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Abstract: Let 𝑛 = 𝑝𝑘, where 𝑝 is a prime and 𝑘 ≥ 2. In this paper, a construction for weakly pandiagonal 

strongly symmetric self-orthogonal diagonal Latin squares of order 𝑛 is given by using frequency squares 

over finite field 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟  𝑝. It is proved that there exists a weakly pandiagonal strongly symmetric self-

orthogonal diagonal Latin square of order 𝑛 for 𝑛 > 4.  
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1. Introduction 

A Latin square of order 𝑛 is an 𝑛 × 𝑛 array such that every row and every column is a permutation of 

an 𝑛-set 𝑆. A transversal in a Latin square is a set of positions, one per row and one per column, among 

which the symbols occur precisely once each. A diagonal Latin square is a Latin square with the additional 
property that the main diagonal and back diagonal are both transversals. 

Two Latin squares of order 𝑛 are orthogonal if each symbol in the first square meets each symbol in 

the second square exactly once when they are superposed. A Latin square of order 𝑛 is self-orthogonal if it 

is orthogonal to its transpose. 

Let 𝐼𝑛 = {0,1, ⋯ , 𝑛 − 1}.  A Latin square of order 𝑛 over 𝐼𝑛, 𝐿 = (𝑙𝑖,𝑗) is called strongly symmetrical 

if 𝑙𝑖,𝑗 + 𝑙𝑛−1−𝑖,𝑛−1−𝑗 = 𝑛 − 1 for all 𝑖, 𝑗 ∈ 𝐼𝑛.  

The investigation of the existence of a strongly symmetrical self-orthogonal diagonal LS(𝑛) was 

started by Danhof et al [2]. They show that there exists a strongly symmetrical self-orthogonal diagonal 

LS(𝑛) for each 𝑛 ∈ {4, 5, 7, 8, 12} and a strongly symmetrical self-orthogonal diagonal LS(𝑛) does not exist 

for each 𝑛 ∈ {2, 3, 6, 10}. Du and Cao proved that a strongly symmetrical self-orthogonal diagonal LS (𝑛) 

exists for all positive integers 𝑛 ≡ 0,1,3(𝑚𝑜𝑑4) and 𝑛 ≠ 3, 15 in 2002 [3]. Cao and Li completely solved 

the existence of SSSODLS (𝑛) [4]. They proved the following. 

Lemma 1.1 ([4]) There exists strongly symmetrical self-orthogonal diagonal LS (𝑛) if and only if 𝑛 ≡
0,1,3(𝑚𝑜𝑑4) and 𝑛 ≠ 3. 

Let 𝐴 = (𝑎𝑖,𝑗) be an 𝑛 × 𝑛 array, we index its rows and columns by 𝐼𝑛 = {0,1,⋯ , 𝑛 − 1}. For 𝑘 ∈ 𝐼𝑛, 

the set {𝑎𝑖,𝑘+𝑖| 𝑖 ∈ 𝐼𝑛}  and {𝑎𝑖,𝑘−𝑖| 𝑖 ∈ 𝐼𝑛}  are called  𝑘 -th right diagonal and 𝑘 -th left diagonal of 𝐴 

respectively, where the additions of the subscripts are all taken modulo 𝑛. 

If 𝐴  is a Latin square with the property that every right diagonal and every left diagonal is a 

transversal, then 𝐴 is said to be a pandiagonal Latin square or a Knut Vik design, denoted by pandiagonal 

LS(𝑛). It has been used in statistical designs to eliminate sources of variation along four dimensions ([10]) 

and in 𝑛-queens problems ([11, 12]) etc. Hedayat proved in [16] that a pandiagonal LS(𝑛) and orthogonal 

pandiagonal LS(𝑛) exist if and only if 𝑛 ≡ 1,5(𝑚𝑜𝑑6). 
Xu introduced a weak form of Knut Vik design to construct pandiagonal magic squares ([5]). A Latin 

square 𝐴 = (𝑎𝑖,𝑗) of order 𝑛 over 𝐼𝑛 is called weakly pandiagonal, if the sum of 𝑛 elements in each right 

diagonal and each left diagonal is the same, i.e. for each 𝑤 ∈ 𝐼𝑛, ∑ 𝑙𝑖,𝑖+𝑤
𝑛−1
𝑖=0 =

𝑛(𝑛−1)

2
 and ∑ 𝑙𝑖,𝑤−𝑖

𝑛−1
𝑖=0 =

𝑛(𝑛−1)

