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Abstract: This paper uses the finite difference method to numerically solve the space fractional nonlinear
Schrodinger equation. First, we give some properties of the fractional Laplacian A7. Then we construct a
numerical scheme which satisfies the mass conservation law without proof and the scheme’s order is

0(t%? + h?) in the discrete L norm. Moreover, The scheme conserves the mass conservation and is
unconditionally stable about the initial values. Finally, this article gives a numerical example to verify the
relevant properties of the scheme.
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1. Introduction

We consider the space fractional nonlinear Schrodinger equation (SFNLS) equation

Oulx,t) « 5
i Fra (=A)zu(x, t) + Blulx, t)|?ulx,t) =0, x € (a,b), te(0,T], (1.1)
with boundary condition
u(a,t) =u(b,t) =0, te(0,T] (1.2)
and 1nitial condition
u(x,0) = uy(x), x€]la,bl, (1.3)

where 1 < a < 2,i = +v—1 is the complex unit, u = u(x, t) is the unknown complex-valued function, uy =
uy(x) is a given smooth complex-valued function, and 8 is a given non-zero real number. When a = 2, the
SENLS equation is reduced into the standard cubic nonlinear Schrddinger equation. Here the fractional

Laplacian —(—A)z is defined as a pseudo-differential operator with |€|* in Fourier space[8], i.e.,
& ~
—(—A)Zu(x, t) = —T_1(|§|au(§' t))' (14)

where F is the standard Fourier transform and @ (€, t) = Flu(x, t)].

2. Construction of Scheme

In this section, we will construct a finite difference scheme for the system (1.1)-(1.3), which preserves
the total mass given in Theorem 2.1. For given positive integers J, N, we set the time step T = % and grid size

h = b];a . Denote the space and time discrete node sets by Qj = {xj|x; =a+jh,0<j <]} and Q, =

{t,|t, = nt,0 < n < N}. Then the space and time grid point set is defined by Q} = Q;, X Q.. Denote S, =
{ulu = (uo,ul,uz,---,u]),uo =u; = 0} as a grid function space. For any grid function w™ € S}, forn =
1,2,---,N — 1, we introduce the following notations
witl_yn-t witl_y? n+l o wntlpy? witl -t
) j n._ Wi j 2. j [n] . Wi J

21 ) Bewy = T W 2 W 2 ' CRY)
for any grid functions w, v € §;, , we define the discrete inner product and the two norms over §j, as

n._
SEW] —
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J-1

@w)=hY 5%, =00, bla= sw |y,

1<j<]-
]_
Lemma2.1[11] For a function ¢ € C>(R) N L*(R), we have

+00
0* 1
_a|¢—(|§) = Tha Z o b(x — kh) + 0(h?), v1<a<2,
x ==
(@ . (=D*r(a+1)

where ¢ = r(&-k+1)r(Seke+1)

According to the initial value of the original equation and the above lemma, we have

0ux, ) —-(a—x)/h
u(x
) (a) 2
W——F u(x—kht)+0(h)
k=—(b—x)/h
and
1 j
04
SR = Y e+ 00 = —haz cDup + 0(h?).
k=—]+j
For the sake of brevity, we denote
J-1
Rl hach(f‘,)(uﬂ, 1<j<J-1, 0<n<N,
k=1
and denote matrix C as
&
cofe a0,
(oc) (oc) @
G2 €3 0

123

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

The eigenvalues of the real positive Toeplitz matrix € is denoted by A; for 1 < j <] — 1 and we have [12]

0<n <2, j=12-,]-1
The scheme of the equation (1.1)-(1.3) constructed in this paper is

i8;UP — MU +BlUP UM =0, 1<j<j-1, 1<n<N-1,

1

where U].E = u(xj, 0) + %ut(xj, 0), 1<j<j]-1.

Theorem 2.1 The above scheme (2.9)-(2.12) satisfies the following mass conservation

1
M™ = E(|U”|2 + UM =M 0<n<N-1

3. Numerical Experiment

(2.8)

(2.9)

(2.10)

(2.11)
(2.12)

(2.13)

In this section, we use our scheme to compute one numerical example to show our theoretical results.

Example 3.1 We consider the following SFNLS equation
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“du(x, t)
"ot

with homogeneous Dirichlet boundary conditions and the following initial condition

[04
— (=Mzu(x,t) + Blulx, t)|?ulx,t) =0, a<x<b, 0<t<T, (3.1

u(x,0) = sech(x) - exp(2ix), a<x <bh. (3.2)
For this problem, we take @ = 2, = 2, and the exact solution is given by

u(x,t) = sech(x — 4t) - exp(i(Zx — 3t)). (3.3)
In this example, we set the interval [a, b] = [—20,20], M™ is the discrete total mass at t,, = nr.

Table 1: Convergence test for 1 < a < 2 witht = 0.04h.

o error h=0.2 h=0.1 order
1.2 11eN]]eo 1.6945¢-01 4.4717e-02 1.92
1.4 11eN]]eo 2.4276e-01 5.0584¢-02 2.26
1.8 11eM]]oo 1.8285e-01 4.0860e-02 2.16
2.0 1leM]] e 1.4267¢-01 3.4243¢-02 2.06

Table 1 gives the errors together with the corresponding orders of numerical solutions in the maximum
norm at T = 1, and shows the convergence order in time and space direction for 1 < a < 2. For the exact
solution of the equation when 1 < a < 2, this paper uses the numerical accurate solution to replace it, i.e.,
we take h = 0.025,7 = 1le — 04 to get a ‘numerical eaxct’ solution.
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21¢ 21}

Figure 1: Mass conservation law and its errors for different @ by [a, b] = [-20,20],T = 10,h = 0.1,7 = 0.1.
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