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Abstract: With superior real-time and storage performance, outdoor computer vision systems have high 

application value in traffic, public security, identification detection and other fields, but the captured images 

are affected by environmental factors such as outdoor rainfall, which have obscuration or missing problems 

and are not conducive to the processing and application of post-level systems. To this end, this paper 

proposes a tensor model based on total variation regularization low-rank decomposition for video rain streaks 

removal. Considering the influence of moving objects in the video image on the low-rank structure of the 

video background, the rainy video is decomposed into static background, dynamic objects and rain streaks, 

and their a priori characteristics are analyzed separately, combined with the corresponding low-rank 

characteristics or sparse characteristics to construct a tensor model, and the targets are extracted through low-

rank decomposition, and then the rain removal is completed.  The proposed tensor model is solved by the 

alternating direction multiplier method (ADMM), and extensive experiments are carried out on synthetic and 

real data sets. The results show that the proposed method can effectively remove rain streaks from video 

images while retaining more background details under dynamic background conditions. Compared with 

related advanced methods, the proposed method has advantages in three comprehensive quantifiers, namely, 

peak signal-to-noise ratio, structural similarity and residuals. 

Keywords: Rain removal, tensor model, total variation, low rank, ADMM.  

1. Introduction 

Outdoor computer vision systems have a wide range of applications in many fields such as road traffic 
and public safety video surveillance. However, rain can degrade the acquired video images, resulting in 

image contrast degradation, blurring or detail loss, etc., which adversely affects the subsequent work of 

computer vision systems (e.g., target detection [1,2], recognition [3], and tracking [4]). Therefore, it is of 
great research significance to recover such video images to minimize the effect of rain on images and to 

improve the stability and practicality of outdoor computer vision systems.  

In recent years, many methods have been used to de-rain video images. From the perspective of 
methods, there are three main categories: time-domain-based methods, frequency-domain-based methods 

and sparse-domain-based methods.  

Based on the time-domain perspective, Zhu et al. [5] used a photometric model to obtain the candidate 
rain streaks and used the inter-frame difference method for motion object detection, deducting the motion 

objects in the candidate rain streaks to obtain the final rain line detection results. The inter-frame difference 

method has advantages such as simple computation, but it is susceptible to background illumination changes 
and extraneous events, resulting in large errors in motion detection. For this reason, Wang et al. [6] used a 

multi-frame anisotropic filter based on a kernel function that can adaptively change the filter intensity and 

direction according to the local characteristics of the rain streaks to remove the rain streaks while the rain 
streaks are detected and improve the robustness in dynamic scenes. 

Based on the frequency domain perspective, Barnum et al. [7], abandoned the approach of analyzing 

pixels and pixel blocks from the time domain and proposed a video de-rain method based on frequency 
domain spatial analysis. Santhaseelan et al. [8] proposed a video de-rain method based on local phase 

consistency, which overcomes the error brought by the fixed threshold recovery model and enhances the 

smoothness of the video. Chen et al. [9] obtained detail edge information based on wavelet transform, 
filtered after doing difference operation using inter-frame pixel brightness, and used fast bilateral filtering 

for rain line removal.  

Based on the sparse domain perspective, Kang et al. [10] used bilateral filtering to decompose the 
image with rain into low-frequency and high-frequency components based on morphological component 
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analysis (MCA), and then separated the rain streaks in the high-frequency components by dictionary 
learning and sparse coding. The sparse decomposition-based rain removal method does not require 

contextual information and has the advantages of wide applicability, from which a series of improved 

methods have been derived [11-17]. To improve the convergence speed of the algorithm, Ramya et al. [13] 
used an enhanced K-SVD (EKSVD) method for dictionary learning and an orthogonal matching tracking 

method for sparse coding of images with rain. Li et al. [18] used sub-block image a priori information for 

modeling, and used Gaussian Mixture Model (GMM) for learning the rain line component and the video 
background, the background part is further constrained. This method can remove rain streaks better. 

However, when the input image contains many structures similar to the distribution of rain streaks, this 

method is difficult to effectively distinguish between layers with and without rain. KIM et al. [20] proposed 
a time-dependent video de-rain method based on obtaining the initial rain map by optical flow estimation, 

applying a support vector machine classifier refinement, and eliminating rain streaks using a low-rank 

matrix filling technique [21]. Li et al. [23] learned a multiscale convolution filter from rain data to 
decompose the rain component into different levels of rain streaks and sparse coding of the different features. 

The method achieves excellent results in real videos with rain, but the rain removal results may be blurred if 
there are complex moving objects in the video.  

