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Abstract: The ionosphere has an impact on the radio system, therefore, the determination of the ionospheric 

state is significant. The total electron content (TEC), as an important ionospheric parameter, can characterize 

the state of the ionosphere. This paper introduces a new ionospheric disturbed index N13 by correcting the 

existing index N27, and also proposes the theory foundation for determination the ionospheric state using cross 

validation method. The N13 is defined as the normalized relative variation of the ionospheric TEC, in which 

the TEC background value is the sliding median of 27 days. Analyzing the N13 calculated from the TEC data 

at Taipei station from January 2002 to July 2014, the results show that the two indexes N13 and N27 generally 

have the same statistical characters against with season and local time, however, they are always different at 

one time. Based on the probability density function of N13，an optimization model is also constructed to 

determine the ionospheric disturb proportion by cross validation method. It is found that the proportion is about 

25%, when the ionospheric disturbed index range is 13 1N  −  or 13 1N  . 

Keywords: Ionospheric disturbed index, Ionospheric disturbed proportion, Ionospheric disturbed 

determination, cross validation. 

1. Introduction 

The ionosphere is the upper atmosphere of the Earth in the altitude range of 60km~1000km above the 

ground. The presence of a large number of free electrons and ions in the ionosphere can change the speed of 

radio waves going through it, causing in refraction, reflection and scattering. The electron density varies 

strongly with many factors. Therefore, some efforts have been made to confirm the state of ionosphere to 

reduce its impact on the radio system. 

In recent years, based on the observational important electron density parameters Total Electron Content 

(TEC) and frequency of F2-layer(foF2), the ionospheric disturbed index and the criteria for determining 

disturbed events have been proposed. Bremer [1] proposed an ionospheric activity index AI  based on European 

foF2 measurements , comparing current data with undisturbed historical data, and later revised it with Mielich 

[2] to an ionospheric activity index that can describe ionospheric storms in mid-latitudes, which is one of the 

most commonly used index by later authors. Another index proposed by Gulyaeva [3] to describe ionospheric 

storms is the ionospheric weather index (W  index), which is defined by setting the corrected ionospheric 

parameters to the logarithm with respecting to their reference values of the static day, given when 1W =   

indicates quiet condition, when 2W =   indicates a moderate disturbance, when 3W =   indicates a storm, and 

when 4W =   indicates a large storm. Jakowski [4] introduces an interference ionospheric index based on 

GNSS (Global Navigation Satellite System) measurements to reduce the impact of space weather on GNSS 

navigation positioning. Nishioka [5] propose the method of standardized index AI , which is denoted as ˆ
TECP , 

and the index can be independent of local time, season and geographical location. 

For the determination criteria of ionospheric disturbed events, Kouris [6] proposed that the relative 

deviation of ionospheric TEC from the monthly median value in which it occurred for 3 consecutive hours 

exceeds 0.1 as the basis of ionospheric disturbed events. Lekshmi [7] defined a storm event as one in which 

maxN  exceeds 25% or is less than -25% and lasts longer than 3h, where the background value is the average 

value of the 7 calm days before the storm. Matamba [8] determined ±20% and ±40% as the ionospheric static 

time-varying rate based on the deviation of the observed values of foF2 and TEC data from the monthly median 

values obtained in the month in which they occurred, respectively. Chinese scholars Huang [9-10] analyzed 
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foF2 data from five Chinese stations and concluded that an ionospheric disturbed event is defined when the 

variation of foF2 exceeds 15% and is continuous for more than 6 hours. Chen [11] studied an event with 

0.15df   and a duration of 6h or more as a perturbation event based on the change of the observed value of 

foF2 data relative to the mid-month value noted as df . Gao [12] analyzed the types and the patterns of 

distribution of ionospheric disturbances at four mid- and low-latitude stations in the East Asian sector and 

proposed that an ionospheric storm event is considered to have occurred when the change in foF2 exceeds 15% 

and lasts for more than 4 hours, where the background value is the 27-day sliding median of the observed value. 

