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Abstract. Real time series data sets are often composed of multiple variables. For the future trend of data, 

not only the historical value of the variables but also other implicit influence factors should be considered. In 

this paper, a deep neural network prediction model based on multivariable input multi-step output named 

CNN-BLSTM is proposed. CNN-BLSTM is mainly composed of convolutional neural network (CNN) and 

bi-directional long short memory network (Bi-LSTM). CNN is used to extract spatial features between 

variables of multivariate raw data, and Bi-LSTM is used to extract and encode features in time direction. The 

proposed CNN-BLSTM is able to predict the temperature based on a real-life meteorological data. The 

experimental results show that the prediction accuracy of the proposed CNN-BLSTM model is significantly 

better than several state-of-the-art baseline methods. 

Keywords: time series, bi-directional long-short term memory, convolutional neural network, prediction, 

multivariable input 

1. Introduction 

Time series refers to the ordered set of some variables according to the sequence of time occurrence, 

which contains the general law that this variable changes with time. Such as monitoring data in 

meteorological management [1], household electricity consumption data [2], transaction data in the stock 
market [3], etc. In real life, the collected data is usually multivariate time series (MTS), and there may be 

complex dynamic interdependencie between different sequences. For example,  road surface temperature 

changes are affected by factors such as temperature, rainfall and humidity. These interdependencies are 
important, but they are difficult to capture and analyze. The research shows that if the intrinsic correlation 

and historical characteristics of multivariate time series can be correctly mined, the accuracy of prediction 

variables can be significantly improved [3]. 
Researchers have come up with some ways to solve prediction problems. For example, the traditional 

statistical method integrated automatic regression moving average (ARIMA) model performs well in linear 

time series data forecasting [4], such as Kumar and Jain [5] used ARIMA to establish a model for predicting 
traffic noise time series, Ediger and Akar [6] used ARIMA model to predict Turkey's fuel demand and so on. 

ARIMA is good at predicting stationary time series data. However, for nonstationary time series data, 
ARIMA faces the problem of increasing smooth step size and difficulty. With the rapid development of 

machine learning, machine learning methods represented by artificial neural networks (ANN) have been 

widely used in the classification and prediction of time series because of its strong ability of nonlinear data 
processing and noise suppression [7,8,9,10]. However, ANN [11] is not as good as ARIMA in the low 

frequency range of data, and it is easy to produce overfitting in the high frequency range [12]. 

Recently, deep learning, an advanced machine learning in the field of artificial intelligence, is 
becoming more and more popular. It combines several machine learning methods to extract high-level 

expression from complex data by hierarchical learning process and using structure composed of multiple 

nonlinear transformations [13]. Due to the high computational performance, deep learning models have 
shown great advantages in automatically extracting and learning multivariate data features in large amounts 

of data, and have been successfully applied in many scientific fields, including computer vision [14], image 

classification [15,16], natural language processing [17,18], etc. 
Long short-term memory network (LSTM) and convolutional neural networks (CNN)) are two 

popular deep learning models. LSTM is a recurrent neural network that collects extended sequential data for 

processing, representation and storage in hidden memory. It solves the problem that RNN is easy to produce 
gradient explosion or disappearance, which leads to its performance degradation. It becomes a state-of-the-
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art predictive model to process sequence data in various applications [19], including visual recognition and 

description [20], continuous Speech recognition [21,22] etc. However, the actual data changes usually 
depend not only on the previous historical data sequence, but also on the later generated sequence. Elsheikh 

[23] et al. used a bidirectional LSTM (Bi-LSTM) algorithm to increase the input of LSTM by inputting one 

step of time series data into the network forward and backward respectively. Compared with LSTM, Bi-
LSTM improves the training mechanism to capture information from the past data context while also 

capturing information from the future data context, so as to obtain more complete information and make 

predictions with higher accuracy. 
CNN [24] is a biologically-inspired type of deep neural network (DNN) that has recently gained 

popularity due to its success in classification problems (e.g. image recognition [25] or time series 

classification [26]). The CNN consists of a sequence of convolutional layers, the output of which is 
connected only to local regions in the input. This is achieved by sliding a filter, or weight matrix, over the 

input and at each point computing the dot product between the two (i.e. a convolution between the input and 