 

Fig.1 Rainy video 𝒪, static background ℬ, moving object ℳ and rain streaks ℛ 

Unlike the methods that require dictionary learning, Chen et al. [19] proposed a tensor low-rank 

epistemic model to detect spatio-temporal correlated rain streaks using similar patterns of rain streaks in the 

image scene. The method does not require dictionary learning, but it causes certain rain line 
misclassification due to the insufficiently strong constraints. Jiang et al. [22] proposed a tensor-based video 

rain line removal model with great advantages in time consumption by considering the difference between 

the intrinsic properties of video background and rain marks and enhancing sparsity using the parametric 
norm. Sun et al. [24] proposed a directional norm-based de- rain tensor model, which simulates the non-

vertical landing of real rain streaks with constraints on the rain line direction. The method can effectively 

remove the rain streaks at different angles, but it is not optimistic in terms of running time. Considering the 
different prior information in the rainy video, Wang et al. [25] proposed a group sparsity-based rain removal 

method, which enhances the sparsity of rain streaks using group sparsity while modeling different prior 

information to facilitate rain line separation. 
Recently, deep learning-based methods have also achieved better results [26-30]. It is worth noting 

that the rain removal effect depends heavily on the number and diversity of training datasets. To make the 
rain removal method more flexible and stable, inspired by the literature [25], a video rain removal tensor 

model based on fully variational regular low-rank decomposition is proposed in this paper, considering the 

irregular motion of dynamic objects in the video background.  
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The remaining sections of this paper are organized as follows: the first section analyzes and processes 

the a priori information of the rainy video. Section II gives the proposed model and algorithm. Section III 
shows the experimental results and the comparison of quantitative metrics. Finally, Section IV concludes the 

paper with an outlook. 

2. Problem Formulation  

Considering the moving objects in the video, the K-frame rainy video 𝒪 = {𝑓𝑘 }𝑘=1
𝐾  is further 

decomposed into a linear overlay as follows： 

𝒪 = ℬ + ℳ + ℛ,                                                                                       (1) 

where ℬ = {𝑏𝑘}𝑘=1
𝐾 , ℳ = {𝑚𝑘}𝑘=1

𝐾  and ℛ = {𝑟𝑘}𝑘=1
𝐾  are static background, moving object and rain line 

respectively, see Fig.1.  
The goal of rain removal is to decompose the rain-free video ℬ + ℳ without the rain line ℛ from the 

input rain-bearing video 𝒪 . To solve this discomfort problem, we first need to analyze their a priori 

information and construct a model by combining the corresponding low rankness and sparsity. 
The priori analysis of rain streaks 𝓡: Normally, rain streaks are often considered to be sparse. To 

enhance the sparsity of rain streaks and facilitate their separation, the L1 norm regular term ‖ℛ‖1 is used to 

model the sparsity of rain streaks in the spatio-temporal domain. In general, the rain streaks fall in similar 
directions and are approximately vertical, which has a limited effect on the vertical gradient. As shown in 

Fig.2, it can be seen that the vertical gradient of the rain line is much sparser compared to the clean video. 

Therefore, the L1 parametric number ‖∇𝑥ℛ‖1 is used to enhance the sparsity of the rain streaks.  

 

Fig.2 Histogram of vertical gradient of clean video ℬ and rain streaks ℛ 

The priori analysis of static background 𝓑: Converting each frame of the video into a column 

vector and arranging them in a matrix, we have:  
𝒪 = [𝑣𝑒𝑐(𝑓1)| ⋯ |𝑣𝑒𝑐(𝑓𝐾)],                                                                                     

ℬ = [𝑣𝑒𝑐(𝑏1)| ⋯ |𝑣𝑒𝑐(𝑏𝐾)],                                                                                    

ℳ = [𝑣𝑒𝑐(𝑚1)| ⋯ |𝑣𝑒𝑐(𝑚𝐾)],                                                                                 

ℛ = [𝑣𝑒𝑐(𝑟1)| ⋯ |𝑣𝑒𝑐(𝑟𝐾 )]. 
For each frame in the video, the static background ℬ has a similar structure with low-rankness, so the 
constructed matrix ℬ is a low-rank matrix. And for the dynamic object matrix ℳ, after rearranging the same 

motion components in the frames by some appropriate alignment transformations, low-rankness can also be 

obtained and a low-rank matrix is constructed.  

The priori analysis of moving object 𝓜: There are often various irregular dynamic objects in a 

video, and their motion can cause changes in the intensity of the video background, resulting in 
misclassification of static background components with rain streaks and affecting the removal of rain streaks. 