2
, where the operations in the subscripts are all taken modulo 𝑛. Clearly, a pandiagonal LS(𝑛) is 

necessarily a weakly pandiagonal LS(𝑛). Xu proved in [5] that 

Lemma 1.2 ([5]) An weakly pandiagonal self-orthogonal LS(𝑛) exists if 𝑛 ≡ 0,1,3(𝑚𝑜𝑑 4) and 𝑛 ≡/≡
3,6(𝑚𝑜𝑑9). 
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A weakly pandiagonal strongly symmetrical self-orthogonal diagonal LS (𝑛) is denoted by *LS(𝑛). 
The existence of *LS(𝑛) is an intriguing problem itself and it is also an improvement question of Cao and 

Li's result. 

The only known result of *LS(𝑛) attributes to Zhang et al [6]. Although they proved that there exists 

a weakly pandiagonal strongly symmetrical self-orthogonal LS(𝑛) provided 𝑛 ≡ 1,5(𝑚𝑜𝑑6), 𝑛 ≥ 5, it is 

easy to verify that their result is also true for diagonal cases. So we have 

Lemma 1.3 ([6]) There exists a *LS(𝑛) provided 𝑛 ≡ 1,5(𝑚𝑜𝑑 6), 𝑛 ≥ 5. 

In this paper, we shall further investigate *LS(𝑛) especially when 𝑛 is a prime power. We shall use 

frequency squares to give a construction and prove the following. 

Theorem 1.4 There exists a *LS(𝑛) for 𝑛 > 4 and 𝑛 is a prime power. 

A construction based on frequency squares will be discussed in section 2, and the proof of Theorem 

1.4 will be given in section 3. 

2. A construction for *LS(𝒏) based on frequency squares 

Frequency square will be used in our construction for *LS(𝑛)s. Let 𝑛 =  𝑚𝜆. An F(𝑛; 𝜆) frequency 

square is an 𝑛 × 𝑛 array in which each of m distinct symbols occurs exactly 𝜆 times in each row and column. 

Moreover, two such squares are orthogonal if when superimposed, each of the 𝑚2 possible ordered pairs 

occurs 𝜆2 times. 

For 𝑛 =  𝑚𝜆, it is known that the maximum number of mutually orthogonal frequency squares of the 

form F(𝑛; 𝜆) is bounded above by (𝑛 − 1)2/(𝑚 − 1). Further, if 𝑞  is any prime power and 𝑖 ≥ 1 is a 

positive integer, then using linear polynomials in 2𝑖 variables over the finite field 𝐹𝑞, a complete set of 

𝐹(𝑞𝑖 , 𝑞𝑖−1) mutually orthogonal frequency squares can be constructed. Specifically, take the polynomials 

𝑎1𝑥1 +⋯+ 𝑎2𝑖𝑥2𝑖 where neither (𝑎1,⋯ , 𝑎𝑖) nor (𝑎𝑖+1, ⋯ , 𝑎2𝑖) is the zero vector (0, ⋯ ,0) and no two of 

the vectors are nonzero 𝐹𝑞 multiples of each other, i.e. (𝑎1
′ , ⋯ , 𝑎𝑖

′) ≠ 𝑒(𝑎1,⋯ , 𝑎𝑖) for any nonzero 𝑒 ∈ 𝐹𝑞. 

Further details may be found in Chapter 4 of [8]. 

Let 𝑉 = 𝑉𝑘(𝐺𝐹(𝑝)), 𝑛 = 𝑝
𝑘 . Take 

𝐴ℎ = (𝑎ℎ,0, 𝑎ℎ,1,⋯ , 𝑎ℎ,𝑘−1), 𝐵ℎ = (𝑏ℎ,0, 𝑏ℎ,1,⋯ , 𝑏ℎ,𝑘−1), 

𝑋 = (𝑥0, 𝑥1,⋯ , 𝑥𝑘−1), 𝑌 = (𝑦0, 𝑦1 ,⋯ , 𝑦𝑘−1), 

where 𝐴ℎ, 𝐵ℎ are constant vectors in 𝑉, ℎ = 0,1,⋯ , 𝑘 − 1,  𝑋,𝑌 are variable vectors in 𝑉. 

For any 𝑖 ∈ 𝑍𝑛, there exist a vector 𝑅𝑖 = (𝑟𝑖,0, 𝑟𝑖,1, ⋯ , 𝑟𝑖,𝑘−1) such that 

𝑖 = 𝑟𝑖,0𝑝
𝑘−1 + 𝑟𝑖,1𝑝

𝑘−2 +⋯+ 𝑟𝑖,𝑘−1. 

