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Abstract: Though image denoising has experienced rapid development, there remain problems to be solved 

such as preserving the edge and meaningful details in image denoising. In this paper, we focus on this hot issue. 

Considering the parameter in original method is a constant, we introduce a new adaptive parameter selection 

based on EPLL (Expected Patch Log Likelihood) by the use of image gradient and the local variance, which 

varies with different regions of the image. What’s more, for solving staircase effect which common in 

anisotropic diffusion models, we add a gradient fidelity term to release it. The experiment shows that our 

proposed method proves the effectiveness not only in vision but also on quantitative evaluation. 
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1. Introduction 

Images have been a more and more important carrier of plenty information, which can deliver 

messages intuitively. Unfortunately, images inescapably suffer from noise due to various reasons, 

such as motion blur and the precision in measurements of sensors. Noise removal has always been a 

hot issue in the past few decade years, the research that follows is also growing rapidly. 

A large number of denoising methods have been proposed during hot discussion. Much work 

has begun on sparse representation, which regards image patches as the linear combination of some 

atoms based on a dictionary [1]. After this, low-rank approximation methods also achieve good 

results [2], [3]. The total variation (TV) has always been a hot topic [4], [5]. Establishing an 

appropriate prior model directly influences the outcome. So mixture models have raised much 

concern in image restoration due to its robustness, especially Gaussian Mixture Model [6], [7], [8]. 

Inspired by this, some further studies have been proposed. 

When it comes to noise removal, one sharp problem is always unavoidable. How to preserve 

as much structural information as possible while removing noise. So preserving edges of the image 

has become a thorny problem among academic and industry communities. Therefore, a lot of work 

revolves it. Perona and Malik firstly put forward pioneering model of anisotropic diffusion [9]. This 

idea was immediately spread due to its powerful effect [10], [11], [12]. Of course, this great approach 

also has its weakness. The number of iterations has giant influence on results. It always leads to 

staircase effect after excessive iterations. Inspired by this, Tebini proposed a fast and efficient to 

speed up the convergence of algorithm [13]. In this paper, we focus on the edge-preserving, and 

propose a new method of adaptive regularization parameter selection. Moreover, we add a gradient-

fidelity term to relieve the staircase effect and preserve more details of image. 

2. Proposed method 
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2.1 Original EPLL Model 

Given a noisy image corrupted by noise which can be described as 0u u v= +  Where u 

represents clean image and v represents noise. We aim at separating the pure image from the noisy 

one. In some ways one image can be seen as a type of high dimensional data, so making clear of prior 

knowledge becomes a principal problem. Gaussian mixture model is considered as one of the ideal 

models to describe statistical characteristics of the gray image. In this paper, the Gaussian mixture 

model is trained by a set of clean image patches  1 2, , , ND a a a= . For each patch ia , the 

distribution can be described as the following: 
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Where k is the prior probability for k-th component, K is the number of mixing components, k and

k denote the corresponding mean vector and covariance matrix. To simplify notations, using 

 , ,k k k  =   denote all these parameters. Expectation Maximization algorithm has proven its 

effect in estimating parameters in various models. 

    In the E step, estimate the posterior probability for each component  
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Then, we have the likelihood function for all patches as below: 
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In the M-step, let so as to estimate parameters, solving it then we get: 
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Equation (5) notices that the mean vector is calculated by weighted average. Moreover, the 

weight represents the posterior probability. 

In the same way, let 
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Considering mixing weights k , using Lagrange multiplier method, then get the function: 
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where 𝛾 is the Lagrange multiplier. 

Let the function (7) equal to 0, then take the derivative of k : 
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Equation (11) reveals that the averaging posterior probability determines each mixing weight. 

Repeating above iterative steps until the algorithm converges. 

2.2 Original EPLL Model 
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As is mentioned above, there is difficulty in directly building a model based on a whole image 

due to image’s high dimensionality. For solving this, we can learn the distribution of image patches 

which extracted from the whole original image. EPLL (Expected Patch Log Likelihood) is such a 

denoising method which using image’s statistical property based on Gaussian Mixture Model [14]. 

The central theme of this model is that every patch will have the highest log likelihood probability 

under our prior. So the cost function of this method is defined as: 
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where the first term is called data fidelity term and the second one is called regularization term.  

represents the regularization parameter and iR  is an operator that extracts patches from the original 

image, obviously iR u  denotes the i-th patch we need. We must point out the second term in equation 

(9) denotes cumulative log probabilities of all patches that overlapped, rather than the whole image. 

In other word, each pixel will appear more than one time, so it will be average according to its 

frequency 

2.3 Proposed method with adaptive regularization 

When it comes to denoising, EPLL is well behaved without a doubt, but still not perfect. Because 

the parameter   is a constant, that means the intensity of noise removal is uniform on the whole 

image. It’s obvious that edge areas of the image will be over-smoothed while parameter  is too 

large. Instead, if we set the value of   too small, noise removal can hardly be thorough enough. A 

sharp question comes out that the balance between edge preserving and denoising is hard to maintain. 

