentiating Eq. (16) with respect to y′ and using Eq. (18) to get 

                                                                               
𝜕𝑞𝑟

𝜕𝑦′
= −

16𝜎′𝑇0
3

3𝑘′

𝜕2𝑇′

𝜕𝑦′
2,                                                                        (19) 

Using the above non-dimensional quantities Equations. (10) – (13) reduce to 

        𝑅𝑒𝛿 [(𝜓𝑦
𝜕

𝜕𝑥
− 𝜓𝑥

𝜕

𝜕𝑦
)𝜓𝑦] =  −

𝜕𝑃𝑚

𝜕𝑥
+ 𝛿

𝜕(𝑆𝑥𝑥)

𝜕𝑥
+
𝜕(𝑆𝑥𝑦)

𝜕𝑦
+ 𝑅𝑒𝑆1

2𝜉𝑦𝑦 + 𝑅𝑒𝑆1
2𝛿 [(𝜉𝑦

𝜕

𝜕𝑥
−  𝜉𝑥

𝜕

𝜕𝑦
) 𝜉𝑦]               (20)                                                                                                                                                                                                                                          

𝑅𝑒𝛿3 [(𝜓𝑥
𝜕

𝜕𝑦
− 𝜓𝑦

𝜕

𝜕𝑥
)𝜓𝑥] = −

𝜕𝑃𝑚

𝜕𝑦
+ 𝛿2

𝜕(𝑆𝑦𝑥)

𝜕𝑥
+ 𝛿

𝜕(𝑆𝑦𝑦)

𝜕𝑦
− 𝑅𝑒𝑆1

2𝛿2𝜉𝑥𝑦 − 𝑅𝑒𝑆1
2𝛿3 [(𝜉𝑦

𝜕

𝜕𝑥
−  𝜉𝑥

𝜕

𝜕𝑦
) 𝜉𝑥]            (21) 

                                                              𝜓𝑦 − 𝛿(𝜓𝑥𝜉𝑦 − 𝜓𝑦𝜉𝑥) +
1

𝑅𝑚
(𝜉𝑦𝑦 + 𝛿

2𝜉𝑥𝑥) = 𝐸                                           (22) 

                                                𝑅𝑒𝛿 [(𝜓𝑦
𝜕

𝜕𝑥
−𝜓𝑥

𝜕

𝜕𝑦
)𝜃] =

1

𝑃𝑟
[(𝛿2

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)𝜃] +

𝑁𝑟

𝑃𝑟

𝜕2

𝜕𝑥2
[(1 − 𝑄0)𝜃]                      (23) 

                                   𝑅𝑒𝛿 [(𝜓𝑦
𝜕

𝜕𝑥
− 𝜓𝑥

𝜕

𝜕𝑦
) 𝜙] =

1

𝑆𝑐
[(𝛿2

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝜙] + 𝑆𝑟 [(𝛿

2 𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)𝜃] − 𝑆𝜙                    (24) 

where 𝑆𝑥𝑥 =
2𝛿

1+𝜆1
(1 +

𝜆2𝑐𝛿

𝑑1
(𝜓𝑦

𝜕

𝜕𝑥
−𝜓𝑥

𝜕

𝜕𝑦
))𝜓𝑥𝑦 

𝑆𝑥𝑦 =
1

1 + 𝜆1
(1 +

𝜆2𝑐𝛿

𝑑1
(𝜓𝑦

𝜕

𝜕𝑥
− 𝜓𝑥

𝜕

𝜕𝑦
))(𝜓𝑦𝑦 − 𝛿

2𝜓𝑥𝑥) 

𝑆𝑦𝑦 = −
2𝛿

1 + 𝜆1
(1 +

𝜆2𝑐𝛿

𝑑1
(𝜓𝑦

𝜕

𝜕𝑥
− 𝜓𝑥

𝜕

𝜕𝑦
))𝜓𝑥𝑦 

Applying the assumptions of long wavelength 𝛿 ≤< 1and low but finite Reynolds number neglecting the 

terms of order 𝛿 and higher the above equations (20) – (24) take the form, 

                                                                 −
𝜕𝑝

𝜕𝑥
+

1

(1+𝜆1)

 𝜕3𝜓

𝜕𝑦3
+ 𝑅𝑒𝑆1

2𝜉𝑦𝑦 = 0,                                                             (25) 

                                                                                     
𝜕𝑝

𝜕𝑦
= 0,                                                                                      (26) 