filter). This structure allows the model to learn filters that are able to recognize specific patterns in the input 
data. Studies have shown that the combination of CNN and LSTM can be used to develop more accurate 

prediction models [27]. For example, Huang et al. [28] found that it is advantageous to use CNN for feature 

extraction and then input the feature value into the LSTM architecture. In the hybrid CNN-LSTM model, a 
one-dimensional CNN extracts the deep features of the main elements. Then, use the LSTM model to make 

predictions using these depth features. Such as Li et al. [29] use a joint CNN-LSTM model to predict 

collision risk, Barzegar R et al. [30] predict short-term water quality and so on. 
Through the above discussion, this paper proposed a multi-variable input-multi-step output time series 

forecasting model. The model mainly includes two parts: a spatial feature extractor composed of CNN and a 

temporal feature encoder composed of BLSTM. Before the temporal feature encoder, the spatial feature 
extractor is used to extract the horizontal relationship of multi-dimensional variables, and then the encoder 

is used to learn the temporal relationship features obtained by the feature extractor, and make predictions 

accordingly. 
The rest of this article is organized as follows: The second part is mainly an introduction to related 

neural networks. The third part is a detailed introduction to the framework and algorithm of the proposed 

CNN-BLSTM model. The fourth part is experiment and result analysis. The fifth part is summary and 
outlook. 

2. Related Networks 

2.1 Convolutional Neural Network 
CNN is a neural network proposed by LeCun et al. [31] to effectively extract the original image 

features by simulating the perception mechanism of human natural vision. As shown in Figure 1, each node 
of the CNN is only connected to a local area in the input. The spatial extent of this connectivity is called the 

receptive domain of the node. Local connectivity is achieved by replacing the weighted sum of neural 

networks with convolution. In each layer of the convolutional neural network, the input is convolved with 
the weight matrix (also called the filter) to create a feature map. Unlike conventional neural networks, all 

values in the output feature map have the same weight. This means that all nodes in the output detect exactly 

the same pattern. The local connectivity and shared weights of neural networks reduce the total number of 
learnable parameters and improve training efficiency. Therefore, the essence behind the convolutional 

neural network is to learn a weight matrix in each layer so that it can extract the necessary translation 

invariant features from the input.  

 

 

 

 

 

 
 

Fig. 1. A feedforward neural network with three layers (L) and a convolutional neural network with two layers and filter 

size 1 × 2(R). 
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The input of the convolutional layer is usually three-dimensional: the height, weight and number of 

channels. In the first layer this input is convolved with a set of 𝑀1 three-dimensional filters applied over all 

the input channels to create the feature output map. Consider now a one-dimensional input 𝑥 = (𝑥𝑡)𝑡=0
𝑁−1 of 

size N with no zero padding. The output feature map from the first layer is then given by convolving each 

filter 𝑤ℎ
1 for ℎ = 1, … , 𝑀1 with the input:  

                                        𝑎1(𝑖, ℎ) = 𝑤ℎ
1 ∗ 𝑥(𝑖) = ∑ 𝑤ℎ

1(𝑗)𝑥(𝑖 − 𝑗)∞
𝑗=−∞ ,                                            (1) 

Where 𝑤ℎ
1 ∈ 𝑅1×𝑘×1 and 𝑎1 ∈ 𝑅1×𝑁−𝑘+1×𝑀1. Since the number of input channels is one at this time, the 

weight matrix also has only one channel. Similar to the feedforward neural network, this output is then 

passed through the non-linearity ℎ(∙) to give 𝑓1 = ℎ(𝑎1). 

In each subsequent layer 𝑙 = 2, … , 𝐿 the input feature map,𝑓𝑙−1 ∈ 𝑅1×𝑁𝑙−1×𝑀𝑙−1 , where 1 × 𝑁𝑙−1 ×
𝑀𝑙−1  is the size of the output filter map from the previous convolution with 𝑁𝑙−1 = 𝑁𝑙−2 − 𝑘 + 1 , is 

convolved with a set of 𝑀𝑙  filters 𝑤ℎ
1 ∈ 𝑅1×𝑘×𝑀𝑙−1, ℎ = 1, ⋯ , 𝑀𝑙 to create a feature map 𝑎1 ∈ 𝑅1×𝑁𝑙−𝑘×𝑀𝑙 : 