Liu [13] defined a storm event as one in which the absolute 
TECR  exceeds 15% and lasts at least 3h. Deng [14] 

analyzed TEC data from six Chinese observatories and gave the definition of positive (negative) phase storm 

disturbed events in ionospheric TEC as a continuous period of 6h and more 0.35( 0.3)DI DI  −  and the period 

DI  not satisfying the value must not exceed 2 h. Here the DI  index is the AI  index, where the background 

value is the sliding median of 13 days before and after the corresponding moment of the observed day. Li [15] 

defined 2foF  based on the relative deviation of the observed value of foF2 data from the mid-month value, 

and defined 2foF  greater than or equal to 15% and continuous for more than 6 hours as an ionospheric storm 

event. Based on the disturbed determination criteria proposed by Gao [12] and Deng [14], Wu [16] considered 

the daily variation of TEC at storm subtracted from the average daily variation of the static days, and the 

difference exceeded 25% of the average value of the static days and the duration exceeded 3h as an ionospheric 

storm event, in which the geomagnetic activity index was used as the criterion for the selection of the static 

days, and the number of static days was not less than 7 days. Liu [17] defined a storm event as one in which 

TEC  exceeds 25% of the background level and lasts for more than 3 hours, where the average of the seven 

calm days before the storm is used to represent the background value. 

In summary, there is no unified standard for the determination of ionospheric disturbed conditions and 

disturbed events. In order to better study the physical mechanism of ionospheric disturbances (storms), 

especially from the application point of view, providing the necessary and accurate ionospheric state 

information to the relevant equipment/users, performing ionospheric disturbed condition determination is the 

primary problem to be solved. 

2. Data and Methods 

2.1 Ionospheric TEC data and disturbed index 

The data are ionospheric GPS-TEC data observed at the Chinese Taipei station with a data resolution of 

15 min in this paper from January 2002 to July 2014. The cumulative duration is more than 12 years, about 

one solar activity cycle. 

The ionospheric disturbed index is the index after normalizing the relative change of ionospheric TEC. It 

is as follows: the relative change of ionospheric TEC is defined first (equation 1), and then normalized 

(equation 2). 
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Where 
TECO  is the ionospheric observed TEC, 

TECR  is the ionospheric TEC background value, the sliding 

median of 27 days is usually chosen, 
TECN  is the ionospheric disturbed index   is the mean of 

TECP ,   is the 

standard deviation of 
TECP . 

From the above definitions, it is clear that differences in the background values of the ionosphere lead to 

differences in the final ionospheric disturbed index. In this paper, in order to better characterize the ionospheric 

disturbances physically, the method of using the median TEC sliding value of the past 27 days as the 

background value for Nishioka[5] is adjusted to the median sliding value of 13 days (27 days in total) before 

and after the observed time as the ionospheric background value, and then the ionospheric disturbed index is 

obtained. For comparison purposes, this paper uses 
TECN  to denote Nishioka's TECP



. 
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2.2 Calculation of ionospheric TEC background values 

Missing values may lead to change in ionospheric background values, so it is important to count the 

number of missing TEC data within the sliding window when obtaining 
TECR  time series. In this paper, the 

number of missing TEC values is analyzed for the following calculation of ionospheric background values. 

The results are shown in Figure 1. 

The horizontal axis in Figure 1 is the number of missing values. The vertical axis is the proportion of the 

number of corresponding missing values in each sliding window (27 
TECO  values) and cumulative proportion 

in Figure 1.a and Figure 1.b, respectively. As shown in Figure 1.a, the sliding window without missing values 

is about 40%. When the number of missing values increases, the corresponding proportion is decreasing rapidly. 

When the number of missing values is 7 or more, the corresponding proportion is almost less than 1%. As seen 

in Figure 1.b, with the gradual increase of the number of missing values, the corresponding proportion 

increases rapidly at the beginning and then slowly followed. It is almost stable when the number of missing 

values is more than 7. The proportion has exceeded 80%. Therefore, in order to obtain much data and to get a 

more accurate perturbation index for improving the confidence of the results, the criterion for calculating the 

background value 
TECR  is that there are at most 7 missing values in the sliding window for calculating the 

value of 
TECR  at a given moment in this paper. In other words, there are at least 20 valid TEC observations 

involved in the estimation of the background value. 

 

Figure1 The proportion of the number of TEC missing values in the 27-day sliding window 

2.3 Cross-validation method 

In order to determine the ionospheric disturbed state (ionospheric disturbed index value and the prorotion 

of the disturbed ionosphere), an optimized model with the idea of cross-validation method is built.  