Let 𝑉(1) = {𝑅0, 𝑅1, ⋯ ,𝑅𝑛−1}, 𝑉(2) = {𝐶0, 𝐶2,⋯ , 𝐶𝑛−1}, where 𝐶𝑖 = 𝑅𝑖. Index the rows of an 𝑛 × 𝑛 

array by 𝑉(1) and the columns by 𝑉(2). 
Note that there are strongly symmetric property, 

          𝑛 − 1 − 𝑖 = 𝑟𝑛−1−𝑖,0𝑝
𝑘−1 + 𝑟𝑛−1−𝑖,1𝑝

𝑘−2 +⋯+ 𝑟𝑛−1−𝑖,𝑘−1, 

𝑛 − 1 = (𝑝 − 1)(𝑝𝑘−1 + 𝑝𝑘−2 +⋯+ 𝑝 + 1), 

𝑖 + 𝑛 − 1 − 𝑖 = (𝑟𝑖,0𝑝
𝑘−1 + 𝑟𝑖,1𝑝

𝑘−2 +⋯+ 𝑟𝑖,𝑘−1) 

+(𝑟𝑛−1−𝑖,0𝑝
𝑘−1 + 𝑟𝑛−1−𝑖,1𝑝

𝑘−2 + ⋯+ 𝑟𝑛−1−𝑖,𝑘−1) 

= (𝑟𝑖,0 + 𝑟𝑛−1−𝑖,0)𝑝
𝑘−1 + ⋯+ (𝑟𝑖,𝑘−1 + 𝑟𝑛−1−𝑖,𝑘−1), 

which forces 𝑟𝑖,0 + 𝑟𝑛−1−𝑖,0 = 𝑝 − 1 for any 𝑖 ∈ 𝐼𝑛. Therefore 

𝑅𝑖 + 𝑅𝑛−1−𝑖 = (𝑟𝑖,0, 𝑟𝑖,1,⋯ , 𝑟𝑖,𝑘−1) + (𝑟𝑛−1−𝑖,0, 𝑟𝑛−1−𝑖,1,⋯ , 𝑟𝑛−1−𝑖,𝑘−1) 

=(𝑝 − 1, 𝑝 − 1,⋯ , 𝑝 − 1). 

Let 𝑎, 𝑛 be integers, < 𝑎 >𝑝 be the smallest nonnegative integer such that 𝑎 ≡< 𝑎 >𝑝 (𝑚𝑜𝑑 𝑛), i.e, 

< 𝑎 >𝑝= 𝑟 if 𝑎 = 𝑝𝑛 + 𝑟, where 𝑝, 𝑟 are integers and 0 ≤ 𝑟 < 𝑛. 

We use ⋅ to denote the inner product in 𝑉. Define a linear function from 𝑉(1) × 𝑉(2) to 𝐺𝐹(𝑝). 

Let 𝐹ℎ = (𝐹ℎ(𝑅𝑖 , 𝐶𝑗))
𝑛×𝑛

, where 
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𝐹ℎ(𝑅𝑖, 𝐶𝑗) =< 𝐴ℎ ⋅ 𝑅𝑖 + 𝐵ℎ ⋅ 𝐶𝑗 + 𝑑ℎ >𝑝, ℎ = 0,1,⋯ , 𝑘 − 1. 

The following Lemma gives the sufficient condition when 𝐹ℎ becomes a frequency square. 

Lemma 2.1 ([7]) If 𝐴ℎ ≠ (0,⋯ ,0) and 𝐵ℎ ≠ (0,⋯ ,0), then 𝐹ℎ is a 𝐹(𝑝𝑘; 𝑝𝑘−1). 

Let 𝐹 = (𝐹(𝑅𝑖 , 𝐶𝑗))
𝑛×𝑛

, where  

𝐹(𝑅𝑖 ,𝐶𝑗) = 𝑝
𝑘−1𝐹0(𝑅𝑖 ,𝐶𝑗) + 𝑝

𝑘−2𝐹1(𝑅𝑖, 𝐶𝑗) +⋯+ 𝐹𝑘−1(𝑅𝑖, 𝐶𝑗). 

Note that 𝐹(𝑅𝑖 , 𝐶𝑗) can also be represented as 

𝐹(𝑅𝑖 , 𝐶𝑗) = (𝐹0(𝑅𝑖, 𝐶𝑗), 𝐹1(𝑅𝑖 ,𝐶𝑗),⋯ , 𝐹𝑘−1(𝑅𝑖 , 𝐶𝑗)). 

