

An explicit finite difference scheme for solving the space fractional nonlinear Schrödinger equation

Dongsheng Tang

School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing, 210044, China Email:dongshengtang@nuist.edu.cn (Received August 01, 2021, accepted October 09, 2021)

Abstract: This paper uses the finite difference method to numerically solve the space fractional nonlinear Schrodinger equation. First, we give some properties of the fractional Laplacian Δ_h^{α} . Then we construct a numerical scheme which satisfies the mass conservation law without proof and the scheme's order is $O(\tau^2 + h^2)$ in the discrete L^{∞} norm. Moreover, The scheme conserves the mass conservation and is unconditionally stable about the initial values. Finally, this article gives a numerical example to verify the relevant properties of the scheme.

Keywords: Partial Differential Equations; Finite difference method; Numerical solutions

1. Introduction

We consider the space fractional nonlinear Schrödinger equation (SFNLS) equation

$$i\frac{\partial u(x,t)}{\partial t} - (-\Delta)^{\frac{\alpha}{2}}u(x,t) + \beta|u(x,t)|^2u(x,t) = 0, \quad x \in (a,b), \quad t \in (0,T],$$

$$(1.1)$$

with boundary condition

$$u(a,t) = u(b,t) = 0, \quad t \in (0,T],$$
 (1.2)

and initial condition

$$u(x,0) = u_0(x), \quad x \in [a,b],$$
 (1.3)

where $1 < \alpha \le 2$, $i = \sqrt{-1}$ is the complex unit, u = u(x, t) is the unknown complex-valued function, $u_0 = 1$ $u_0(x)$ is a given smooth complex-valued function, and β is a given non-zero real number. When $\alpha = 2$, the SFNLS equation is reduced into the standard cubic nonlinear Schrödinger equation. Here the fractional Laplacian $-(-\Delta)^{\frac{\alpha}{2}}$ is defined as a pseudo-differential operator with $|\xi|^{\alpha}$ in Fourier space[8], i.e., $-(-\Delta)^{\frac{\alpha}{2}}u(x,t) = -\mathcal{F}^{-1}(|\xi|^{\alpha}\hat{u}(\xi,t)),$

$$-(-\Delta)^{\frac{\alpha}{2}}u(x,t) = -\mathcal{F}^{-1}(|\xi|^{\alpha}\hat{u}(\xi,t)), \tag{1.4}$$

where \mathcal{F} is the standard Fourier transform and $\hat{u}(\xi, t) = \mathcal{F}[u(x, t)]$.

2. Construction of Scheme

In this section, we will construct a finite difference scheme for the system (1.1)-(1.3), which preserves the total mass given in **Theorem 2.1**. For given positive integers J, N, we set the time step $\tau = \frac{T}{N}$ and grid size $h=rac{b-a}{l}$. Denote the space and time discrete node sets by $\Omega_h=\{x_j|x_j=a+jh, 0\leq j\leq J\}$ and $\Omega_{ au}=\{x_j|x_j=a+jh, 0\leq j\leq J\}$ $\{t_n|t_n=n\tau, 0\leq n\leq N\}$. Then the space and time grid point set is defined by $\Omega_h^{\tau}=\Omega_h\times\Omega_{\tau}$. Denote $\mathcal{S}_h=0$ $\{u|u=(u_0,u_1,u_2,\cdots,u_I),u_0=u_I=0\}$ as a grid function space. For any grid function $w^n\in\mathcal{S}_h$ for n=0 $1,2,\cdots,N-1$, we introduce the following notations

$$\delta_{\hat{t}} w_j^n := \frac{w_j^{n+1} - w_j^{n-1}}{2\tau}, \ \delta_t w_j^n := \frac{w_j^{n+1} - w_j^n}{\tau}, \ w_j^{n+\frac{1}{2}} := \frac{w^{n+1} + w_j^n}{2}, \ w_j^{[n]} := \frac{w_j^{n+1} + w_j^{n-1}}{2}.$$
 (2.1)

for any grid functions $w, v \in S_h$, we define the discrete inner product and the two norms over S_h as

$$(v,w) \coloneqq h \sum_{j=1}^{J-1} v_j \overline{w_j}, \quad |v| \coloneqq \sqrt{(v,v)}, \quad |v|_{\infty} \coloneqq \sup_{1 \le j \le J-1} |v_j|. \tag{2.2}$$

