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Abstract. In this paper, we proposed Galerkin method for the numerical solution of boundary value 

problems using Boubaker wavelets.  Here, we used weight functions as Boubaker wavelets that are assumed 

bases elements which allow us to obtain the numerical solutions of the boundary value problems. Obtained 

numerical results using this method are compared with the existing method and exact solution. Some test 

problems are considered to demonstrate the validity and applicability of the proposed method.  
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1. Introduction 

 Boundary value problems (BVPs) occur frequently in the fields of engineering and science such as 

gas dynamics, nuclear physics, atomic structures and chemical reactions. In most cases, we do not always 
find the exact solutions for these equations via analytical methods. In this case, it is very meaningful to give 

the high precision numerical solutions for this kind of problem by numerical methods. Recently, some of the 

numerical methods are used for the numerical solutions of such type of problems. For example, Haar 
wavelet collocation method [1], Legendre wavelet collocation method [2], Series solution [3] etc. 

The subject of wavelets has received much attention because of the comprehensive mathematical 

power and the good application potential of wavelets in many interesting physical problems.  Wavelet 
functions have generated significant interest from both theoretical and applied research over the last few 

years. The name wavelet comes from the requirement that they should integrate to zero, waving above and 

below x-axis. The concepts for understanding wavelets were provided recently by Meyer, Mallat, 
Daubechies, and many others. Since then, the number of applications where wavelets have been used has 

exploded. Many different types of wavelet functions have been presented over the past few years [4].  

In wavelet theory, the contribution of orthogonal bases of compactly supported wavelet by 
Daubechies (1988) and Multiresolution analysis based fast wavelet transform algorithm by Belkin (1991), 

wavelet based approximation of ordinary differential equations gained momentum in attractive way. Special 

interest has been dedicated to the construction of compactly supported smooth wavelet bases. As we have 
noted earlier that, spectral bases are infinitely differentiable but have global support. On the other side,  bases 

functions used in finite-element methods have small compact support but poor continuity properties. 

Already we know that, spectral methods have good spectral localization but poor spatial localization, while 
finite element methods have good spatial localization, but poor spectral localization. Wavelet bases execute 

to combine the advantages of both spectral and finite element bases. We can look forward to numerical 

methods based on wavelet bases to be capable to attain good spatial and spectral resolutions. Representation 
of a smooth function in terms of a series expansion using orthogonal polynomials is a fundamental idea in 

approximation theory and forms the basis of spectral methods of solution of differential equations with 

functional arguments.  An approach to study differential equations is the use of wavelet function bases in 
place of other conventional piecewise polynomial trial functions in finite element type methods. Because of 

its implementation simplicity, the Galerkin method is considered the most widely used in applied 

mathematics [5-6]. 
The advantage of wavelet-Galerkin method over finite difference or finite element method has lead to 

tremendous applications in science and engineering. To a certain extent, the wavelet technique is a strong 

competitor to the finite element method. Also, the wavelet method provided an efficient alternative 
technique for solving boundary value problems numerically. 

In this paper, we developed Galerkin method for the numerical solution of boundary value problems 

using Boubaker wavelets.   This method is based on expanding the solution by Boubaker wavelets with 



L. M. Angadi: Galerkin method for the numerical solution of boundary 

value problems using Boubaker wavelets 

 

JIC email for contribution: editor@jic.org.uk 

72 

unknown coefficients. The properties of Boubaker wavelets together with the Galerkin method are utilized 

to evaluate the unknown coefficients and then a numerical solution of the boundary value problems is 
obtained. 

The organization of the paper is as follows.  Preliminaries of Boubaker wavelets and function 

approximation are given section 2. Section 3 deals with Boubaker wavelet-Galerkin method for the solution 
of boundary value problems.  Numerical Experiment is given in section 4. Finally, conclusions of the 

proposed work are discussed in section 5 

2. Boubaker wavelets and Function approximation  

Boubaker wavelets: 
Wavelets constitute a family of functions constructed from dilation and translation of a single function 

called the mother wavelet. When the dilation parameter a  and the translation parameter b  varies 

continuously, we have the following family of continuous wavelets [7]: 

𝜓𝑎,𝑏(𝑥) = |𝑎|
−1
2 𝜓(

𝑥 − 𝑏

𝑎
) ⥂⥂, 𝑎, 𝑏 ∈ 𝑅&𝑎 ≠ 0 

If we restrict the parameters 𝑎&𝑏 to discrete values as 

𝑎 = 𝑎0
−𝑛, 𝑏 = 𝑚𝑏0𝑎0

−𝑛; 𝑎0 > 1, 𝑏0 > 0 

we have the following family of discrete wavelets  

𝜓𝑛,𝑚(𝑥) = |𝑎0|
1
2𝜓(𝑎0

𝑛𝑥 −𝑚𝑏0), 𝑛, 𝑚 ∈ 𝑍 

Where ψ
n,m

 form a wavelet basis for 𝑎, 𝑏 . In particular, when 𝑎0 = 2&𝑏0 = 1, then ψ
n,m
(x) forms an 

orthonormal basis.  