Let  

𝐷 = (
𝐴 𝐵
𝐵 𝐴

), 

Where 

𝐴 = (

𝐴0
𝐴1
⋮

𝐴𝑘−1

), 𝐵 = (

𝐵0
𝐵1
⋮

𝐵𝑘−1

). 

Now we check that when 𝐹 is a Latin square. 

Lemma 2.2 If 𝐴, 𝐵 are inverse, then 𝐹 is a Latin square. 

Proof Fix 𝑅𝑖, let 𝐶𝑗  run over 𝑉, we want to show no two are the same. Otherwise, suppose that 

(𝐹0(𝑅𝑖, 𝐶𝑗), 𝐹1(𝑅𝑖 ,𝐶𝑗),⋯ , 𝐹𝑘−1(𝑅𝑖 , 𝐶𝑗)) = (𝐹0(𝑅𝑖 , 𝐶𝑙), 𝐹1(𝑅𝑖 ,𝐶𝑙),⋯ , 𝐹𝑘−1(𝑅𝑖, 𝐶𝑙)). 

Then   

< 𝐴ℎ ⋅ 𝑅𝑖 + 𝐵ℎ ⋅ 𝐶𝑗 + 𝑑ℎ >𝑝=< 𝐴ℎ ⋅ 𝑅𝑖 + 𝐵ℎ ⋅ 𝐶𝑙 + 𝑑ℎ >𝑝  

for fixed 𝑖 and ℎ = 0,1, ⋯ , 𝑘 − 1. Thus 𝐵ℎ(𝐶𝑗 − 𝐶𝑙)
𝑇 = 0. Since 𝐶𝑗 − 𝐶𝑙  is not zero vector, 𝐵 should have 

rank less than 𝑘, a contradiction. This shows that when the upper right  𝑘 × 𝑘 submatrix 𝐵 in 𝐷 is inversive, 

𝐹 has the row Latin property. 

Similarly, when the upper left 𝑘 × 𝑘 submatrix 𝐴 in 𝐷 is inversive, 𝐹 has the column Latin property. 

Lemma 2.3 If 𝐷 is inverse, then 𝐹 is self-orthogonal. 

Proof Suppose that  (𝐹(𝑅𝑖 , 𝐶𝑗), 𝐹(𝑅𝑗 , 𝐶𝑖)) = (𝐹(𝑅𝑖′ , 𝐶𝑗′), 𝐹(𝑅𝑗′ , 𝐶𝑖′)), then 

𝐹(𝑅𝑖 , 𝐶𝑗) = 𝐹(𝑅𝑖′ , 𝐶𝑗′), 𝐹(𝑅𝑗,𝐶𝑖) = 𝐹(𝑅𝑗′ , 𝐶𝑖′) 

which forces the following. 

         𝐹ℎ(𝑅𝑖 ,𝐶𝑗) = 𝐹ℎ(𝑅𝑖′ , 𝐶𝑗′),  𝐹ℎ(𝑅𝑗, 𝐶𝑖) = 𝐹ℎ(𝑅𝑗′ , 𝐶𝑖′),  ℎ = 0,1,⋯ , 𝑘 − 1. 

Since 𝑅𝑖 = 𝐶𝑖 , we have 

        𝐹ℎ(𝑅𝑖, 𝐶𝑗) = 𝐹ℎ(𝑅𝑖′ , 𝐶𝑗′),  𝐹ℎ(𝐶𝑗, 𝑅𝑖) = 𝐹ℎ(𝐶𝑗′ , 𝑅𝑖′),  ℎ = 0,1,⋯ , 𝑘 − 1. 

Therefore for any ℎ = 0,1, ⋯ , 𝑘 − 1 we have 

𝐴ℎ ⋅ 𝑅𝑖 + 𝐵ℎ ⋅ 𝐶𝑗 = 𝐴ℎ ⋅ 𝑅𝑖′ + 𝐵ℎ ⋅ 𝐶𝑗′ , 

𝐵ℎ ⋅ 𝑅𝑖 + 𝐴ℎ ⋅ 𝐶𝑗 = 𝐵ℎ ⋅ 𝑅𝑖′ + 𝐴ℎ ⋅ 𝐶𝑗′ , 

which can also be written as 

(𝐴ℎ, 𝐵ℎ) (
(𝑅𝑖 − 𝑅𝑖′)

𝑇

(𝐶𝑗 − 𝐶𝑗′)
𝑇) = 0,   (𝐵ℎ, 𝐴ℎ) (

(𝑅𝑖 − 𝑅𝑖′)
𝑇

(𝐶𝑗 − 𝐶𝑗′)
𝑇) = 0 

for ℎ = 0,1,⋯ , 𝑘 − 1. i.e. 