                                           𝑎𝑙(𝑖, ℎ) = (𝑤ℎ
𝑙 ∗ 𝑓𝑙−1)(𝑖) = ∑ ∑ 𝑤ℎ

𝑙(𝑗, 𝑚)𝑓𝑙−1(𝑖 − 𝑗, 𝑚)
𝑀𝑙−1
𝑚=1

∞
𝑗=−∞ .                                    (2) 

Then through nonlinear output, we get 𝑓𝑙 = ℎ(𝑎𝑙). The filter size parameter k controls the receiving 

field of each output node. In the absence of zero padding, the convolution output in every layer has width 

𝑁𝑙 = 𝑁𝑙−1 − 𝑘 + 1 for 𝑙 = 1, … , 𝐿. All elements in the feature map share the same weight. The output of the 

network after the L convolutional layer is a matrix 𝑓𝐿. Its size depends on the size of the filter used in the 

last layer and the number of filters. The weights in the model are trained according to requirements to 

minimize the error between the output 𝑓𝐿 of the network and the real output [32].  

2.1 From RNN to LSTM 
Recurrent Neural Network (RNN) [33] is a neural network that establishes a directional loop 

connection between neurons. As shown in Figure 2, on the left is a simple RNN structure, 𝑥 represents the 

vector of the input layer, 𝑠 is the hidden layer memory unit of the network, 𝑈 is the weight matrix from the 

input layer to the hidden layer, 𝑉 is the weight matrix from the hidden layer to the output layer, 𝑊 is the 

weight matrix of the previous value of the hidden layer as the input of this time, and 𝑜 represents the value 

of the output layer; On the right is the expanded RNN structure at the time step, 𝑠𝑡、𝑥𝑡  and 𝑜𝑡 are the 

hidden layer state, input and output of the t-th step, respectively. Unlike general neural networks that can 
only map from input data to target vectors, the RNN can map the target vector from the entire history 

entered before, allowing the previously entered memory to be stored in the form of the internal state of the 

network, and training is performed through backward propagation according to time and the ownership 
value is shared. However, for time series with long-term correlation, the RNN model is prone to the problem 

of gradient explosion or disappearance during training[34], which seriously hinders its performance. 

 

 

 

 

 

 

 

 

Fig.2. A simple RNN neuron, the left side is the unexpanded structure, and the right is the expanded structure 

In order to solve the problem of disappearance or explosion of backward propagation errors during 
RNN model training, a network called LSTM [35] was proposed. It controls the input and output of 

information by adding three gate structures, so that the internal state of the unit can be adjusted. Figure 3 

shows the internal condition of an LSTM "neuron", in which the forget gate 𝑓 controls the input ratio of 

previous information, avoiding long-term dependence, and more effectively controlling the utilization of 

information in the unit state; The input gate 𝑖 controls the input ratio of the current information; the output 

gate 𝑜 controls the output state. The specific calculation formula of LSTM neural network is as follows: 

 𝑖𝑡 = 𝜎(𝑊 𝑖𝑥𝑡 + 𝑉 𝑖ℎ𝑡−1 + 𝑏𝑖) 

 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑉𝑓ℎ𝑡−1 + 𝑏𝑓) 
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                                                                      𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑉𝑜ℎ𝑡−1 + 𝑏𝑜)                                                                        (3) 

                                     𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝑊𝑐𝑥𝑡 + 𝑉𝑐ℎ𝑡−1 + 𝑏𝑐) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝑐𝑡) 

Where 𝑊 ∈ 𝑅𝑚×𝑛、𝑈 ∈ 𝑅𝑚×𝑚 and 𝑏 ∈ 𝑅𝑚 are the parameters that need to be learned, 𝑚 is the number of 

neurons in the hidden layer, 𝑛 is the dimension of the input vector, "⊗" is the element-wise multiplication 

operator, 𝜎is the activation function Use the forget gate 𝑓𝑡 and the input gate 𝑖𝑡 to control the influence of 

the previous state and the influence of the candidate state, thereby obtaining the final memory state 𝑐𝑡, and 

the memory state 𝑐𝑡 and the output gate 𝑜𝑡 together determine the output ℎ
𝑡
of the hidden layer. 

 

 

 

 

 

 

 

 

 

Fig.3. The internal situation of an LSTM "neuron". Each neuron has three inputs and three outputs, 𝑥𝑡 is the newly 

added information at the moment, ℎ𝑡-1，𝑐𝑡−1 is the previous information. 