Total variation regularization has been widely used in image and video processing for its superior 

performance in suppressing discontinuous variations [31-33]. It is a good choice to employ it to suppress 
intensity variations caused by dynamic backgrounds and to fill the gaps caused by dynamic objects [34]. Let 

ℬ(𝑥, 𝑦, 𝑡) denote the intensity for (𝑥, 𝑦) at time 𝑡. Use  
ℳℎ(𝑥, 𝑦, 𝑡) = ℳ(𝑥 + 1, 𝑦, 𝑡) − ℳ(𝑥, 𝑦, 𝑡), 

ℳ𝑣(𝑥, 𝑦, 𝑡) = ℳ(𝑥, 𝑦 + 1, 𝑡) − ℳ(𝑥, 𝑦, 𝑡), 
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ℳ𝑡(𝑥, 𝑦, 𝑡) = ℳ(𝑥, 𝑦, 𝑡 + 1) − ℳ(𝑥, 𝑦, 𝑡), 

to denote the results of the three difference operations with periodic boundary conditions in the horizontal, 

vertical and temporal directions for (𝑥, 𝑦) at time 𝑡, respectively. Let 𝐷ℎ𝑚 = vec(ℳℎ), 𝐷𝑣𝑚 = vec(ℳ𝑣) and 
𝐷𝑡𝑚 = vec(ℳ𝑡)  denote the vectorization of the three difference operations, respectively. Set 𝐷𝑚 =

[𝐷ℎ𝑚𝑇 , 𝐷𝑣 𝑚𝑇 , 𝐷𝑡 𝑚𝑇 ]𝑇  denotes series differential operation, where 𝐷 ∈ 𝑅3𝑑𝑣𝑑ℎ𝑑𝑡×𝑑𝑣𝑑ℎ𝑑𝑡  The 𝑖 -th element in 

𝐷ℎ𝑚, 𝐷𝑣 𝑚 and 𝐷𝑡𝑚, i.e. [𝐷ℎ𝑚]𝑖, [𝐷𝑣 𝑚]𝑖 and [𝐷𝑡𝑚]𝑖, describes the intensity change at the 𝑖-th point in 𝑚 along 
the horizontal, vertical, and temporal directions, and the change in intensity can be quantified using the L1 

norm of  [[𝐷ℎ𝑚]𝑖 , [𝐷𝑣 𝑚]𝑖 , [𝐷𝑡𝑚]𝑖]𝑇. The anisotropic total variational norm is obtained by summing over all 

vector norms at different points as follows,  

‖ℳ‖𝑇𝑉 = ∑(|[𝐷ℎ𝑚]𝑖| + |[𝐷𝑣 𝑚]𝑖| + |[𝐷𝑡𝑚]𝑖|)

𝑖

.                                                         (2) 

Facilitate the separation of dynamic objects in the video background by minimizing ‖ℳ‖𝑇𝑉.  

3. The proposed method and algorithm 

As a summary of the discussion of prior and regular terms, the model in this paper can be succinctly 

formulated in the following form:  

min
ℬ,ℳ,ℛ

𝑟𝑎𝑛𝑘(ℬ) + 𝛼1𝑟𝑎𝑛𝑘(𝑃(ℳ)) + 𝛼2‖ℳ‖𝑇𝑉 + 𝛼3‖∇𝑥ℛ‖1 + 𝛼4‖ℛ‖1, 

𝑠. 𝑡. 𝒪 = ℬ + ℳ + ℛ, 𝒪 ≥ ℬ ≥ 0, 𝒪 ≥ ℳ ≥ 0, 𝒪 ≥ ℛ ≥ 0,                                                           (3) 
where the operator 𝑃(∙) represents some transformations (e.g., translation and rotation) performed on the 
local components of the video, which provide the basis for extracting the latent similar structure of the 

moving objects.  

For model (3) it is difficult to solve directly, so the solution process can be divided into two steps,  
(1) Extract the low-rank component ℬ from 𝒪:   

min
ℬ,𝐿

‖ℬ‖∗ + 𝛼1‖ℒ‖1 + 𝛼2‖ℒ‖𝑇𝑉 

min
ℬ,𝐿

‖ℬ‖∗ + 𝛼1‖ℒ‖1 + 𝛼2‖ℒ‖𝑇𝑉, 

𝑠. 𝑡.  𝒪 = ℬ + ℒ, 𝒪 ≥ ℬ ≥ 0, 𝒪 ≥ ℒ ≥ 0;                                                                 
(2) Extract the aligned transformed low-rank component ℳ from ℒ:  

min
ℳ,ℛ

‖𝑃(ℳ)‖∗ + 𝛼3‖∇𝑥ℛ‖1 + 𝛼4‖ℛ‖1,                                                                    

𝑠. 𝑡. ℒ = ℳ + ℛ, ℒ ≥ 𝑀 ≥ 0, ℒ ≥ ℛ ≥ 0.                                                                

3.1 Extraction of static background 𝓑 
The subproblem for static background ℬ is as follows:  

min
ℬ,𝐿

‖ℬ‖∗ + 𝛼1‖ℒ‖1 + 𝛼2‖ℒ‖𝑇𝑉, 

𝑠. 𝑡.  𝒪 = ℬ + ℒ, 𝒪 ≥ ℬ ≥ 0, 𝒪 ≥ ℒ ≥ 0，                                                       (4) 

here ℒ contains the moving foreground and rain streak components, i.e. ℒ = ℳ + ℛ. In the ADMM 

framework, equation (4) can be reformulated into the following equivalence constraint form:  

min
𝒳,𝒩,𝒱

‖𝒳‖∗ + 𝛼1‖𝒩‖1 + 𝛼2‖𝒱‖𝑇𝑉 ， 

s. t. 𝒳 = ℬ, 𝒩 = 𝒪 − ℬ , 𝒱 = 𝒪 − ℬ, 𝒪 ≥ ℬ ≥ 0，                                           (5) 