(
𝐴 𝐵
𝐵 𝐴

)(
(𝑅𝑖 − 𝑅𝑖′)

𝑇

(𝐶𝑗 − 𝐶𝑗′)
𝑇) = 0. 
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Since (
𝐴 𝐵
𝐵 𝐴

) is inversive, (
(𝑅𝑖 − 𝑅𝑖′)

𝑇

(𝐶𝑗 − 𝐶𝑗′)
𝑇) = 0. It follows that i iR R =

 and j jC C =
. Therefore 𝐹  is self 

orthogonal. 

Remark If 𝐷, 𝐴,𝐵 are inverse, the 𝐴 + 𝐵, 𝐴 − 𝐵 are both inverse. 

Lemma 2.4 If < 2𝑑ℎ − (𝐴ℎ + 𝐵ℎ) ⋅ (1,⋯ ,1) + 1 >𝑝= 0, then 𝐹ℎ is strongly symmetric. 

Proof We show that 𝐹ℎ is strongly symmetric. In fact, 

                 𝐹ℎ(𝑅𝑠, 𝐶𝑡) + 𝐹ℎ(𝑅𝑛−1−𝑠, 𝐶𝑛−1−𝑡)  

=< 𝐴ℎ ⋅ 𝑅𝑠 + 𝐵ℎ ⋅ 𝐶𝑡 + 𝑑ℎ >𝑝 +< 𝐴ℎ ⋅ 𝑅7−𝑠 + 𝐵ℎ ⋅ 𝐶7−𝑡 + 𝑑ℎ >𝑝 

                 = 𝐴ℎ ⋅ (𝑅𝑠 + 𝑅7−𝑠) + 𝐵ℎ ⋅ (𝐶𝑡 + 𝐶7−𝑡) + 2𝑑ℎ 

                 = 𝐴ℎ ⋅ (𝑝 − 1,⋯ , 𝑝 − 1) + 𝐵ℎ ⋅ (𝑝 − 1,⋯ , 𝑝 − 1) + 2𝑑ℎ 

                 = 2𝑑ℎ − (𝐴ℎ ⋅ (1,⋯ ,1) + 𝐵ℎ ⋅ (1,⋯ ,1)) 

                 = 𝑝 − 1. 

Lemma 2.5 If 𝐴ℎ + 𝐵ℎ ≠ 0,  then 𝐹 is right diagonal; If 𝐴ℎ − 𝐵ℎ ≠ 0, then 𝐹 is right diagonal. 

Proof We have 

𝐹ℎ(𝑅𝑖 , 𝐶𝑖) =< 𝐴ℎ ⋅ 𝑅𝑖 + 𝐵ℎ ⋅ 𝑅𝑖 + 𝑑ℎ >𝑝=< (𝐴ℎ + 𝐵ℎ) ⋅ 𝑅𝑖 + 𝑑ℎ >𝑝 

and 

               𝐹ℎ(𝑅𝑖 , 𝐶𝑛−1−𝑖) =< 𝐴ℎ ⋅ 𝑅𝑖 + 𝐵ℎ ⋅ 𝑅𝑛−1−𝑖 + 𝑑ℎ >𝑝 

   =< 𝐴ℎ ⋅ 𝑅𝑖 + 𝐵ℎ ⋅ (𝑅𝑛−1− 𝑅𝑖) + 𝑑ℎ >𝑝 

     =< (𝐴ℎ − 𝐵ℎ) ⋅ 𝑅𝑖 + 𝐵ℎ ⋅ 𝑅𝑛−1 + 𝑑ℎ >𝑝. 

If 𝐹(𝑅𝑖 , 𝐶𝑖) = 𝐹(𝑅𝑗 , 𝐶𝑗), then for any ℎ = 0,1, ⋯ , 𝑘 − 1, we have 𝐹ℎ(𝑅𝑖 , 𝐶𝑖) = 𝐹ℎ(𝑅𝑗 , 𝐶𝑗).  That is 

< 𝐴ℎ ⋅ 𝑅𝑖 + 𝐵ℎ ⋅ 𝑅𝑖 >𝑝=< 𝐴ℎ ⋅ 𝑅𝑗 + 𝐵ℎ ⋅ 𝑅𝑗 >𝑃. 

i.e. 