                                                                             
𝜕𝜓

𝜕𝑦
+

1

𝑅𝑚

 𝜕2𝜉

𝜕𝑦2
= 𝐸,                                                                             (27) 

                                                                       (1 + 𝑁𝑟)
 𝜕2𝜃

𝜕𝑦2
− 𝑃𝑟𝑄0𝜃 = 0,                                                                   (28) 

                                                                        
 𝜕2𝜙

𝜕𝑦2
+ 𝑆𝑐𝑆𝑟

 𝜕2𝜃

𝜕𝑦2
− 𝑆𝜙 = 0,                                                                   (29) 

Now eliminating the total pressure from equations (25) and (26) we get, 

                                                                        
1

(1+𝜆1)

𝜕4𝜓

𝜕𝑦4
+ 𝑅𝑒𝑆1

2𝜉𝑦𝑦𝑦 = 0,                                                                 (30) 

                                                                              
𝜕2𝜉

𝜕𝑦2
= 𝑅𝑚 (𝐸 −

𝜕𝜓

𝜕𝑦
),                                                                        (31) 

                                                                          (1 + 𝑁𝑟)
 𝜕2𝜃

𝜕𝑦2
− 𝑃𝑟𝑄0𝜃 = 0,                                                                (32) 
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 𝜕2𝜙

𝜕𝑦2
+ 𝑆𝑐𝑆𝑟

 𝜕2𝜃

𝜕𝑦2
− 𝑆𝜙 = 0                                                                 (33) 

Using Eq. (31) in Eq. (30) we get, 

                                                                        
𝜕3𝜓

𝜕𝑦3
+ 𝐻2(1 + 𝜆1) (𝐸 −

𝜕𝜓

𝜕𝑦
) = 𝐴3                                                        (34) 

With non-dimensional boundary conditions given by, 

𝜓 =
𝐹

2
 , 
𝜕𝜓

𝜕𝑦
= 0, 

𝜕𝜉

𝜕𝑦
= 0, 𝜃 = 0 and 𝜙 = 0 at 𝑦 = ℎ1 

                                                     𝜓 = −
𝐹

2
 , 
𝜕𝜓

𝜕𝑦
= 0, 

𝜕𝜉

𝜕𝑦
= 0, 𝜃 = 1 and 𝜙 = 1 at 𝑦 = ℎ2                                          (35) 

The instantaneous volumetric flow rate in the fixed frame is given by, 

                                                                           𝑄 = ∫ 𝑈′(𝑋 ′, 𝑌′, 𝑡 ′)𝑑𝑦 ′
ℎ′1

ℎ′2
,                                                                  (36) 

Where ℎ′1 and ℎ′2 are functions of 𝑋 ′ and 𝑡 ′ 
The rate of volume in the wave frame is found to be given by, 

                                                                             𝑞 = ∫ 𝑢′(𝑥 ′, 𝑦 ′)𝑑𝑦 ′
ℎ
′
1

ℎ
′
2

,                                                                      (37) 

Using the transformations into the equations (36) and (37), the relation between Q and q can be obtained as 

                                                                             𝑄 = 𝑞 + 𝑐(ℎ′1 − ℎ′2),                                                                      (38) 

The time mean flow over a period T at a fixed position 𝑋 ′ is defined as 

                                                                                    𝑄′ =
1

𝑇
∫ 𝑄𝑑𝑡
𝑇

0
,                                                                           (39) 

Using (38) in (39) the flow rate 𝑄′ has the form  

                                                              𝑄′ =
1

𝑇
∫ 𝑞 𝑑𝑡 + 𝑐(ℎ′1 − ℎ′2)
𝑇

0
= 𝑞 + 𝑐𝑑1 + 𝑐𝑑2,                                           (40) 

The dimensionless mean flow rate related to dimensionless time mean flow rate is given by 
                                                                                      𝛩 = 𝐹 + 1 + 𝑑,                                                                       (41) 

Where 𝛩 =
𝑄′

𝑐𝑑
 and 𝐹 =

𝑞

𝑐𝑑
 such that 

                                                                         𝐹 = ∫
𝜕𝜓

𝜕𝑦
𝑑𝑦

ℎ1

ℎ2
= 𝜓(ℎ1) − 𝜓(ℎ2),                                                        (42) 

3. Method of Solution 

Integrating twice equation (32) we get, 
                                                                                     𝜃 = 𝑐1𝑒