The augmented Lagrangian function ℒ𝒜 is of the following form:  

ℒ𝒜 = ‖𝒳‖∗ + 𝛼1‖𝒩‖1 + 𝛼2‖𝒱‖𝑇𝑉 + 〈Λ1, ℬ − 𝒳〉 +
𝛽1

2
‖ℬ − 𝒳‖𝐹

2 + 〈Λ2, 𝒪 − ℬ − 𝒩〉 

+
𝛽2

2
‖𝒪 − ℬ − 𝒩‖𝐹

2 + 〈Λ3, 𝒪 − ℬ − 𝒱〉 +
𝛽3

2
‖𝒪 − ℬ − 𝒱‖𝐹

2，                                                            (6) 

where Λ = [Λ1, Λ2, Λ3] are Lagrange multipliers, and β = [β1, β2, β3] are positive parameters. Therefore, this 

joint minimization problem can be decomposed into four subproblems, i.e. 𝒳, 𝒩, 𝒱 and ℬ, and solved 
separately using the ADMM algorithm. 

𝓧-subproblem: Subproblem 𝒳 can be formulated as follows:  

min
𝒳

‖𝒳‖∗ +
𝛽1

2
‖ℬ − 𝒳 +

Λ1

𝛽1

‖
𝐹

2

,                                                                         (7) 

The tensor kernel parametrization is defined as 

‖𝒳‖∗ = ∑ ‖𝑿𝑖‖∗

𝑛

𝑖=1
, 𝑿𝑖 = Unfold𝑖(𝒮). 
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Thus the solution of equation (7) can be expressed as  

𝒳(𝑡+1) = ∑
1

3
Fold𝑖(𝑿(𝑖)

(𝑡+1)
)

 

3

𝑖=1
,                                                                        (8) 

here 𝑿(𝑖)

(𝑡+1)
= 𝒬 1

𝛽1

(ℬ(𝑖)

(𝑡)
+ Λ1(𝑖)

(𝑡)
/𝛽1) (𝑖 = 1,2,3), which 𝒬1/𝛽1

 denotes soft thresholding of singular values of 𝒳.  

𝓝-subproblem: With other parameters fixed, the subproblem 𝒩 can be transformed into  

min
𝒩

𝜆‖𝒩‖1 +
𝛽2

2
‖(𝒪 − ℬ) − 𝒩 +

Λ2

𝛽2
‖

𝐹

2

,                                                                (9) 

The closed solution can be obtained through the soft threshold operator problem (9) as follows:  

𝒩(𝑡+1) = Soft𝛼1
𝛽2

((𝒪 − ℬ(𝑡)) +
Λ2

(𝑡)

𝛽2

).                                                               (10) 

𝓥-subproblem: Subproblem 𝒱 can be formulated as follows:  

𝒱(𝑡+1) = argmin 𝛼2‖𝒱(𝑡)‖
𝑇𝑉

+
𝛽3

2
‖(𝒪 − ℬ(𝑡)) − 𝒱 +

Λ3
(𝑡)

𝛽3

‖
𝐹

2

 

= argmin 𝛼2‖𝐷𝑣‖𝑞 +
𝛽3

2
‖(𝒪 − ℬ(𝑡)) − 𝒱 +

Λ3
(𝑡)

𝛽3

‖
𝐹

2

.                                             (11) 

To solve the problem (11), the auxiliary variable 𝒦 ∈ ℝ3𝑑ℎ𝑑𝑣𝑑𝑡×1 is introduced to replace 𝐷𝑣, we have  

𝒱(𝑡+1) = argmin 𝛼2‖𝒦‖𝑞 +
𝛽3

2
‖(𝒪 − ℬ(𝑡)) − 𝒱 +

Λ3
(𝑡)

𝛽3

‖
𝐹

2

, s. t. 𝒦 = 𝐷𝑣 .                                (12) 

The augmented Lagrangian function is as follows:  

ℒ𝒜(𝒱, 𝒦, 𝜇) = 𝛼2‖𝒦‖𝑞 +
𝛽3

2
‖𝒪 − ℬ − 𝒱 +

Λ3

𝛽3
‖

𝐹

2

+
𝜆

2
‖𝒦 − 𝐷𝑣 −

𝜇

𝜆
‖

𝐹

2

,                                 (13) 

where 𝜆 is the same as 𝛽3 and is a positive parameter and 𝜇 is a Lagrangian multiplier. Fix other variables, 

update 𝒱(𝑡+1), we have  

𝒱(𝑡+1) = argmin ℒ𝒜(𝒱, 𝒦 (𝑡), 𝜇(𝑡)).                                                                   (14) 