< (𝐴ℎ + 𝐵ℎ) ⋅ 𝑅𝑖 >𝑝=< (𝐴ℎ + 𝐵ℎ) ⋅ 𝑅𝑗 >𝑝. 

Since < 𝐴ℎ + 𝐵ℎ >𝑝≠ 0, we have < 𝑅𝑖 >𝑝=< 𝑅𝑗 >𝑝, which indicates that 𝐹 is right diagonal. Similarly, 

by < 𝐴ℎ − 𝐵ℎ >𝑝≠ 0, we have 𝐹 is left diagonal. 

Lemma 2.6 If 𝑎ℎ + 𝑏ℎ ≠ 0, then  

{𝐹ℎ(𝑅𝑖, 𝐶𝑗), 𝐹ℎ(𝑅𝑖+𝑝𝑘−1 ,𝐶𝑗+𝑝𝑘−1),⋯ , 𝐹ℎ(𝑅𝑖+(𝑝−1)𝑝𝑘−1, 𝐶𝑗+(𝑝−1)𝑝𝑘−1))} = 𝐺𝐹(𝑝), 

If 𝑎ℎ − 𝑏ℎ ≠ 0, then 

{𝐹ℎ(𝑅𝑖, 𝐶𝑗), 𝐹ℎ(𝑅𝑖−𝑝𝑘−1 ,𝐶𝑗−𝑝𝑘−1),⋯ , 𝐹ℎ(𝑅𝑖−(𝑝−1)𝑝𝑘−1, 𝐶𝑗−(𝑝−1)𝑝𝑘−1))} = 𝐺𝐹(𝑝). 

Proof For any 𝑤 ∈ 𝐼𝑛, we have 

                         𝐹ℎ(𝑅𝑖+𝑡𝑝𝑘−1 , 𝐶𝑗+𝑡𝑝𝑘−1) 

                           =< 𝐴ℎ ⋅ 𝑅𝑖+𝑡𝑝𝑘−1 + 𝐵ℎ ⋅ 𝐶𝑗+𝑡𝑝𝑘−1 + 𝑑ℎ >𝑝 

 =< (𝑎ℎ,0,⋯ , 𝑎ℎ,𝑠⋯ , 𝑎ℎ,𝑘−1) ⋅ (𝑟𝑖,0 + 𝑡,⋯ , 𝑟𝑖,𝑠⋯ , 𝑟𝑖,𝑘−1) 

                  +(𝑏ℎ,0, ⋯ , 𝑏ℎ,𝑠⋯ ,𝑏ℎ,𝑘−1) ⋅ (𝑟𝑗,0 + 𝑡, ⋯ , 𝑟𝑗,𝑠⋯ , 𝑟𝑗,𝑘−1) + 𝑑ℎ >𝑝 

                  =< 𝐴ℎ ⋅ 𝑅𝑖 + 𝐵ℎ ⋅ 𝐵𝑗 + (𝑎ℎ,0 + 𝑏ℎ,0)𝑡 + 𝑑ℎ >𝑝. 

runs over 0,1,⋯ , 𝑝 − 1 when 𝑡 runs over 0,1, ⋯ , 𝑝 − 1. Similarly we have (2). 

Lemma 2.7 If 𝑎ℎ + 𝑏ℎ ≠ 0, and 𝑎ℎ − 𝑏ℎ ≠ 0, then 𝐹ℎ is weakly pandiagonal. 

Proof  For any 𝑖, 𝑤 ∈ 𝐼𝑛, we have 

∑𝐹ℎ

𝑛−1

𝑖=0

(𝑅𝑖 ,𝐶𝑖+𝑤) = ∑ ∑𝐹ℎ

𝑝−1

𝑡=0

𝑝𝑘−1−1

𝑖=0

(𝑅𝑖+𝑡𝑝𝑘−1 , 𝐶𝑖+𝑡𝑝𝑘−1+𝑤) 
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= ∑ (
𝑝(𝑝 − 1)

2
)

𝑝𝑘−1−1

𝑖=0

 

                                                           = 𝑝𝑘
𝑝 − 1

2
. 

  ∑𝐹ℎ

𝑛−1

𝑖=0

(𝑅𝑖 ,𝐶𝑤−𝑖) = ∑ ∑𝐹ℎ

𝑝−1

𝑡=0

𝑝𝑘−1−1

𝑖=0

(𝑅𝑖−𝑡𝑝𝑘−1 , 𝐶𝑤−𝑖−𝑡𝑝𝑘−1) 

  = ∑ (
𝑝(𝑝 − 1)

2
)

𝑝𝑘−1−1

𝑖=0

 

                                                            = 𝑝𝑘
𝑝 − 1

2
. 