𝑠1𝑦 + 𝑐2𝑒
−𝑠1𝑦,                                                             (43) 

Substituting the value of 𝜃 in Eq. (33) we get 

                                                                    𝜙 =
−(𝑆𝑐 𝑆𝑟)(𝑒

−𝑠1
ℎ1𝑒𝑠1

𝑦
+𝑒𝑠1

ℎ1𝑒−𝑠1
𝑦
)

(𝑒𝑠1
ℎ1𝑒𝑠1

ℎ2−𝑒𝑠1
ℎ1𝑒−𝑠1

ℎ2) 
− 𝑐3𝑦 − 𝑐4,                                         (44) 

Where 𝑠1 = √
𝑄𝑜𝑃𝑟

(1+𝑁𝑟)
 

Using the appropriate boundary conditions of equation (35) we get, 

𝑐1 =
𝑒𝑠1

ℎ2

(𝑒−𝑠1
(ℎ1−ℎ2)−𝑒𝑠1

(ℎ1−ℎ2))𝑒𝑠1
(ℎ1+ℎ2)

, 𝑐2 =
𝑒𝑠1

ℎ1

(𝑒−𝑠1
(ℎ1−ℎ2)−𝑒𝑠1

(ℎ1−ℎ2))
, 

𝑐3 = −
1

(ℎ2 − ℎ1)
−

(𝑆𝑐 𝑆𝑟)

(𝑒𝑠1ℎ1𝑒𝑠1ℎ2 − 𝑒 𝑠1ℎ1𝑒−𝑠1ℎ2) (ℎ2 − ℎ1)
[
𝑒−𝑠1

ℎ1𝑒 𝑠1
ℎ2 + 𝑒 𝑠1

ℎ1𝑒−𝑠1
ℎ2

ℎ2
2

−
𝑒−𝑠1

ℎ1𝑒𝑠1
ℎ1 + 𝑒 𝑠1

ℎ1𝑒−𝑠1
ℎ1

ℎ1
2

] 

𝑐4 =
(𝑆𝑐 𝑆𝑟)(𝑒

−𝑠1ℎ1𝑒𝑠1
ℎ1 + 𝑒 𝑠1

ℎ1𝑒−𝑠1
ℎ1)

(𝑒𝑠1ℎ1𝑒𝑠1ℎ2 − 𝑒 𝑠1ℎ1𝑒−𝑠1ℎ2) 
+

ℎ1

(ℎ2 − ℎ1)
+

(𝑆𝑐 𝑆𝑟)

(𝑒𝑠1ℎ1𝑒𝑠1ℎ2 − 𝑒𝑠1ℎ1𝑒−𝑠1ℎ2) (ℎ2 − ℎ1)
 

         [
𝑒−𝑠1

ℎ1𝑒𝑠1
ℎ2 + 𝑒 𝑠1

ℎ1𝑒−𝑠1
ℎ2

ℎ2
2

−
𝑒−𝑠1

ℎ1𝑒𝑠1
ℎ1 + 𝑒 𝑠1

ℎ1𝑒−𝑠1
ℎ1

ℎ1
2

] 

Using the standard adomian decomposition method equation (34) in the operator form can be written as 
                                                                    𝐿𝑦𝑦𝑦[𝜓𝑦𝑦𝑦] = 𝐴3 −𝑁

2𝐸 + 𝑁2𝜓𝑦,                                                           (45) 

where 𝑁2 = 𝐻2(1 + 𝜆1) 

Applying the inverse operator 𝐿−1𝑦𝑦𝑦(. ) = ∫ ∫ ∫ (. )𝑑𝑦 𝑑𝑦 𝑑𝑦
𝑦

0

𝑦

0

𝑦

0
 to the above equation we get, 

                                                       𝜓 = 𝐴 + 𝐵𝑦 + 𝐶
𝑦2

2!
+ (𝐴3 −𝑁

2𝐸)
𝑦3

3!
+ 𝑁2𝐿−1𝑦𝑦𝑦[𝜓𝑦],                                      (46) 

where 𝐴, 𝐵, 𝐶 and 𝐴3 are constants to be determined  

Now we decompose 𝜓 as 𝜓 = ∑ 𝜓𝑛
∞
𝑛=0 ,                                                                                                                (47) 

Substituting 𝜓 in equation (46) we obtain, 
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                                                                    𝜓0 = 𝐴 + 𝐵𝑦 + 𝐶
𝑦2