Boubaker wavelets are defined as follows:  

𝜓𝑛,𝑚(𝑥) = {√
2𝑚 + 1

(2𝑚!)

(𝑚!)2
2
𝑘+1

2 𝐵𝑚(2
𝑘+1𝑥 − 2𝑛 + 1),

𝑛−1

2𝑘−1
≤ 𝑥 <

𝑛

2𝑘−1

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (2.1) 

where, 𝑘 is any positive integer, 𝑛 = 1,2,3, . . . . . . . . , 2𝑘−1 is an argument and 𝑚 = 0,1,2,3. . . . . . . . 𝑀 − 1 is 
the order of Boubaker functions  

 𝐵0(𝑥) = 1  ,     𝐵1(𝑥) =
1

2
(2𝑥 − 1) .   

 𝐵2(𝑥) =
1

6
(6𝑥2 − 6𝑥 + 1) ,   𝐵3(𝑥) =

1

20
(20𝑥3 − 30𝑥2 + 12𝑥 − 1) 

 and so on. For instance, for 𝑘 = 1  and 𝑀 = 4, we get the Boubaker wavelet bases as follows:  

𝜓1,0(𝑥) = 2   ,   

𝜓1,1(𝑥) = 2√3(8𝑥 − 3)   , 

 𝜓1,2(𝑥) = 2√5(96𝑥
2 − 72𝑥 + 13),   

𝜓1,3(𝑥) = 2√7(1280𝑥3 − 1440𝑥2 + 528𝑥 − 63)  and so on. 

Function approximation: 
Suppose  𝑦(𝑥) ∈ 𝐿20,1) is expanded in terms of Boubaker wavelets as: 

𝑦(𝑥) = ∑ ∑ 𝑐𝑛,𝑚
∞
𝑚=0

∞
𝑛=1 𝜓𝑛,𝑚(𝑥)                                        (2.2) 

Truncating the above infinite series, we get  

𝑦(𝑥) = ∑ ∑ 𝑐𝑛,𝑚
𝑀
𝑚=0

2𝑘−1
𝑛=1 𝜓𝑛,𝑚(𝑥)                                         (2.3) 

3. Method of solution 

Consider the boundary value of the problem is of the form, 

𝑦″ + 𝛼𝑦 ′ + 𝛽𝑦 = 𝑓(𝑥)                                                     (3.1) 
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With boundary conditions                           𝑦(0) = 𝑎, 𝑦(1) = 𝑏                                                        (3.2) 

Where 𝛼, 𝛽  are constant and 𝑓(𝑥) be a continuous function. 

Write the Eq. (3.1) as       𝑅(𝑥) = 𝑦″ + 𝛼𝑦 ′ + 𝛽𝑦 − 𝑓(𝑥)                                                                            (3.3) 

where 𝑅(𝑥)  is the residual of the Eq. (3.1) When 𝑅(𝑥) = 0 for the exact solution, 𝑢(𝑥) only which will 

satisfy the boundary conditions.  

Consider the trail series solution of the Eq. (3.1), 𝑦(𝑥) defined over [0, 1) can be expanded as a modified 

Boubaker, satisfying the given boundary conditions which is involving unknown parameter as follows,  

𝑦(𝑥) = ∑ ∑ 𝑐𝑛,𝑚
𝑀
𝑚=0

2𝑘−1
𝑛=1 𝜓𝑛,𝑚(𝑥)                                                                                                                 (3.4) 

where  𝑐𝑖,𝑗 ′𝑠 are unknown coefficients to be determined. 

Accuracy in the solution is increased by choosing higher degree Laguerre wavelet polynomials.  

Differentiating Eq. (3.4) twice with respect to  𝑥 and substitute the values of   in 𝑦, 𝑦 ′, 𝑦″  Eq. (4.3). To find 

𝑐𝑛,𝑚′𝑠 we choose weight functions as assumed bases elements and integrate on boundary values together 

with the residual to zero [8]. 

i.e.              ∫ 𝜓1,𝑚(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0, 𝑚 = 0,1,2, . . . . . . .. 

then we obtain a system of linear algebraic equations, on solving this system, we get unknown parameters. 

Then substitute these unknowns in the trail solution i.e. Eq. (3.4), we obtained numerical solution of Eq. 
(3.1). 