Considering its normal equation, we have 
(𝛽3𝐼 + 𝜆𝐷𝑇 𝐷)𝑣 = 𝒬, 𝒱(𝑡+1) = reshape(𝑣),                                                            (15) 

here,  

𝒬 = 𝛽3 vec (𝒪 − ℬ(𝑡) +
Λ3

𝛽3
) + 𝜆 (𝐷𝑇𝒦 (𝑡) + 𝐷𝑇

𝜇 (𝑡)

𝜆
).                                                 (16) 

Due to the block-circulant structure of the matrix, it can be diagonalized by a 3-D-DFT matrix [35]. Thus, 

𝑣(𝑡+1) can be obtained from the following equation:  

ℱ−1 (
ℱ(𝒬)

𝛽31 + 𝜆(|ℱ(𝐷ℎ)|2 + |ℱ(𝐷𝑣)|2 + |ℱ(𝐷𝑡)|2)
),                                                    (17) 

where ℱ(∙) 3D Fourier transform. Fix other variables, update 𝒦(𝑡+1), we have  

𝒦(𝑡+1) = argmin ℒ2(𝒱(𝑡+1), 𝒦, 𝜇 (𝑡)).                                                                 (18) 

The iterative formula of K is as follows:  

𝒦(𝑡+1) = Soft𝛼2
𝜆

(𝐷𝑣(𝑡+1) +
𝜇 (𝑡)

𝜆
),                                                                    (19) 

the multiplier 𝜇 is updated via:  

𝜇 (𝑡+1) = 𝜇(𝑡) + 𝜆(𝒦(𝑡+1) − 𝐷𝑣(𝑡+1)).                                                                  (20) 

𝓑-subproblem: Finally, subproblem ℬ has the following form:  

min
ℬ

𝛽1

2
‖𝒳 − ℬ −

Λ1

𝛽1

‖
𝐹

2

+
𝛽2

2
‖𝒩 − (𝒪 − ℬ) −

Λ2

𝛽2

‖
𝐹

2

+
𝛽3

2
‖𝒱 − (𝒪 − ℬ) −

Λ3

𝛽2

‖
𝐹

2

.                         (21) 

It exists as a closed solution,  

ℬ(𝑡+1) = ℱ−1(ℱ(𝐾1)/ℱ(𝐾2)),                                                                         (22) 

ℱ and ℱ−1 are the fast Fourier transform (FFT) and its inverse operation, where  

𝐾1 = 𝛽1𝒳(𝑡+1) − Λ1
(𝑡) + 𝛽2(𝒪 − 𝒩(𝑡+1)) + Λ2

(𝑡) + 𝛽3(𝒪 − 𝒱(𝑡+1)) + Λ3
(𝑡), 

𝐾2 = ℐ + 𝛽1ℐ + 𝛽2ℐ.                                                                                                                                      (23) 

In the iterative process, the iterative formula for the Lagrange multipliers Λ are updated using  

Λ1
(𝑡+1) = Λ1

(𝑡) + 𝛽1(ℬ(𝑡+1) − 𝒳(𝑡+1)), 
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Λ2
(𝑡+1) = Λ2

(𝑡) + 𝛽2(𝒪 − ℬ(𝑡+1) − 𝒩(𝑡+1)),                                                                 

Λ3
(𝑡+1) = Λ3

(𝑡) + 𝛽3(𝒪 − ℬ(𝑡+1) − 𝒱(𝑡+1)).                                                         (24) 

3.2 Extraction of static background 𝓜 
After extracting the static background ℬ, the obtained ℒ = ℳ + ℛ component is a linear superposition 

of the moving object and the rain line. According to equation (3), the subproblem of ℳ extraction can be 

expressed as  
min
ℳ,ℛ

‖𝑃(ℳ)‖∗ + 𝛼3‖∇𝑥ℛ‖1 + 𝛼4‖ℛ‖1, 

𝑠. 𝑡. ℒ = ℳ + ℛ, ℒ ≥ 𝑀 ≥ 0, ℒ ≥ ℛ ≥ 0.                                                            (25) 

For M in equation (25), an alignment transformation is required to obtain the low-rank structure. Since the 

motion of the objects is different between frames, global estimation of 𝑃(∙) is not realistic, so the block 
matching method is used to solve this problem.  