2!
+ (𝐴3 − 𝑁

2𝐸)
𝑦3

3!
,                                                    (48) 

and  
𝜓𝑛+1 = 𝑁

2∭(𝜓𝑛)𝑦 𝑑𝑦𝑑𝑦𝑑𝑦, where 𝑛 ≥ 0 

Therefore,       

𝜓1 = 𝑁
2 (𝐵

𝑦3

3!
+ 𝐶

𝑦4

4!
+ (𝐴3 − 𝑁

2𝐸)
𝑦5

5!
),   

𝜓2 = 𝑁
2 (𝐵

𝑦5

5!
+ 𝐶

𝑦6

6!
+ (𝐴3 −𝑁

2𝐸)
𝑦7

7!
), 

-  - - - - -  

- - - - - - - 

𝜓𝑛 = 𝑁
2𝑛 (𝐵

𝑦2𝑛+1

(2𝑛+1)!
+ 𝐶

𝑦2𝑛+2

(2𝑛+2)!
+ (𝐴3 − 𝑁

2𝐸)
𝑦2𝑛+3

(2𝑛+3)!
), 

According to (47) the closed form of 𝜓 can be written as, 

𝜓 = 𝐴 + 𝑠𝑖𝑛ℎ(𝑁𝑦)(
𝐵

𝑁
+
1

𝑁3
(𝐴3 −𝑁

2𝐸)) −
1

𝑁2
(𝐴3 −𝑁

2𝐸)𝑦 +
𝐶

𝑁2
(𝑐𝑜𝑠ℎ(𝑁𝑦) − 1) 

which can be put in the simplest form as, 

                                                        𝜓 = 𝐴0 + 𝐴1 𝑐𝑜𝑠ℎ(𝑁𝑦) + 𝐴2 𝑠𝑖𝑛ℎ(𝑁𝑦) + 𝐸𝑦 −
𝐴3

𝑁2
𝑦                                          (49) 

Where 

𝐴0 =
𝐹𝑁(ℎ2 + ℎ1) + 𝑡𝑎𝑛ℎ [𝑁 (

ℎ1 − ℎ2
2

)] (2(ℎ2 + ℎ1) +
𝐹𝑁2(ℎ2 + ℎ1)

1 + 𝜆1
)

2𝑁(ℎ2 − ℎ1) + 2 𝑡𝑎𝑛ℎ [𝑁 (
ℎ1 − ℎ2
2 )](2 +

𝑁2(ℎ2 − ℎ1)
1 + 𝜆1

)

 

𝐴1 =
𝐹 + (ℎ1 − ℎ2) 𝑠𝑖𝑛ℎ [𝑁 (

ℎ1 + ℎ2
2

)] 𝑠𝑒𝑐ℎ [𝑁 (
ℎ1 − ℎ2
2

)]

(ℎ1 − ℎ2)𝑁 − 2 𝑡𝑎𝑛ℎ [𝑁 (
ℎ1 − ℎ2
2 )] (2 +

𝑁2(ℎ2 − ℎ1)
1 + 𝜆1

)

 

𝐴2 =
𝐹 + (ℎ1 − ℎ2) 𝑐𝑜𝑠ℎ [𝑁 (

ℎ1 + ℎ2
2

)] 𝑠𝑒𝑐ℎ [𝑁 (
ℎ1 − ℎ2
2

)]

(ℎ1 − ℎ2)𝑁 − 𝑡𝑎𝑛ℎ [𝑁 (
ℎ1 − ℎ2
2

)] (2 +
𝑁2(ℎ2 − ℎ1)
1 + 𝜆1

)

 

𝐴3 =
(2𝑁2(𝐸 + 1) +

𝑁4(𝐹 − ℎ1𝐸 + 𝐸ℎ2)
1 + 𝜆1

) 𝑡𝑎𝑛ℎ [𝑁 (
ℎ1 − ℎ2
2

)]

(ℎ1 − ℎ2)𝑁 − 𝑡𝑎𝑛ℎ [𝑁 (
ℎ1 − ℎ2
2

)](2 +
𝑁2(ℎ2 − ℎ1)
1 + 𝜆1

)

 