For solving this, a new denoising method with adaptive regularization parameter based on image 

gradient is proposed as the following: 
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where the second term is a gradient fidelity term, it guarantees that the restored image and the noisy 

image have a similar structure, and it can effectively alleviate the problem of gradient effect. This 

paper [15] pointed out that the optimal solution of the new model is the same as that of the original 

diffusion model with this gradient fidelity term. ( ),x y  and ( ),x y  are adaptive parameters. 

( ),x y  devotes the value at each pixel which relied on image’s gradient. ( ),x y  can be 

expressed as the following: 
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where 𝑘1 is a constant , 𝑘2 is also a constant as the threshold value, ( ),u x y is the gradient of 

pixel ( ),x y , and ( ),NM x y  devotes the standardized variance at the pixel. Here, the variance of the 

image is introduced. In order to keep the variance occupy the same weight as the gradient, normalize 

the variance by: 
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Traditional gradient fidelity term adaptively gets larger in homogeneous areas, leading to over-

convergence. There still remains residual noise in gray gradient areas. So fidelity term’s coefficient 

can be reduced appropriately in homogeneous areas to avoid over-smoothing. Then ( ),x y  can be 

described as the following: 
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where 3k  is a threshold value, G is a Gaussian filter operator, ( )( ),u x y   can be described as 

the following: 
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The gradient u  and the variance can be seen as indications of edges. Hence, the regularization 

parameter function mainly related to them. ( ),x y  is small while large gradient and variance are 

detected at edges of the image, and ( ),x y is large so edges will be preserved. Instead, if small 

gradient and variance are detected in smooth regions, ( ),x y  is small so as to keep the strength of 

removing noise. Meanwhile, ( ),x y  is small, which aims to maintain as much similar structure as 

possible between the restored image and the observation..  

We introduce a method named Half Quadratic Splitting algorithm to solve equation (10), rather 

than solving it directly. A series of patches  iz  are introduced that each one refers to the 

corresponding overlapping patch iR u , then equation (10) turns into: 
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Where  is the penalty parameter, it is obvious that auxiliary variable  iz  equals to the patch iR u

when   tends to infinite. 

    For minimizing equation (15), firstly, we choose the Gaussian component that has the highest 

conditional mixing weight maxk for each patch, then alternately optimize equation(15) by updating 

iz  and u alternately: 
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where t  denotes time step and I  is the unit matrix. 

Generally speaking, the proposed method can be implemented as the following: 

Table 1: Proposed algorithm 

Input: corrupted image 0u , penalty parameter  , the time step t , 

regularization parameter functions  ( ),x y , ( ),x y  

Step   Choose the most likely Gaussian mixing weights for each patch iR u  

       Calculate 1n

iz +  using equation (16); 

Pre-estimate image 
1nu +
 by equation(17); 

       Repeat above steps for 4-5 times. 

3. Implementation and experiment results 

In this paper, we train the GMM with 200 mixture components by a set of 
62 10  image patches 

that sampled from the Berkeley Segmentation Database (BSDS300). Parameters mentioned above 

are set as the following: the image patch 8L = , the penalty parameter  21/ 1, 2,3,4,5 =  , time 

step 0.004t = , constants are set as the following: 𝑘1 = 0.00025 ∗ 1/𝜎2 , 𝑘2 = 30 , 𝑘3 = 80 . Our 

methods compared with the original model are as follows: 
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e                            f 

Figure1: Denoising results on ‘Barbara’ image with a standard variance 𝛔 = 𝟐𝟓. (a)         Original image 
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(b) Noisy image, (c) EPLL result (d), Proposed method, (e) EPLL enlarged partial result, (f) Proposed method 

enlarged partial result 

 

 

a                           b 

 

c                           d 

 

e                            f 

Figure2: Denoising results on ‘lena’ image with a standard variance σ = 50. (a)         Original image 

(b) Noisy image, (c) EPLL result (d), Proposed method, (e) EPLL enlarged partial result, (f) Proposed method 

enlarged partial result 
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Table 2: PSNR results for test images with noise standard deviation σ=25 

 EPLL Proposed method 

Barbara 28.55 28.72 

House 32.15 32.41 

Man 29.57 29.71 

Lena 31.52 31.7 

boat 29.62 29.78 

As in shown in figure1 and figure2, while the original EPLL method may denoise well, but it also remains 

a problem that in some regions edge and structure information disappear. Instead, edges and details of the 

image are better preserved in our proposed method. Both visually and numerically, we can make the conclusion 

that obviously our method is superior to the original EPLL method. This is probably due to the fact that our 

method selects a proper regularization parameter and adds a gradient fidelity term. 

4. Conclusion 

    Many denoising methods based on statistics have achieved huge success recent years, and EPLL 

is one of them. It performs rather well on noise removal, but still lack in preserving edges. Considering 

this, we select an adaptive parameter related to the image gradient, which varies with different regions 

of the image. In smooth regions parameter is small so that noise will be removed strongly. And at 

edges of the image, the parameter is set large so as to preserve edges well. Our proposed method is 

well behaved in restoration and shows an obvious advance compared with the original method. 
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