The matrix form L is reshaped into the frame sequence form, and the method in DECOLOR [36] is applied 

to segment these dynamic components to obtain the moving object ℳ = {𝑚𝑘 }𝑘=1
𝐾 . For each frame 𝑚𝑘, blocks 

are generated as the minimum boundary of the moving object, and pixels similar to the sample block of the 

current frame are found in each frame. A large number of block matching algorithms for motion estimation 

exist [37-40], and here a fast and efficient sequential similarity detection algorithm [40] (SSDA) is used, for 
a block of 𝑛𝑥 × 𝑛𝑦  size, we have  

SSDA
𝑥0,𝑦0

(𝑥, 𝑦) = |𝑝𝑘+1(𝑥0 + 𝑥 + 𝑖, 𝑦0 + 𝑦 + 𝑗) − 𝑆𝑖,𝑗
̅̅ ̅̅ − 𝑝𝑘(𝑥0 + 𝑖, 𝑦0 + 𝑗) + 𝑇̅|,                              (26) 

𝑆𝑖,𝑗
̅̅ ̅̅ =

1

𝑛𝑥 × 𝑛𝑦
∑ ∑ 𝑝𝑘+1(𝑥0 + 𝑥 + 𝑖, 𝑦0 + 𝑦 + 𝑗)

𝑛𝑦

𝐽=0

𝑛𝑥

𝑖=0

,                                                                                      

𝑇̅ =
1

𝑛𝑥 × 𝑛𝑦
∑ ∑ 𝑝𝑘(𝑥0 + 𝑖, 𝑦0 + 𝑗)

𝑛𝑦

𝐽=0

𝑛𝑥

𝑖=0

,                                                                                                             

where (𝑥0, 𝑦0) and (𝑥0 + 𝑥, 𝑦0 + 𝑦) indicate the module block and the block to be compared. Assuming that 

there are 𝑚 blocks that are similar in the time domain, the pixels of each matching block are formed into 

each column of a matrix 𝑃𝑗,𝑘 of size (𝑛𝑥 × 𝑛𝑦) × 𝑚. Thus, 𝑃 can be expressed as  

𝑃𝑗,𝑘 = (𝑃1,𝑗,𝑘 , 𝑃2,𝑗,𝑘 , … , 𝑃𝑚,𝑗,𝑘), 𝑃𝑖,𝑗,𝑘 ∈ 𝑅2,                                                               (27) 

then,  
𝑃𝑗,𝑘 = 𝑀𝑗,𝑘 + 𝑅𝑗,𝑘 .                                                                                    (28) 

It follows that the column vectors in 𝑀𝑗,𝑘 have a similar structure and the matrix ℳ can be viewed as a low-

rank matrix. In this way the problem of extracting the motion object ℳ can be equated to  
min
ℳ,ℛ

‖ℳ‖∗ + 𝛼3‖∇𝑥ℛ‖1 + 𝛼4‖ℛ‖1, 

𝑠. 𝑡. 𝒫 = ℳ + ℛ, 𝒫 ≥ 𝑀 ≥ 0, 𝒫 ≥ ℛ ≥ 0.                                                       (29) 
In the ADMM framework, equation (29) is reformulated into the following equivalence constraint form:  

min
𝒮,𝒴,𝒯

‖𝒮‖∗ + 𝛼3‖𝒴‖1 + 𝛼4‖𝒯‖1, 

𝑠. 𝑡. 𝒮 = ℳ, 𝒴 = ∇𝑥(𝒫 − ℳ), 𝒯 = 𝒫 − ℳ , 𝒫 ≥ ℳ ≥ 0.                       (30) 

The augmented Lagrangian ℒ𝒜 function can be expressed as: 

ℒ𝒜 = ‖𝒮‖∗ + 𝛼3‖𝒴‖1 + 𝛼4‖𝒯‖1 + 〈Λ4, ℳ − 𝒮〉 +
𝛽4

2
‖ℳ − 𝒮‖𝐹

2  

+〈Λ5, ∇𝑥(𝒫 − ℳ) − 𝒴〉 +
𝛽5

2
‖∇𝑥(𝒫 − ℳ) − 𝒴‖𝐹

2                                                                       

+〈Λ6, (𝒫 − ℳ) − 𝒯〉 +
𝛽6

2
‖(𝒫 − ℳ) − 𝒯‖𝐹

2 .                                                                     (31) 

Therefore, this joint minimization problem can be decomposed into four subproblems, i.e. 𝒮, 𝒴, 𝒯 and ℳ, 

which solved separately using the ADMM algorithm. 

𝓢-subproblem: The subproblem 𝒮 can be formulated as:  

min
𝒮

‖𝒮‖∗ +
𝛽4

2
‖ℳ − 𝒮 +

Λ4

𝛽4

‖
𝐹

2

.                                                                      (32) 

The tensor kernel norm is defined as ‖𝒮‖∗ = ∑ ‖𝑺𝑖‖∗
𝑛
𝑖=1 , 𝑺𝑖 = Unfold𝑖(𝒮). The solution of the above equation 

can be expressed as  

𝒮(𝑡+1) = ∑
1

3
Fold𝑖(𝑺(𝑖)

(𝑡+1)
)

 

3

𝑖=1
,                                                                      (33) 
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where 𝑺(𝑖)

(𝑡+1)
= 𝒬 1

𝛽4

(ℳ(𝑖)

(𝑡)
+ Λ4(𝑖)

(𝑡)
/𝛽4) , (𝑖 = 1,2,3), 𝒬1/𝛽4

 denotes soft thresholding of the singular values of 𝑺.  