Thus the expression for the axial velocity u is obtained as, 

     𝑢 = (𝑁(𝐹 + ℎ1 − ℎ2)) (−1 + 𝑠𝑒𝑐ℎ [𝑁 (
ℎ1−ℎ2

2
)] 𝑐𝑜𝑠ℎ [𝑁 (

ℎ1+ℎ2

2
− 𝑦)]) +

(
𝑁2(𝐸ℎ2+(ℎ2−ℎ1−𝑞))

1+𝜆1
)𝑡𝑎𝑛ℎ[𝑁(

ℎ1−ℎ2
2

)]

(ℎ1−ℎ2)𝑁−𝑡𝑎𝑛ℎ[𝑁(
ℎ1−ℎ2
2

)](2+
𝑁2(ℎ2−ℎ1)

1+𝜆1
)
      (50) 

Substituting the value of 𝜓 in equation (31) and solving for the magnetic force function 𝜉 we get, 

                                                    𝜉 =
𝐴3𝑅𝑚

𝑁2

𝑦2

2
− 𝑅𝑚 (

𝐴1

𝑁
𝑠𝑖𝑛ℎ(𝑁𝑦) +

𝐴2

𝑁
𝑐𝑜𝑠ℎ(𝑁𝑦)) + 𝑐5𝑦 + 𝑐6                                 (51) 

where  

𝑐5 =
𝑅𝑚
2
(ℎ1 + ℎ2)(

𝑁(𝐸ℎ2 − 𝐸ℎ1 + 𝐹) + (2𝐸 + 1) +
𝑁2(𝐸ℎ2 − 𝐸ℎ1 + 𝐹)

1 + 𝜆1
𝑡𝑎𝑛ℎ [𝑁 (

ℎ1 − ℎ2
2

)]

𝑁(ℎ1 − ℎ2) − (2 +
𝑁2(ℎ2 − ℎ1)
1 + 𝜆1

) 𝑡𝑎𝑛ℎ [𝑁 (
ℎ1 − ℎ2
2

)]
) 

𝑐6 =
𝑅𝑚
𝑁
(ℎ1 + ℎ2)

(

 
 
 
 

2(ℎ1 − ℎ2 + 𝐹) + 𝑁
2ℎ1ℎ2(𝐸ℎ2 − 𝐸ℎ1 + 𝐹) +

𝑁ℎ1ℎ2 ((2𝐸 + 1) +
𝑁2(𝐸ℎ2 − 𝐸ℎ1 + 𝐹)

1 + 𝜆1
)𝑡𝑎𝑛ℎ [𝑁 (

ℎ1 − ℎ2
2

)]

2𝑁(ℎ2 − ℎ1) + (2 +
𝑁2(ℎ2 − ℎ1)
1 + 𝜆1

) 𝑡𝑎𝑛ℎ [𝑁 (
ℎ1 − ℎ2
2

)]

)

 
 
 
 

 

The expression for axial- induced magnetic field across the channel is given by 

                                                                                               ℎ𝑥 =
𝜕𝜉

𝜕𝑦
                                                                           (52) 

The electric field strength E can be determined by integrating (31) and using the boundary conditions on 𝜉 

and 𝜓 across the wall surface as, 

                                                                                         𝐸 =
𝐹

ℎ1(𝑥)−ℎ2(𝑥)
,                                                                     (53) 
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The pressure gradient is obtained from the dimensionless momentum equation for the axial velocity 

                                                                       
𝑑𝑝

𝑑𝑥
=

1

1+𝜆1
𝜓𝑦𝑦𝑦 + 𝐻

2(𝐸 − 𝜓𝑦)                                                              (54) 

Now using the equations (49) and (50), the axial pressure gradient is given by, 

                                                    
𝑑𝑝

𝑑𝑥
=
𝑁3(ℎ2𝐸−ℎ1𝐸+𝐹)+𝑡𝑎𝑛ℎ[𝑁(

ℎ1−ℎ2
2

)](2𝑁2(𝐸+1)+
𝑁4(ℎ2𝐸−ℎ1𝐸+𝐹)

1+𝜆1
)

(1+𝜆1) 𝑡𝑎𝑛ℎ[𝑁(
ℎ1−ℎ2
2

)](𝑁(ℎ2−ℎ1)+(2+
𝑁2(ℎ2−ℎ1)

(1+𝜆1)
))

                                        (55) 

The pressure rise per wavelength 𝛥𝑝 in the non-dimensional form is given by, 

                                                                                    𝛥𝑝 = ∫
𝜕𝑝

𝜕𝑥
𝑑𝑥

1

0
,                                                                           (56) 

4. Results and discussion 

In this section, the effects of various parameters on the pumping characteristics of a magneto-Jeffrey fluid 

are investigated and illustrated graphically.  
 