3. CNN-BLSTM Model Architecture 

For the problem of multi-variable nonlinear time series forecasting, this paper proposed a multi-

variable input multi-step output forecast model named CNN-BLSTM. The specific structure of the proposed 

model is shown in Figure 4. The model mainly contains two parts: a spatial feature extractor composed of 
CNN and a temporal feature encoder composed of Bi-LSTM. After applying CNN on the original input 

sequence to extract the spatial features and discriminative features of the multivariate input data, the results 

are input into Bi-LSTM to encode the temporal characteristics. In addition, after CNN and Bi-LSTM, 
dropout layer and batch-nonmalization layer were added to prevent overfitting and maintain the stability of 

the model. Finally, the output of Bi-LSTM is processed and predicted by two fully connected layers stacked 
together. 

The following part mainly introduces the two main sub-modules that constitute the CNN-BLSTM 

model: spatial feature extractor and temporal feature encoder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. CNN-BLSTM model structure 

3.1 Spatial Feature Extractor: CNN 
Generally speaking, the data in real life is mostly multi-variable and there are very complex 

relationships between variables. Bi-LSTM does not have the ability to learn such complex relationships. 

Therefore, this article introduces CNN to extract spatial features of multivariate data before using Bi-LSTM 
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for temporal feature coding. One-dimensional convolution can extract two-dimensional features from 
multivariate time series data[36]. As shown in Figure 5, the CNN used in this article is composed of a 

convolutional layer and a pooling layer, directly processing the input original multivariable time series. 

Suppose 𝑥𝑖 = [𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑙] is the i-th dimension feature vector, 𝑥𝑖

𝑡 ∈ 𝑅 represents the data at time step 𝑡 , 

and 𝑙 is the length of the data. The convolutional layer slides the filter over the entire input sequence to 

generate feature maps. Each feature map can be regarded as the convolution activation of the corresponding 

filter on the entire sequence. It is assumed here that the convolutional layer uses 𝑘 filters with a window size 

of 𝑚. The convolution operation is defined as a multiplication operation between a filter vector 𝑢 ∈ 𝑅𝑚and 

a concatenation vector representation 𝑥𝑖:𝑖+𝑚−1 given by: 
                                                                    𝑥𝑖:𝑖+𝑚−1 = 𝑥𝑖 ⊕ 𝑥𝑖+1 ⊕ ⋯ ⊕ 𝑥𝑖+𝑚−1                                              (4) 

where 𝑥𝑖:𝑖+𝑚−1 represents a window of m continuous time steps starting from the i-th time step. In addition, 

a bias term b is also added into the convolution operation, so that the final operation is given as: 
                                                                           𝑎𝑖 = 𝑔(𝑢𝑇𝑥𝑖:𝑖+𝑚−1 + 𝑏)                                                             (5) 

Where ∗𝑇 denotes the transpose of a matrix ∗ and 𝑔 is a non-linear activation function that is set to Rectified 

Linear Units (ReLu) in our model[37]. 

Each vector 𝑢can be regarded as a filter, and the single value 𝑎𝑖 can be regarded as the activation of 

the window. Then, the pooling layer is used to reduce the feature vector output by the convolutional layer, 

simplify the computational complexity of the network, and at the same time compress the generated feature 
map to generate salient features. The convolution operation of the entire sequence is realized by moving the 

filtering window from the start time step to the end time step. At this time, the feature map is a vector, 

expressed as: 

                                                                                𝑎𝑗 = [𝑎1, 𝑎2, ⋯ , 𝑎𝑙−𝑚+1]                                                             (6) 

where the index j denotes the j-th filter. The pooling layer can reduce the length of feature maps, thereby 

further reducing the number of model parameters. The hyperparameter of the pooling layer is the pooling 

length, denoted as 𝑠. The max operation is taking a max over the 𝑠 consecutive values in feature map 𝑎𝑗. 

Then, the compressed feature vector can be obtained as: 
                                                                           ℎ = [ℎ1, ℎ2, ⋯ ℎ𝑙−𝑚

𝑠
+1

]                                                               (7) 

where ℎ𝑗 = 𝑚𝑎𝑥( 𝑎(𝑗−1)𝑠, 𝑎(𝑗−1)𝑠+1, ⋯ , 𝑎𝑗𝑠−1). Usually multiple filters with different initial weights are 

used to derive the output of the CNN layer. 