Lemma2.1[11] For a function $\phi \in C^5(R) \cap L^1(R)$, we have

$$\frac{\partial^{\alpha} \Phi(x)}{\partial |x|^{\alpha}} = -\frac{1}{h^{\alpha}} \sum_{k=-\infty}^{+\infty} c_k^{(\alpha)} \Phi(x - kh) + O(h^2), \quad \forall 1 < \alpha \le 2,$$
 (2.3)

where $c_k^{(\alpha)} \coloneqq \frac{(-1)^k \Gamma(\alpha+1)}{\Gamma(\frac{\alpha}{2}-k+1)\Gamma(\frac{\alpha}{2}+k+1)}$.

According to the initial value of the original equation and the above lemma, we have

$$\frac{\partial^{\alpha} u(x,t)}{\partial |x|^{\alpha}} = -\frac{1}{h^{\alpha}} \sum_{k=-(b-x)/h}^{-(a-x)/h} c_k^{(\alpha)} u(x-kh,t) + O(h^2), \tag{2.4}$$

and

$$-(-\Delta)^{\frac{\alpha}{2}}u_j^n = -\frac{1}{h^{\alpha}}\sum_{k=-l+j}^{j}c_k^{(\alpha)}u_{j-k}^n + O(h^2) = -\frac{1}{h^{\alpha}}\sum_{k=1}^{J-1}c_{j-k}^{(\alpha)}u_k^n + O(h^2).$$
 (2.5)

For the sake of brevity, we denote

$$\Delta_h^{\alpha} u_j^n = \frac{1}{h^{\alpha}} \sum_{k=1}^{J-1} c_{j-k}^{(\alpha)} u_k^n, \quad 1 \le j \le J-1, \quad 0 \le n \le N,$$
 (2.6)

and denote matrix C as

$$C = \begin{pmatrix} c_0^{(\alpha)} & c_{-1}^{(\alpha)} & \cdots & c_{-J+2}^{(\alpha)} \\ c_1^{(\alpha)} & c_0^{(\alpha)} & \cdots & c_{-J+3}^{(\alpha)} \\ \vdots & \vdots & \ddots & \vdots \\ c_{I-2}^{(\alpha)} & c_{I-2}^{(\alpha)} & \cdots & c_0^{(\alpha)} \end{pmatrix}$$
(2.7)

The eigenvalues of the real positive Toeplitz matrix C is denoted by λ_j for $1 \le j \le J-1$ and we have [12]

$$0 < \lambda_j < 2c_0^{(\alpha)}, \quad j = 1, 2, \dots, J - 1.$$
 (2.8)

The scheme of the equation (1.1)-(1.3) constructed in this paper is

$$i\delta_{\hat{t}}U_j^n - \Delta_h^\alpha U_j^n + \beta |U_j^n|^2 U_j^{[n]} = 0, \quad 1 \le j \le J - 1, \quad 1 \le n \le N - 1,$$
 (2.9)

$$i\delta_t U_j^{\frac{1}{2}} - \Delta_h^{\alpha} U_j^{\frac{1}{2}} + \beta \left| \widehat{U}_j^{\frac{1}{2}} \right|^2 U_j^{\frac{1}{2}} = 0, \ 1 \le j \le J - 1, \tag{2.10}$$

$$U_j^0 = u_0(x_j), \quad 1 \le j \le J - 1,$$
 (2.11)

$$U_0^n = U_I^n = 0, \quad 1 \le n \le N,$$
 (2.12)

where $U_j^{\frac{1}{2}} = u(x_j, 0) + \frac{\tau}{2} u_t(x_j, 0), \ 1 \le j \le J - 1.$