 

Figure.2: Temperature profile for different values of Q with a = 0.1, b = 0.2, d = 1, 𝜙 = 0 

 

Figure.3: Temperature profile for different values of 𝑁𝑟 with a = 0.1, b = 0.2, d = 1, 𝜙 = 0 
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Figure.4: Temperature profile for different values of 𝑃𝑟  with a = 0.1, b = 0.2, d = 1, 𝜙 = 0 

 

Figure.5: Concentration profile for different values of Q with a = 0.1, b = 0.2, d = 1, 𝜙 = 0 

 

 

Figure.6: Concentration profile for different values of 𝑁𝑟 with a = 0.1, b = 0.2, d = 1, 𝜙 = 0 
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Figure.7: Concentration profile for different values of 𝑃𝑟  with a = 0.1, b = 0.2, d = 1, 𝜙 = 0 

 

Figure.8: Concentration profile for different values of 𝑆𝑐 with a = 0.1, b = 0.2, d = 1, 𝜙 = 0 

 

Figure.9: Concentration profile for different values of 𝑆𝑟 with a = 0.1, b = 0.2, d = 1, 𝜙 = 0 
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Figure.10: Concentration profile for different values of 𝑆 with a = 0.1, b = 0.2, d = 1, 𝜙 = 0 

The variation of temperature and concentration distribution for different values of physical parameters such 

as heat source/sink parameter (Q), thermal radiation parameter (𝑁𝑟), Prandtl number (𝑃𝑟) and chemical 

reaction parameter 𝑆 has been illustrated in Figures. (2) – (10). Figure.2 illustrates the temperature 

distribution for different values of Q, it is observed that the temperature distribution increases by increasing 

the heat source/sink parameter (Q) because both are directly proportional. From figures.3 and 4, it is 

observed that the temperature distribution increases by increasing the thermal radiation parameter 𝑁𝑟 while 

an opposite trend is observed by Prandtl number 𝑃𝑟 . Figure.5 shows the concentration distribution for 

different values of Q. It is observed that the heat source/sink parameter (Q) increases the concentration 

distribution. Figure. 6 shows that the concentration profile decreases by increasing the thermal radiation 

parameter 𝑁𝑟  while an exactly opposite behaviour is observed in Figure. 7 with an increase in Prandtl 

number 𝑃𝑟. Figure. 8 shows that the concentration increases with an increase in the Schmidt’s number 𝑆𝑐 
and Figure. 9 shows that the concentration increases with an increase in the Sorets number 𝑆𝑟 
 

 

Figure.11: Velocity profile for different values of H with a = 0.1, b = 0.2, d = 1, 𝜆1= 0.5, 𝜙 = 0 
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Figure.12: Velocity profile for different values of 𝜆1  with a = 0.1, b = 0.2, d = 1, H = 2.0, 𝜙 = 0 

Figures 11 and 12 represent the variation of axial velocity u for different values of the Hartmann number H 

and the Jeffrey fluid parameter 𝜆1 . Figure 8 shows that the axial velocity decreases with increasing 

Hartmann number H. However the trend is reversed in the case of Jeffrey fluid parameter 𝜆1 as shown in 

Figure 12. 
 

 

Figure.13: Axial induced magnetic field profile for different values of H with 𝜙 = 0 

 

Figure.14: Axial induced magnetic field profile for different values of 𝑅𝑚 with 𝜙 = 0 

The effect of induced magnetic field for the variations in Hartmann number H is illustrated in Figures. 13 

and 14. It is observed that the magnitude of the axial induced magnetic field ℎ𝑥 decreases at the lower wall 
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whereas induced magnetic field increases at the upper wall with the increasing values of Hartmann number 

H. The same trend is observed in Figure.14, with an increase in the magnetic Reynolds number 𝑅𝑚. 

Figures.15 and 16 show the variation of axial pressure gradient 𝛥𝑝 along the length of the channel in one 

wavelength. From Figure.16 it is observed that both pressure rise and volume flow rate are inversely 

proportional to each other. 

 

 

Figure.15: Pressure gradient profile for different values of 𝜆1  with H = 0.2, 𝜙 = 0 

 

Figure.16: Pressure gradient profile for different values of  𝜙 with H = 2.0 
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