In order to know the accuracy of BWGM for the test problems, we use the error measure i.e. maximum 

absolute error. The maximum absolute error will be calculated by 

𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥|𝑦(𝑥, 𝑡)𝑒 − 𝑢(𝑥, 𝑡)𝑎|, 
where 𝑦(𝑥, 𝑡)𝑒  and 𝑢(𝑥, 𝑡)𝑎 are exact and approximate solutions respectively. 

4. Numerical Experiment 

Problem 4.1 First, consider the boundary value problem [9], 

                                                                         𝑦″ + 𝑦 = −𝑥, 0 ≤ 𝑥 ≤ 1                                                      (4.1) 

With boundary conditions:  𝑦(0) = 0, 𝑦(1) = 0                                                                                          (4.2) 

The implementation of the eq. (4.1) as per the method explained in section 3 is as follows: 

The residual of eq. (4.1) can be written as: 𝑅(𝑥) = 𝑦″ + 𝑦 + 𝑥                                                                   (4.3) 

Now, choosing the weight function 𝑤(𝑥) = 𝑥(1 − 𝑥)  for Boubaker wavelet bases to satisfy the given 

boundary conditions Eq. (4.2), i.e. 𝜓(𝑥) = 𝑤(𝑥) × 𝜓(𝑥) 
     𝜓1,0(𝑥) = 𝜓1,0(𝑥) × 𝑥(1 − 𝑥) = 2𝑥(1− 𝑥) 

     𝜓1,1(𝑥) = 𝜓1,1(𝑥) × 𝑥(1 − 𝑥) = 2√3(8𝑥 − 3)𝑥(1 − 𝑥)      

     𝜓1,2(𝑥) = 𝜓1,2(𝑥) × 𝑥(1 − 𝑥) = 2√5(96𝑥2 − 72𝑥 + 13)𝑥(1 − 𝑥) 
Assuming the trail solution of Eq. (4.1) for   𝑘 = 1 and 𝑚 = 2 is given by 

                                                         𝑦(𝑥) = 𝑐1,0𝜓1,0(𝑥) + 𝑐1,1𝜓1,1(𝑥) + 𝑐1,2𝜓1,2(𝑥)                                  
(4.4) 

Then the Eq. (4.4) becomes           

𝑦(𝑥) = 𝑐1,0{2𝑥(1 − 𝑥)} + 𝑐1,1{2√3(8𝑥 − 3)𝑥(1 − 𝑥)} + 

                                                      𝑐1,2{2√5(96𝑥
2 − 72𝑥 + 13)𝑥(1 − 𝑥)}                                                  (4.5) 

Differentiating Eq. (4.5) twice w.r.t. 𝑥 and substitute the values of  𝑦, 𝑦 ′, 𝑦″ in   Eq. (4.3), we get the residual 

of Eq. (4.1). 
The “weight functions” are the same as the bases functions. Then by the weighted Galerkin method, we 

consider the following: 

                                                      ∫ 𝜓1,𝑗(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0, 𝑗 = 0,1,2                                                           (4.6) 

For 𝑗 = 0,1,2 in Eq. (4.6),  

                                                         i.e.   

∫ 𝜓1,0(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0

∫ 𝜓1,1(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0

∫ 𝜓1,2(𝑥)
1

0
𝑅(𝑥)𝑑𝑥 = 0

}
 
 

 
 

                                                              (4.7) 

From Eq. (4.7), we have system of algebraic equations with unknown coefficients i.e. 𝑐1,0, 𝑐1,1and 𝑐1,2.  

Solving this by Gauss elimination method, we obtain the values of 𝑐1,0 = 0.1286, 𝑐1,1 = 0.0064 and 𝑐1,2 =
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−0.0001 . Substituting these values in Eq. (4.5), we get the numerical solution. The comparison of 

numerical solution and the absolute errors are presented in table 1 and numerical solution with exact 

solution of Eq. (4.1) is  𝑦(𝑥) =
𝑠𝑖𝑛(𝑥)

𝑠𝑖𝑛(1)
− 𝑥 in figure 1. 

Table 1. Comparison of numerical solution and absolute error with exact solution of the problem 4.1. 

   * 
LWGM:  Laguerre wavelet-Galerkin method 

 
 

Fig. 1. Comparison of numerical solution with exact solution of the problem 4.1. 

Problem 4.2 Now, consider the another boundary value problem [10],  

                                                               𝑦″ +
16

9
𝜋2𝑦 =

7

9
𝜋2 𝑠𝑖𝑛 𝜋 𝑥, 0 ≤ 𝑥 ≤ 1                                          (4.8) 

With boundary conditions:  𝑦(0) = 0, 𝑦(1) = 0                                                                                          (4.9) 

As explained in section 3 and in the previous problem, we obtain the values of  𝑐1,0 = 1.9614, 𝑐1,1 =

0.0318 and 𝑐1,2 = −0.0082.   Substituting these values in Eq. (4.5), we get the numerical solution.  The 

comparison of numerical solution and the absolute errors are presented in table 2 and numerical solution 

with exact solution of Eq. (4.8) is 𝑦(𝑥) = 𝑠𝑖𝑛(𝜋𝑥) in figure 2. 

