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Abstract: This paper uses the finite difference method to numerically solve the space fractional nonlinear 

Schrodinger equation. First, we give some properties of the fractional Laplacian Δℎ
α . Then we construct a 

numerical scheme which satisfies the mass conservation law without proof and the scheme’s order is 

𝑂(τ2 + ℎ2)  in the discrete 𝐿∞  norm. Moreover, The scheme conserves the mass conservation and is 

unconditionally stable about the initial values. Finally, this article gives a numerical example to verify the 

relevant properties of the scheme. 
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1. Introduction 

We consider the space fractional nonlinear Schr𝑜̈dinger equation (SFNLS) equation 

𝑖
∂𝑢(𝑥, 𝑡)

∂𝑡
− (−Δ)

α
2𝑢(𝑥, 𝑡) + β|𝑢(𝑥, 𝑡)|2𝑢(𝑥, 𝑡) = 0,  𝑥 ∈ (𝑎, 𝑏),  𝑡 ∈ (0, 𝑇], (1.1) 

with boundary condition 

𝑢(𝑎, 𝑡) = 𝑢(𝑏, 𝑡) = 0,  𝑡 ∈ (0, 𝑇], (1.2) 
and initial condition 

𝑢(𝑥, 0) = 𝑢0(𝑥),  𝑥 ∈ [𝑎, 𝑏], (1.3) 

where 1 < α ≤ 2, 𝑖 = √−1 is the complex unit, 𝑢 = 𝑢(𝑥, 𝑡) is the unknown complex-valued function, 𝑢0 =
𝑢0(𝑥) is a given smooth complex-valued function, and β is a given non-zero real number. When α =  2, the 

SFNLS equation is reduced into the standard cubic nonlinear Schr 𝑜̈ dinger equation. Here the fractional 

Laplacian −(−Δ)
α

2 is defined as a pseudo-differential operator with |ξ|α in Fourier space[8], i.e., 

−(−Δ)
α
2𝑢(𝑥, 𝑡) = −ℱ−1(|ξ|α𝑢̂(ξ, 𝑡)), (1.4) 

where ℱ is the standard Fourier transform and 𝑢̂(ξ, 𝑡) = ℱ[𝑢(𝑥, 𝑡)]. 
 

2. Construction of Scheme 

In this section, we will construct a finite difference scheme for the system (1.1)-(1.3), which preserves 

the total mass given in Theorem 2.1. For given positive integers 𝐽, 𝑁, we set the time step τ =
𝑇

𝑁
  and grid size 

ℎ =
𝑏−𝑎

𝐽
  . Denote the space and time discrete node sets by Ωℎ = {𝑥𝑗|𝑥𝑗 = 𝑎 + 𝑗ℎ, 0 ≤ 𝑗 ≤ 𝐽}  and Ωτ =

{𝑡𝑛|𝑡𝑛 = 𝑛τ, 0 ≤ 𝑛 ≤ 𝑁}. Then the space and time grid point set is defined by Ωℎ
τ = Ωℎ × Ωτ. Denote 𝒮ℎ =

{𝑢|𝑢 = (𝑢0, 𝑢1, 𝑢2,⋯ , 𝑢𝐽), 𝑢0 = 𝑢𝐽 = 0}  as a grid function space. For any grid function 𝑤𝑛 ∈ 𝒮ℎ  for 𝑛 =

1,2,⋯ ,𝑁 − 1 , we introduce the following notations 

δ𝑡̂𝑤𝑗
𝑛 ≔

𝑤𝑗
𝑛+1−𝑤𝑗

𝑛−1

2τ
,  δ𝑡𝑤𝑗

𝑛 ≔
𝑤𝑗
𝑛+1−𝑤𝑗

𝑛

τ
,  𝑤

𝑗

𝑛+
1

2 ≔
𝑤𝑛+1+𝑤𝑗

𝑛

2
,  𝑤𝑗

[𝑛] ≔
𝑤𝑗
𝑛+1+𝑤𝑗

𝑛−1

2
. (2.1)

for any grid functions 𝑤, 𝑣 ∈ 𝒮ℎ , we define the discrete inner product and the two norms over 𝒮ℎ as 
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(𝑣, 𝑤) ≔ ℎ∑𝑣𝑗

𝐽−1

𝑗=1

𝑤𝑗̅̅ ̅,  |𝑣| ≔ √(𝑣, 𝑣),  |𝑣|∞ ≔ sup
1≤𝑗≤𝐽−1

|𝑣𝑗| . (2.2) 

Lemma2.1[11] For a function ϕ ∈ 𝐶5(𝑅) ∩ 𝐿1(𝑅), we have 

∂αϕ(𝑥)

∂|𝑥|α
= −

1

ℎα
∑ 𝑐𝑘

(α)ϕ(𝑥 − 𝑘ℎ)

+∞

𝑘=−∞

+ 𝑂(ℎ2),  ∀1 < α ≤ 2, (2.3) 

where 𝑐𝑘
(α)
≔

(−1)𝑘Γ(α+1)

Γ(
α

2
−𝑘+1)Γ(

α

2
+𝑘+1)

. 