𝓨, 𝓣-subproblems: With other parameters fixed, the subproblems 𝒴 and 𝒯 can be transformed as:  

min
𝒴

𝛼3‖𝒴‖1 +
𝛽5

2
‖∇𝑥(𝒫 − ℳ) − 𝒴 +

Λ5

𝛽5

‖
𝐹

2

,                                                          (34) 

min
𝒯

𝛼4‖𝒯‖1 +
𝛽6

2
‖(𝒫 − ℳ) − 𝒯 +

Λ6

𝛽6

‖
𝐹

2

.                                                            (35) 

The problem (34) and (35) can be obtained as a closed solution by the following soft threshold operator:  

𝒴(𝑡+1) = Soft𝛼3
𝛽5

(∇𝑥(𝒫 − ℳ (𝑡)) +
Λ5

(𝑡)

𝛽5
),                                                             (36) 

𝒯(𝑡+1) = Soft𝛼4
𝛽6

((𝒫 − ℳ(𝑡)) +
Λ6

(𝑡)

𝛽6

).                                                                 (37) 

𝓜-subproblems: Finally, the subproblem ℳ has the following form:  

min
ℳ

𝛽4

2
‖ℳ − 𝒮 +

Λ4

𝛽4

‖
𝐹

2

+
𝛽5

2
‖∇𝑥(𝒫 − ℳ) − 𝒴 +

Λ5

𝛽5

‖
𝐹

2

+
𝛽6

2
‖(𝒫 − ℳ) − 𝒯 +

Λ6

𝛽6

‖
𝐹

2

,                    (38) 

it has a closed solution  

ℳ(𝑡+1) = ℱ−1(ℱ(𝐾1)/ℱ(𝐾2)),                                                                        (39) 

ℱ and ℱ−1 are the fast Fourier transform (FFT) and its inverse operation, where  

𝐾1 = 𝛽4𝒮(𝑡+1) − Λ4
(𝑡) + ∇𝑥

𝑇(𝛽5∇𝑥𝒫 − 𝛽5𝒴(𝑡+1) + Λ5
(𝑡)) + 𝛽6(𝒪 − 𝒯(𝑡+1)) + Λ6

(𝑡), 

𝐾2 = (1 + 𝛽6)ℐ + 𝛽5∇𝑥
𝑇∇𝑥 .                                                                                                                                (40) 

In the iterative process, the iterative formula for the Lagrange multipliers Λ are updated using  

Λ4
(𝑡+1) = Λ4

(𝑡) + 𝛽4(ℳ(𝑡+1) − 𝒮(𝑡+1)), 

Λ5
(𝑡+1) = Λ5

(𝑡) + 𝛽5(∇𝑥(𝒫 − ℳ(𝑡+1)) − 𝒴(𝑡+1)),                                                       

Λ6
(𝑡+1) = Λ6

(𝑡) + 𝛽6(𝒫 − ℳ(𝑡+1) − 𝒯(𝑡+1)).                                                      (41) 

Algorithm 2 TVLSDerain 

Input：The rainy video 𝒪; 

1：Initialization：ℬ0 = 𝒳0 = ℒ0 = 𝒱0 = 𝒩0 = ℳ0 = 𝒮0 = 𝒴0 = 𝒯0 = 0; 

2：while not converged do 

3：  Update 𝒳 via Eq. (8); Update 𝒩 via Eq. (10); 

4：  while not converged do 

5：    Initialization: 𝒦0 = 0； 

6：    Update 𝒱 via Eq. (17); Update 𝒦 via Eq. (18); Update multipliers via Eq. (19);  

7：  end 

8：  Update ℬ via Eq. (22); Update multipliers via Eq. (24); 

9：end 

10：Get aligned blocks 𝒫 via (27); 

11：while not converged do 

12：  Update 𝒮 via Eq. (33); Update 𝒴 via Eq. (36); Update 𝒯 via Eq. (37);  

13：  Update ℳ via Eq. (39); Update multipliers via Eq. (41); 

14：end 

Output：static background ℬ+ moving object ℳ。 

4. Experimental results and discussion 

To verify the effectiveness of the proposed method, the method in this paper was compared with 
several advanced rain removal methods, namely, the tensor model method Jiang [22], the directional 

regularization-based method Sun [25] and the group sparsity-based method Wang [26]. In the experiments, 

the regularization parameters {𝛼1, 𝛼2, ⋯ , 𝛼5}were manually selected from {1,10,100,1000} and {𝛽1 , 𝛽2, ⋯ , 𝛽6} 
were set to 50. The effectiveness of these parameters was illustrated by comprehensive tests. 
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4.1 Synthetic rainy video experiment 

Firstly, the artificially generated rain videos with different types of rain streaks are processed and 

compared. Three objective image quality metrics, peak signal-to-noise ratio (PSNR), structural similarity 

(SSIM) and residual (RES), can be used to quantitatively compare the rain removal effect. Fig.3 and Fig.4 
show the original clean video of the video sequence "highway", the composite video of moderate rain and 

heavy rain, and the same frame of the video after rain removal by the proposed method, respectively. The 

images show that the proposed method can effectively remove the rain streaks and retain the detail 
information of the images. Table 1 shows the numerical results after different rain removal methods, and in 

most cases, the proposed method achieves better metrics.  