 

 

 

 

 

 

 

 

Fig.5. Spatial feature extractor 

3.2 Temporal Feature Encoder: Bi-Directional LSTM 
Considering that in the time series forecasting problem, the data generated in the near future has an 

important influence on the future forecast. This article used two-way LSTM to process temporal feature 

coding. The gating unit of the bidirectional LSTM is the same as the LSTM. It is a combination of the 
forward LSTM and the backward LSTM. The forward LSTM captures the characteristic information of the 

past data, and the backward LSTM captures the characteristic information of the currently generated data. 

Then the captured past feature information and current feature information are fused to obtain global data 
information, that is, a data step is the result of simultaneous input of forward and reverse (past and current) 

information. See Figure 6 for a bidirectional LSTM network. The following formula is the corresponding 

hidden layer function, → and ← represent the forward and reverse processes respectively. 

𝑖𝑡 = 𝜎 (𝑊⃗⃗⃗⃗ 𝑖𝑥⃗𝑡 + 𝑉⃗⃗ 𝑖 ℎ⃗⃗
𝑡−1

+ 𝑏⃗⃗𝑖) 

𝑓𝑡 = 𝜎 (𝑊⃗⃗⃗⃗𝑓𝑥⃗𝑡 + 𝑉⃗⃗𝑓 ℎ⃗⃗
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                                                           𝑜⃗𝑡 = 𝜎 (𝑊⃗⃗⃗⃗𝑜𝑥⃗𝑡 + 𝑉⃗⃗𝑜ℎ⃗⃗
𝑡−1

+ 𝑏⃗⃗𝑜)                                                          (8) 

                                    𝑐𝑡 = 𝑓 𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝑊⃗⃗⃗⃗𝑐𝑥⃗𝑡 + 𝑉⃗⃗𝑐 ℎ⃗⃗
𝑡−1

+ 𝑏⃗⃗𝑐) 

ℎ⃗⃗
𝑡

= 𝑜⃗𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝑐𝑡) 

𝑖⃖𝑡 = 𝜎(𝑊⃗⃗⃗⃖ 𝑖𝑥⃖𝑡 + 𝑉⃗⃖ 𝑖ℎ⃖⃗
𝑡+1

+ 𝑏⃗⃖𝑖) 

𝑓𝑡 = 𝜎(𝑊⃗⃗⃗⃖𝑓𝑥⃖𝑡 + 𝑉⃗⃖𝑓 ℎ⃖⃗
𝑡+1

+ 𝑏⃗⃖𝑓) 

                                                           𝑜⃖𝑡 = 𝜎 (𝑊⃗⃗⃗⃖𝑜𝑥⃖𝑡 + 𝑉⃗⃖𝑜ℎ⃖⃗
𝑡+1

+ 𝑏⃗⃖𝑜)                                                          (9) 

                                    𝑐𝑡 = 𝑓 𝑡 ⊙ 𝑐𝑡+1 + 𝑖⃖𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝑊⃗⃗⃗⃖𝑐𝑥⃖𝑡 + 𝑉⃗⃖𝑐 ℎ⃖⃗
𝑡+1

+ 𝑏⃗⃖𝑐) 

ℎ⃖⃗
𝑡

= 𝑜⃖𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝑐𝑡)    

where model parameters including all 𝑊, 𝑉 and 𝑏 are shared by all time steps and learned during model 

training, σ is the sigmoid activation function, ⊙  denotes the element-wise product and k is a hyper-

parameter that represents the dimensionality of hidden vectors. 

The complete BLSTM hidden element representation ℎ
𝑡
 is the concatenated vector of the outputs of 

forward and backward processes as follows: 

                                                                           ℎ𝑡 = ℎ⃗⃗
𝑡

⊕ ℎ⃖⃗
𝑡
.                                                              (10) 

 

 

 

 

 

 

 

 

 

 

Fig.6. Stacked Bidirectional LSTMs 

3.3 Dropout and Batch-Normalization Layers 
After CNN and Bi-LSTM, add dropout layer batch-normalization layers layer. Among them, the 

dropout layer reduces the correlation between neurons to prevent overfitting[38]. Figure 7 shows the sparse 

network generated by applying dropout to a standard neural network, and some of the crossover units have 

been discarded. 