So 𝐹 is weakly pandiagonal. 

Consequently, we have 

Theorem 2.8 𝐹 is a *LS(𝑛) if the following conditions hold. 

(1) 𝐴ℎ ≠ (0,⋯ ,0) and 𝐵ℎ ≠ (0,⋯ ,0), ℎ ∈ 𝐼𝑘; 

(2) 𝐴,𝐵,𝐷 are inverse in 𝐼𝑝; 

(3) < 2𝑑ℎ − (𝐴ℎ + 𝐵ℎ) ⋅ (1, ⋯ ,1) + 1 >𝑝= 0, ℎ ∈ 𝐼𝑘; 

(4)  𝑎ℎ + 𝑏ℎ ≠ 0, and 𝑎ℎ − 𝑏ℎ ≠ 0, ℎ ∈ 𝐼𝑘. 

3. Families of *LS(𝒏) based on main construction 

Lemma 3.1 Let 𝑘 = 2, 𝑝 > 2.  Let 

,
1 0 0 1

0 1 1 0

p
A B

   
   


−
= =

  
. 

Let 𝑑0 =
𝑝−1

2
, 𝑑1 =

𝑝+1

2
, then 𝐹 is a *LS(𝑛). 

Proof |𝐴| = 1, |𝐵| = 1, |𝐷| = 4 − 4𝑝 + 𝑝2 = 4.  By Theorem 2.8, 𝐹 is a *LS(𝑛). 
Example 1. *LS(9) 

Let 𝑑0 = 1,𝑑1 = 2 and 

𝐷 = (

1 0 0 2
0 1 1 0
0 2 1 0
1 0 0 1

). 

It is easy to check that 𝐷, 𝑑1, 𝑑2 satisfy the conditions in Theorem 2.8. We have 

𝐴1 =

(

 
 
 
 
 
 

1 0 2 1 0 2 1 0 2
1 0 2 1 0 2 1 0 2
1 0 2 1 0 2 1 0 2
2 1 0 2 1 0 2 1 0
2 1 0 2 1 0 2 1 0
2 1 0 2 1 0 2 1 0
0 2 1 0 2 1 0 2 1
0 2 1 0 2 1 0 2 1
0 2 1 0 2 1 0 2 1)

 
 
 
 
 
 

, 𝐴2 =

(

 
 
 
 
 
 

2 2 2 0 0 0 1 1 1
0 0 0 1 1 1 2 2 2
1 1 1 2 2 2 0 0 0
2 2 2 0 0 0 1 1 1
0 0 0 1 1 1 2 2 2
1 1 1 2 2 2 0 0 0
2 2 2 0 0 0 1 1 1
0 0 0 1 1 1 2 2 2
1 1 1 2 2 2 0 0 0)

 
 
 
 
 
 

 

The 𝐴1, 𝐴2 are both frequency squares. Let 𝐴 = 3𝐴1 + 𝐴2, then 
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𝐴 =

(

 
 
 
 
 
 

5 2 8 3 0 6 4 1 7
3 0 6 4 1 7 5 2 8
4 1 7 5 2 8 3 0 6
8 5 2 6 3 0 7 4 1
6 3 0 7 4 1 8 5 2
7 4 1 8 5 2 6 3 0
2 8 5 0 6 3 1 7 4
0 6 3 1 7 4 2 8 5
1 7 4 2 8 5 0 6 3)

 
 
 
 
 
 

 

One can check that 𝐴 is a *LS(9). 
For 𝑘 ≥ 3, let 

𝐴 =

(

 
 
 

𝑦 0 0 0 ⋯ 0 0
0 1 0 0 ⋯ 0 0
0 0 1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1 0
0 0 0 0 ⋯ 0 1)

 
 
 

, 

𝐵 =

(

 
 
 

0 1 0 0 ⋯ 0 0
1 0 1 0 ⋯ 0 0
1 0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 0 ⋯ 0 1
1 0 0 0 ⋯ 0 0)

 
 
 

,    𝐵′ =

(

 
 
 

0 1 0 0 ⋯ 0 1
1 0 1 0 ⋯ 0 0
1 0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 0 ⋯ 0 1
1 0 0 0 ⋯ 0 0)

 
 
 

. 