 

 

x 
Numerical solution Exact solution Absolute error 

LWGM* BWGM  LWGM* BWGM 

0.1 0.018976 0.018486 0.018642 3.34e-04 1.56e-04 

0.2 0.036319 0.036011 0.036098 2.21e-04 8.70e-05 

0.3 0.051077 0.051215 0.051195 1.18e-04 2.00e-05 

0.4 0.062611 0.062839 0.062783 1.72e-04 5.60e-05 

0.5 0.069621 0.069731 0.069747 1.26e-04 1.60e-05 

0.6 0.071254 0.070838 0.071018 2.36e-04 1.80e-04 

0.7 0.065973 0.065212 0.065585 3.88e-04 3.73e-04 

0.8 0.051651 0.052008 0.052502 8.51e-04 4.94e-04 

0.9 0.031515 0.030483 0.030902 6.13e-04 4.19e-04 
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Table 2 Comparison of numerical solution and absolute error with exact solution of the problem 4.2. 
 

 

Fig. 2 Comparison of numerical solution with exact solution of the problem 4.2. 

Problem 4.3 Finally, consider the boundary value problem [11],  

                                                                         𝑦″ − 𝑦 ′ = −1,0 ≤ 𝑥 ≤ 1                                                    (4.10) 

With boundary conditions:  𝑦(0) = 0, 𝑦(1) = 0                                                                                        (4.11) 

As explained in section 3 and in the problem 4.1, we obtain the values of  𝑐1,0 = 0.2351, 𝑐1,1 = 0.0055 and 

𝑐1,2 = 0.0001.   Substituting these values in Eq. (4.5), we get the numerical solution.  The comparison of 

numerical solution and the absolute errors are presented in table 3 and numerical solution with exact 

solution of Eq. (4.1) is 𝑦(𝑥) = 𝑥 − (
𝑒𝑥−1

𝑒−1
) in figure 3.  

Table 3. Comparison of numerical solution and absolute error with exact solution of the problem 4.3. 

   * LWGM:  Laguerre wavelet-Galerkin method 

x 
Numerical solution Exact solution Absolute error 

LWGM ([10]) BWGM  LWGM ([10]) BWGM 

0.1 0.3087468 0.308930 0.3090169 2.70e-04 8.69e-05 

0.2 0.5925196 0.588656 0.5877852 4.73e-03 8.71e-04 

0.3 0.8151813 0.809599 0.8090169 6.16e-03 5.82e-04 

0.4 0.9540854 0.950632 0.9510565 3.03e-03 4.25e-04 

0.5 0.9982500 0.999072 1.0000000 1.75e-03 9.28e-04 

0.6 0.9465312 0.950687 0.9510565 4.53e-03 3.69e-04 

0.7 0.7952968 0.809697 0.8090169 1.37e-02 6.80e-04 

0.8 0.5811001 0.588766 0.5877852 6.69e-03 9.81e-04 

0.9 0.3093530 0.309013 0.3090169 3.36e-04 3.90e-06 

x 
Numerical solution Exact solution Absolute error 

LWGM* BWGM  LWGM* BWGM 

0.1 0.038684 0.038796 0.038793 1.09e-04 3.00e-06 

0.2 0.071099 0.071131 0.071149 5.00e-05 1.80e-05 

0.3 0.096232 0.096357 0.096390 1.58e-04 3.30e-05 

0.4 0.113656 0.113734 0.113769 1.13e-04 3.50e-05 

0.5 0.122420 0.122429 0.122459 3.90e-05 3.00e-05 

0.6 0.121367 0.121514 0.121546 1.79e-04 3.20e-05 

0.7 0.109825 0.109972 0.110020 1.95e-04 4.80e-05 

0.8 0.086853 0.086651 0.086764 8.90e-05 7.30e-05 

0.9 0.050414 0.050466 0.050545 1.31e-04 7.90e-05 
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Fig. 3. Comparison of numerical solution with exact solution of the problem 4.3. 

5. Conclusions 

In this paper, we proposed the Galerkin method for the numerical solution of boundary value 
problems using Boubaker wavelets.  From the tables and figures, we observe that the numerical solutions 

obtained by the proposed method are better than existing method i.e. LWGM, and nearer to the exact 

solution.  Hence the Galerkin method using Boubaker wavelets is effective for solving boundary value 
problems.  
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