Table 1 Quantitative comparisons of rain streaks removal on synthetic "Highway" video 

Highway Method PSNR(ℬ) SSIM(ℬ) SSIM(ℛ) RES(ℬ) 

Middle 

Rainy 29.566 0.578 - 50.480 

Jiang et al.(a) 33.954 0.736 0.525 31.014 

Sun et al.(b) 34.571 0.747 0.585 28.987 

Wang et al.(c) 40.177 0.867 0.880 16.246 

Ours. (d) 42.136 0.899 0.837 13.699 

Heavy 

Rainy 27.232 0.555 - 66.031 

Jiang et al.(a) 29.185 0.621 0.227 52.958 

Sun et al.(b) 31.151 0.704 0.478 42.347 

Wang et al.(c) 33.351 0.699 0.668 33.131 

Ours. (d) 34.748 0.711 0.759 31.265 

 

 

Figure 3 Comparisons of deraining results on one frame extracted from the synthetic “highway” video 

under middle rainy conditions 

 

Figure 4 Comparisons of deraining results on one frame extracted from the synthetic “highway” video 

under heavy rainy conditions 
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Table 2 Quantitative comparisons of rain streaks removal on five different synthetic videos 

Video Method PSNR(ℬ) SSIM(ℬ) SSIM(ℛ) RES(ℬ) 

Park 

Rainy 31.698 0.373 - 36.796 

Jiang et al.(a) 36.305 0.561 0.517 21.704 

Sun et al.(b) 35.331 0.501 0.437 24.276 

Wang et al.(c) 42.359 0.747 0.874 10.921 

Ours. (d) 44.028 0.761 0.907 10.082 

Truck 

Rainy 31.195 0.739 - 46.857 

Jiang et al.(a) 37.118 0.881 0.689 25.791 

Sun et al.(b) 35.421 0.855 0.637 30.843 

Wang et al.(c) 39.528 0.958 0.802 20.091 

Ours. (d) 41.021 0.985 0.847 19.080 

Man 

Rainy 37.424 0.822 - 23.162 

Jiang et al.(a) 41.235 0.901 0.557 16.660 

Sun et al.(b) 40.776 0.971 0.793 17.701 

Wang et al.(c) 38.440 0.968 0.708 22.132 

Ours. (d) 42.726 0.982 0.811 15.876 

 

 

Figure 5 Comparisons of deraining results on one frame extracted from the synthetic “man” video 

Fig.5 shows the same frame from the original video of the synthesized video sequence "man", the 
synthesized rainy video streaks, and the video after the rain removal process. It can be seen that the method 

of Jiang et al [22] is not strong enough to remove the rain streaks, while the methods of Sun et al [25] and 

Wang [26] can effectively reduce the effect of rain streaks but tend to over-smooth the details. In 
comparison, the method in this chapter can be effective in removing rain streaks and can retain more 

background information. Table 2 shows the numerical results of three different sets of synthetic rain videos 

processed by different rain removal methods, and in most cases, the proposed method achieves better 
metrics.  

4.2 Real rainy video experiment 

Fig.6 shows three different frames extracted from the real video footage "Manhattan" after different 
rain removal methods. In contrast, the method proposed in this chapter is well adapted to this real scene and 

effectively removes the rain line while preserving the detail information.  
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Figure 6 Comparisons of deraining results on three frames extracted from the realistic “Manhattan” video 

5. Conclusion 

In this paper, for the interference of the moving objects in the video image with rain on the low-rank 

structure of the video background, the rainy video is trisected into static background, moving objects and 
rain streaks. After extracting the static background according to its low rank property, the dynamic objects 

are aligned and transformed using block matching to achieve low-rank processing, and then the low-rank 

sparse tensor model is solved by ADMM algorithm to complete the video rain streaks removal. The 
experimental results show that the method can effectively remove the rain streaks while preserving more 

details of the video background. In daily life, the method can be applied to real environments where rain 

removal is needed for video footage containing moving objects, such as outdoor people shooting on rainy 
days. The method in this paper still has two points that deserve improvement: (1) the ability to deal with 

rainstorms is insufficient; (2) the alignment transformation method for moving objects can be better 

optimized to improve the algorithm performance. 
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