Lemma 3.2 Let 𝑘 ≥ 3, then 

|𝐸 + 𝐵| = {
𝑦,  𝑘 𝑜𝑑𝑑， 

𝑦 − 1,   𝑘  𝑒𝑣𝑒𝑛， 
|𝐸 + 𝐵′| = {

𝑦 − 1,     𝑘 𝑜𝑑𝑑， 

𝑦 − 2,   𝑘  𝑒𝑣𝑒𝑛， 
 

and 

< |𝐸 − 𝐵| >𝑝=< 𝑦 − (𝑘 − 1) >𝑝, < |𝐸 − 𝐵| >𝑝=< 𝑦 − 𝑘 >𝑝. 

Lemma 3.3 Let 𝑘 ≥ 3, 𝑝 = 3, there exists a *LS(𝑛). 

Proof Let 𝑘 ≥ 3, 𝑝 = 3, 𝑑1 = ⋯ ,𝑑𝑘−2 = 1,𝑑𝑘−1 =
𝑝+1

2
.  For 𝑘 ≡ 1,2(𝑚𝑜𝑑3), let 𝑦 = 2, 𝑑0 = 1 then 𝐴, 𝐵 

satisfy the conditions in Theorem 2.8; For 𝑘 ≡ 0(𝑚𝑜𝑑3) and 𝑘  is odd, let 𝑦 = 1 and 𝑑0 =
𝑝+1

2
. Then 

𝐴,𝐵, 𝑑𝑖 satisfy the conditions in Theorem 2.8. For 𝑘 ≡ 0(𝑚𝑜𝑑3) and 𝑘 is even, let 𝑦 = 1, 𝑑0 =
𝑝+1

2
.  Then 

𝐴,𝐵′, 𝑑𝑖satisfy the conditions in Theorem 2.8. So there exists a *LS(𝑛) by Theorem 2.8. 

Example 2. *LS(27). 

For 𝑘 = 3, let  

𝐴 = (
2 0 0
0 1 0
0 0 1

) ,𝐵 = (
0 1 0
1 0 1
1 0 0

) 

and 𝑑0 = 𝑑1 = 1, 𝑑2 = 2, then by Theorem 2.8 𝐹 is a *LS(27).   

Lemma 3.4 Let 𝑘 ≥ 3, 𝑝 > 3, there exists a *LS(𝑛). 

Proof Let 𝑘 ≥ 3, 𝑝 > 3, 𝑑1 = ⋯, 𝑑𝑘−2 = 1,𝑑𝑘−1 =
𝑝+1

2
. If 𝑘 ≡ 1,2,⋯ 𝑝 − 1 (𝑚𝑜𝑑 𝑝), choose 𝑦 such that 

2 ≤ 𝑦 < 𝑝,< 2𝑑 − 𝑦 >𝑝= 0, and 𝑦 ≠< 𝑘 >𝑝− 1, then 𝐴,𝐵 satisfy the conditions in Theorem 2.8; If 𝑘 ≡

0(𝑚𝑜𝑑 𝑝) , let 𝑦 = 2, 𝑑0 = 1, then 𝐴,𝐵 satisfy the conditions in Theorem 2.8. So there exists a *LS(n) by 

Theorem 2.8. 

Lemma 3.5 There exist a *LS(2𝑡) when 𝑡 > 2. 

Proof For 𝑝 = 2, let  

𝐴 =

(

 
 
 

1 1 0 0 ⋯ 0 0 0
0 1 1 0 ⋯ 0 0 0
0 0 1 1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 1 1
0 0 0 0 ⋯ 0 0 1)

 
 
 

𝑘×𝑘

,  𝐵 =

(

 
 
 

0 1 0 0 ⋯ 0 0 0
0 0 1 0 ⋯ 0 0 0
0 0 0 1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 0 1
1 1 0 0 ⋯ 0 0 0)

 
 
 

𝑘×𝑘
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and 𝑑0 = 𝑑1 = ⋯ = 𝑑𝑘−2 = 0,𝑑𝑘−1 = 1 . Then 𝐴,𝐵, 𝑑𝑖 , 𝑖 = 0,⋯ , 𝑘 − 1  satisfy the conditions (1)-(3) in 

Theorem 2.8. 𝐹 is also weakly pandiagonal. 

By Lemma 1.3, Lemma 3.1, Lemma 3.3-3.5 we have 

Theorem 1.4 There exist a *LS(𝑛) when 𝑛 is an prime power and 𝑛 > 4. 
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