Theorem 2.1 The above scheme (2.9)-(2.12) satisfies the following mass conservation

$$M^{n} := \frac{1}{2}(|U^{n}|^{2} + |U^{n+1}|^{2}) \equiv M^{0}, \quad 0 \le n \le N - 1.$$
 (2.13)

3. Numerical Experiment

In this section, we use our scheme to compute one numerical example to show our theoretical results. **Example 3.1** We consider the following SFNLS equation

$$i\frac{\partial u(x,t)}{\partial t} - (-\Delta)^{\frac{\alpha}{2}}u(x,t) + \beta|u(x,t)|^2u(x,t) = 0, \quad a < x < b, \quad 0 < t \le T,$$
(3.1)

with homogeneous Dirichlet boundary conditions and the following initial condition

$$u(x,0) = \operatorname{sech}(x) \cdot \exp(2ix), \quad a \le x \le b. \tag{3.2}$$

For this problem, we take $\alpha = 2, \beta = 2$, and the exact solution is given by

$$u(x,t) = \operatorname{sech}(x-4t) \cdot \exp(i(2x-3t)). \tag{3.3}$$

In this example, we set the interval [a, b] = [-20,20], M^n is the discrete total mass at $t_n = n\tau$.

Table 1: Convergence test for $1 < \alpha \le 2$ with $\tau = 0.04h$.

α	error	h = 0.2	h = 0.1	order
1.2	$ e^N _{\infty}$	1.6945e-01	4.4717e-02	1.92
1.4	$ e^N _{\infty}$	2.4276e-01	5.0584e-02	2.26
1.8	$ e^N _{\infty}$	1.8285e-01	4.0860e-02	2.16
2.0	$ e^N _{\infty}$	1.4267e-01	3.4243e-02	2.06

Table 1 gives the errors together with the corresponding orders of numerical solutions in the maximum norm at T=1, and shows the convergence order in time and space direction for $1<\alpha\leq 2$. For the exact solution of the equation when $1<\alpha<2$, this paper uses the numerical accurate solution to replace it, i.e., we take $h=0.025, \tau=1e-04$ to get a 'numerical eaxet' solution.

Figure 1: Mass conservation law and its errors for different α by $[a,b]=[-20,20], T=10, h=0.1, \tau=0.1$.

References

[1] A. Sapora, P. Cornetti, A. Carpinteri, Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach, Commun. Nonlinear Sci. Numer. Simulat., 18, 2013, 63-74.

- [2] H. Nasrolahpour, A note on fractional electrodynamics, Commun. Nonlinear Sci. Numer. Simulat., 18, 2013, 2589-2593.
- [3] V.E. Tarasov, E.C. Aifantis, Non-standard extensions of gradient elasticity: Fractional nonlocality, memory and fractality, Commun. Nonlinear Sci. Numer. Simulat., 22, 2015, 197-227.
- [4] J.E. Macías-Díaz, A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives, J. Comput. Phys., 351, 2017, 40-58.
- [5] N. Laskin, Fractional quantum mechanics, Phys. Rev. E., 62, 2000, 3135.
- [6] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A., 268, 2000, 298-305.
- [7] N. Laskin, Fractional schrödinger equation, Phys. Rev. E., 66, 2002, 056108.
- [8] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32, 2007, 1245-1260.
- [9] L. Roncal, P.R. Stinga, Fractional Laplacian on the torus, Commun. Contemp. Math., 18, 2016, 1550033.
- [10] W. Zeng, A. Xiao, X. Li, Error estimate of Fourier pseudo-spectral method for multidimensional nonlinear complex fractional Ginzburg-Landau equations, Appl. Math. Lett., 93, 2019, 40-45.
- [11] M.D. Ortigueira, Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci., 2006.
- [12] C. Çelik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231, 2012, 1743-1750.