According to the initial value of the original equation and the above lemma, we have 

∂α𝑢(𝑥, 𝑡)

∂|𝑥|α
= −

1

ℎα
∑ 𝑐𝑘

(α)
𝑢(𝑥 − 𝑘ℎ, 𝑡)

−(𝑎−𝑥)/ℎ

𝑘=−(𝑏−𝑥)/ℎ

+ 𝑂(ℎ2), (2.4) 

and 

−(−Δ)
α
2𝑢𝑗
𝑛 = −

1

ℎα
∑ 𝑐𝑘

(α)𝑢𝑗−𝑘
𝑛

𝑗

𝑘=−𝐽+𝑗

+ 𝑂(ℎ2) = −
1

ℎα
∑𝑐𝑗−𝑘

(α)𝑢𝑘
𝑛

𝐽−1

𝑘=1

+ 𝑂(ℎ2). (2.5) 

For the sake of brevity, we denote 

Δℎ
α𝑢𝑗

𝑛 =
1

ℎα
∑𝑐𝑗−𝑘

(α)

𝐽−1

𝑘=1

𝑢𝑘
𝑛,  1 ≤ 𝑗 ≤ 𝐽 − 1,  0 ≤ 𝑛 ≤ 𝑁, (2.6) 

and denote matrix 𝑪 as 

𝐶 =

(

 
 

𝑐0
(α) 𝑐−1

(α) ⋯ 𝑐−𝐽+2
(α)

𝑐1
(α) 𝑐0

(α) ⋯ 𝑐−𝐽+3
(α)

⋮ ⋮ ⋱ ⋮

𝑐𝐽−2
(α)

𝑐𝐽−3
(α)

⋯ 𝑐0
(α)
)

 
 

(2.7) 

The eigenvalues of the real positive Toeplitz matrix 𝑪 is denoted by λ𝑗 for 1 ≤ 𝑗 ≤ 𝐽 − 1 and we have [12] 

0 < λ𝑗 < 2𝑐0
(α)
,  𝑗 = 1,2,⋯ , 𝐽 − 1. (2.8) 

The scheme of the equation (1.1)-(1.3) constructed in this paper is 

𝑖δ𝑡̂𝑈𝑗
𝑛 − Δℎ

α𝑈𝑗
𝑛 + β|𝑈𝑗

𝑛|
2
𝑈𝑗
[𝑛] = 0,  1 ≤ 𝑗 ≤ 𝐽 − 1,   1 ≤ 𝑛 ≤ 𝑁 − 1, (2.9) 

𝑖δ𝑡𝑈𝑗

1
2 − Δℎ

α𝑈
𝑗

1
2 + β |𝑈̂

𝑗

1
2|

2

𝑈
𝑗

1
2 = 0,  1 ≤ 𝑗 ≤ 𝐽 − 1, (2.10) 

𝑈𝑗
0 = 𝑢0(𝑥𝑗),  1 ≤ 𝑗 ≤ 𝐽 − 1, (2.11) 

𝑈0
𝑛 = 𝑈𝐽

𝑛 = 0,  1 ≤ 𝑛 ≤ 𝑁, (2.12) 

where 𝑈
𝑗

1

2 = 𝑢(𝑥𝑗, 0) +
τ

2
𝑢𝑡(𝑥𝑗, 0),  1 ≤ 𝑗 ≤ 𝐽 − 1. 

Theorem 2.1 The above scheme (2.9)-(2.12) satisfies the following mass conservation 

𝑀𝑛 ≔
1

2
(|𝑈𝑛|2 + |𝑈𝑛+1|2) ≡ 𝑀0,  0 ≤ 𝑛 ≤ 𝑁 − 1. (2.13) 

3. Numerical Experiment 

In this section, we use our scheme to compute one numerical example to show our theoretical results. 

Example 3.1 We consider the following SFNLS equation 
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𝑖
∂𝑢(𝑥, 𝑡)

∂𝑡
− (−Δ)

α
2𝑢(𝑥, 𝑡) + β|𝑢(𝑥, 𝑡)|2𝑢(𝑥, 𝑡) = 0,  𝑎 < 𝑥 < 𝑏,  0 < 𝑡 ≤ 𝑇, (3.1) 

with homogeneous Dirichlet boundary conditions and the following initial condition 

𝑢(𝑥, 0) = sech(𝑥) ⋅ exp(2𝑖𝑥) ,  𝑎 ≤ 𝑥 ≤ 𝑏. (3.2) 

For this problem, we take 𝛼 =  2, 𝛽 =  2, and the exact solution is given by 

𝑢(𝑥, 𝑡) = 𝑠𝑒𝑐ℎ(𝑥 − 4𝑡) · 𝑒𝑥𝑝(𝑖(2𝑥 − 3𝑡)). (3.3) 

In this example, we set the interval [𝑎, 𝑏] = [−20,20],𝑀𝑛  is the discrete total mass at 𝑡𝑛 = 𝑛𝜏. 

Table 1: Convergence test for 1 <  𝛼 ≤  2 with 𝜏 =  0.04ℎ. 

α 𝑒𝑟𝑟𝑜𝑟 ℎ = 0.2 ℎ = 0.1 𝑜𝑟𝑑𝑒𝑟 
1.2 ||𝑒𝑁||∞ 1.6945e-01 4.4717e-02 1.92 

1.4 ||𝑒𝑁||∞ 2.4276e-01 5.0584e-02 2.26 

1.8 ||𝑒𝑁||∞ 1.8285e-01 4.0860e-02 2.16 

2.0 ||𝑒𝑁||∞ 1.4267e-01 3.4243e-02 2.06 

 

Table 1 gives the errors together with the corresponding orders of numerical solutions in the maximum 

norm at 𝑇 =  1, and shows the convergence order in time and space direction for 1 <  𝛼 ≤  2. For the exact 

solution of the equation when 1 <  𝛼 <  2, this paper uses the numerical accurate solution to replace it, i.e., 

we take ℎ =  0.025, 𝜏 =  1𝑒 − 04 to get a ‘numerical eaxct’ solution. 

 

 

Figure 1: Mass conservation law and its errors for different 𝛼 by [𝑎, 𝑏]  =  [−20,20], 𝑇 =  10, ℎ =  0.1, 𝜏 =  0.1. 
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