 

 

 

 

 

 

 

 

Fig.7. After applying dropout 

The proposed model has a multilayer network structure. During the training process, the model 

parameters are constantly changing, leading to continuous changes in the input distribution of subsequent 

layers. The learning process must adapt each layer to the new input distribution, so the learning rate must be 
reduced, resulting in slow model convergence. In order to accelerate the convergence of the network and 

improve the stability and learning accuracy of the network, the proposed model adds batch-normalization 

layers[39] after the dropout layer. Batch-normalization makes networks robust to bad initialization of 
weights; reduces covariance shift by normalizing and scaling inputs and scale and shift parameters to avoid 

losing stability of the network. The output of the Batch-normalization layer can be calculated as: 
𝑦𝑖 = 𝛾𝑥𝑖
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𝑥𝑖
′ =

𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜀

 

𝜇𝐵 =
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

 

                                                                            𝜎𝐵
2 =

1

𝑚
∑ (𝑥𝑖 − 𝜇𝐵)2𝑚

𝑖=1                                                                 (11) 

Where 𝜇𝐵  is the mean of the input 𝑥𝑖 , 𝜎𝐵
2  is the variance of 𝑥𝑖 , 𝜀  is a small constant, 𝛾  and 𝛽  are the 

parameters to be learned. 

Finally, two fully connected dense layers are stacked together, the output of the previous fully 
connected layer is used as the input of the next connected layer, and the prediction result is obtained from 

the latter connected layer. The specific calculation is: 

                                                                             𝑜𝑖 = 𝑔(𝑊𝑖ℎ
𝑖 + 𝑏𝑖)                                                                    (12) 

where 𝑜𝑖 and ℎ
𝑖
 denote the output and input of the i-th fully-connected layer, respectively. 𝑊𝑖  and 𝑏𝑖 

represent the transformation matrix and the bias term in the i-th fully-connected layer, respectively. The 

function 𝑔() is also set to be ReLu. 

4. Experimental Analysis 

4.1 Dataset 
The data set for model verification in this paper is a meteorological data set collected by a provincial 

expressway monitoring station, including six meteorological factors including visibility, temperature, 

humidity, precipitation, instantaneous wind speed, and road surface temperature. These data are recorded 
every 10 minutes, and one year of data is used for the experiment, the total number of samples is 52,560. 

Use the proposed model to make a multi-dimensional input-single output forecast of the temperature, the 

entire historical data is divided into three parts: training set, validation set, and test set. The training set is 70% 
(36792), the validation set is 20% (10512), and the test set is 10% (5256). 

4.2 Parameter Setting and Evaluation Index 
The proposed model uses a total of 36 sets of historical data in the first 6 hours to forecast the 

temperature at 36 points in the next 6 hours, that is, the input of the model is (36, 6) and the output is (36, 1). 

The TensorFlow framework[40] is used to implement the CNN-BLSTM model. Considering that the neural 

network is used to build the model, the size of the network layer and the number of neurons are not strictly 
defined. After many experiments and adjustments, we finally determined the parameters of the model. 

Among them, the number of convolution kernels of the convolution layer is set to 64, the largest pool is 

selected in the pool layer, and the activation function is Relu; the number of neurons in the two layers of Bi -
LSTM is set to 200; The number of neurons in the fully connected layer is set to 100 and 1, respectively, 

and its nonlinear activation function is set to ReLu. The specific parameter settings of the model are shown 

in Table 1. 

Tab. 1. Specific parameters of the model 

CNN Convolution  

Max-pooling 

filters =64; kernel_size=3; stride=1 

kernel_size=2; stride=2 

Epoch= 100  

Batch-size=600 

BLSTM Units1 

Units2 

Units1= 200 

Units2=200 

Dropout dropout = 0.1  

Fully connected neurons = 100 

neurons = 1 

 

 

In order to quantitatively evaluate the performance of the proposed CNN-BLSTM model, combined 
with the actual needs of the application, in this paper, Mean Absolute Error (MAE), Mean Relative Error 

(MRE) and Root Mean Squared Error (RMSE) are used as evaluation indicators. MAE is the mean value of 

the absolute value of all real and forecast errors. Compared with the average error, the deviation will not be 
offset due to the absolute value. It can better represent the overall error margin. The smaller the value, the 

better the forecast effect. The specific calculation formula is: 

                                                           𝐸𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑝𝑖|𝑛

𝑖=1                                                              (13) 
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MRE is the mean value of the absolute value of all real and forecast errors divided by the real value. It 

is a relative quantity used to measure deviation. The specific calculation formula is:  

                                                           𝐸𝑀𝑅𝐸 =
1

𝑛
∑ |

𝑦𝑖−𝑝𝑖

𝑦𝑖
|𝑛

𝑖=1 × 100%                                                     (14) 

RMSE is the square root of the mean of all real values and the square of the error squares of the 
forecast value, and is used to measure the deviation between the forecast value and the real value. The 

specific calculation formula is: 

                                                            𝐸𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑝𝑖)2𝑛

𝑖=1                                                           (15) 

where 𝑛 is the number of test samples, 𝑦𝑖 is the true value, and 𝑝𝑖 is the forecast value. 

4.3 Experimental Results and Analysis 
Figure 8 depicts the true temperature, forecast temperature and the error between the trend curves of 

the 1h, 3h and 6h monitoring stations in 2017. The red curve in the figure represents the true temperature, 

the green curve represents the temperature predicted by the CNN-BLSTM model, and the blue curve 
represents the absolute error between the true temperature and the predicted temperature. It can be seen from 

the figure that at each time of 1h, 3h and 6h of nowcasting, the forecasted temperature is consistent with the 

real temperature. In addition, the error curve between the predicted temperature and the true temperature 
changes smoothly, with only slight fluctuations around the x-axis, and there is no accelerated decline in 

forecast accuracy as the forecast time is delayed. However, in the forecast between June and July, there may 

be large fluctuations in the error at a certain moment, which may be caused by sudden weather changes. It 
can be seen that the use of the CNN-BLSTM model for temperature forecasting in the next 6 hours has very 

high accuracy and very stable forecasting performance. 

 
(a) Real and forecast temperature and absolute error trend near 1h. 

 
(b) Real and forecast temperature and absolute error trend near 3h. 

 
(c) Real and forecast temperature and absolute error trend near 6h. 

Fig.8. The trend curve of the true temperature, the forecast temperature and the error between 1h, 3h and 6h in 2017 
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4.4 Comparative Experiment 
In order to verify the performance of the proposed CNN-BLSTM model, three benchmark models 

(LSTM, CNN, CNN-LSTM) are selected for comparison with the evaluation indicators. The parameter 

settings of each model are the same as the model settings proposed in this article. 

Tab.2. Comparison results of different model forecasts 

Models MAE MRE RMSE 

LSTM 0.627 0.375 1.352 

CNN 0.583 0.126 1.359 

CNN-LSTM 0.375 0.055 0.893 

CNN-BLSTM 0.108 0.009 0.483 

Table 2 shows the prediction results of different models. It can be seen from the table that the mixed 

models CNN-LSTM and CNN-BLSTM are better than the single model LSTM and CNN. It is not feasible 

to use a single LSTM model to predict non-stationary multivariate time series data. The MAE value of the 
CNN-LSTM model in the hybrid model is 0.357, the MRE value is 0.055, and the RMSE value is 0.893. For 

the two single models, compared with the CNN-LSTM model, the CNN model with better prediction results 

has a 55% increase in MAE value, a 129% increase in MRE value, and a 52% increase in RMSE value. 
Compared with the MAE value of the CNN-LSTM model, the MAE value of the proposed CNN-BLSTM 

model is reduced by 44%, the MRE is reduced by 84%, and the RMSE value is reduced by 35%. In 

summary, it can be concluded that the proposed CNN-BLSTM model is better than other comparative 
models to find out the changing law of the forecast target. 

5 Conclusion 

In this paper, a deep neural network prediction model based on CNN and Bi-LSTM is proposed. In 

order to verify the performance of the model, temperature prediction experiments are carried out on a real 
meteorological data set of a province, and compared with three popular models. Experimental results show 

that the proposed CNN-BLSTM model can effectively mine the features of multivariate non-stationary time 

series data. The current model has a large error in the prediction of sudden changes in temperature. Future 
exploration based on the error relearning model, by integrating the error characteristics of the previous time 

period into the model, the model is corrected to facilitate the establishment of a more advanced and reliable 

forecast model. 
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