The cross-validation method is a model selected method in statistical learning, which aims to make the 

learned model have good predictive power for both existing and unknown data, and the predictive power of 

the learned method for unknown data is usually referred to as generalization power [18]. At the earliest, people 

trained models based on all data sets and then tested the error estimates of the models within the same data set, 

but the results of this method were too optimistic and generally failed to yield more accurate estimates, in order 

to solve this problem, Stone proposed the cross-validation method in 1974. The cross-validation method is a 

method that can directly estimate the model generalized error without assuming the data distribution in advance, 

and it is very popular and can be operated easily [19]. The basic idea of the cross-validation method is to 

repeatedly use the data, slice the given data set, combine the slice data set into a training set and a test set, and 

on this basis, repeatedly perform training, testing, and model selection to choose the model with the lowest 

tested error [18]. From the basic idea of the cross-validation method, it is clear that its purpose is to obtain 

reliable and stable models. 
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Figure 2 Hold-out verification schematic 

Hold-out was proposed by Devroye and Wagner in 1979 [20], and the main idea was to take out a part of 

the sample set for training the model and the remaining part for testing, as in Figure 2, which was the original 

form of the cross-validation method. Expressed in mathematical language is that, let 'I  be a non-empty subset 

of the set  1,2, ,nD n= , ''I  is its complementary set, use 'I  as the training set for model training, ''I  as the 

test set for generalization error estimation, The model generated by the training is denoted by ( )nA D , the 

mathematical expression for the generalization error estimate is given by 

                     1
( ( ); )

k
n

n i

i Dk

R L A D
n




=  ,                                                                     (3) 

where L  is the loss function, k

nD  is a test sample, The number of its samples is 
kn . Cross-validation methods 

also include leave-one-out cross-validation [21], leave-one-out P cross-validation [22], v-fold cross-validation 

[23], and 5 × 2 cross-validation [24]. 

In this paper, we choose v-fold cross-validation [23], the basic idea is to divide the sample set equally 

into v copies, take out v-1 copies of the sample set from v copies of the dataset as the training set each time, 

and the remaining copy of the dataset as the validation set, repeat the experiment v times, as in Figure 3, and 

finally average the results of v times as the generalized error estimate. 

The v-fold cross-validation method, expressed in mathematical terms, is to have a data set 
nD  with sample 

size n , 
1, , nA A  is a subset of dataset

nD , and for any subset 
jA  we have ( ) /jM A n v , M  is the number of 

samples in the subset and the final generalization error is estimated as 
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where L  is the loss function, s  is the training model, ( )jA

nD
−  is the remaining sample after removing the subset 

jA . From the definition of v-fold cross-validation, it can be seen that this method only needs to train the 

samples v times, which can reduce the complexity of the computation and is a widely used model selected 

method in practical applications [19]. For the selection of the number of folds in the cross-validation method 

is not fixed, when the number of folds is large, the accuracy of the generalized error is better, but the computed 

time is very long; when the number of folds is small, the computed time and the number of experiments are 

reduced, but the accuracy of the generalized error is poor. 

In the above method, the loss function L  takes the following specific form. 

 (1) ME(Mean Error): measures the degree of unbiasedness of the estimate. the accuracy of the 

valuation, the smaller the value the more accurate, with the following formula. 
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(2) RMSE(Root Mean Square Error): measures the closeness of the model estimate to the true value, the 

smaller the value the closer it is, with the following formula.  
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Figure 3 Schematic diagram of v-fold cross-validation 

(3) MSE(Mean Standard Error): denotes the mean of the predicted standard error, and the formula is as 

follows. 
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,                                                                       (7) 

(4) RMSSE(Root Mean Standard Square Error): the closer the value is to 1, the more valid the standard 

error of the prediction is, with the following equation.  
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where ˆ ( )iZ x  is the estimated value of sampling point 
ix , ( )iZ x  is the true value of sampling point

ix , n  is the 

number of sample points. 

2.4 Kernel density estimation method 

The optimized model based on the cross-validation is constructed from the probability density function 

of the ionospheric disturbed index 
13N . 

There are two methods of calculating the probability density function: parametric estimation and 

nonparametric estimation. Parametric estimation is empirically given a specific distribution that the sample set 

obeys, and nonparametric estimation is to fit the density function from the data itself without assuming that 

the sample set obeys any specific distribution. The kernel density estimation method is used to estimate the 

unknown density function in probability statistics, and belongs to one of the nonparametric test methods that 

can fit complex nonlinear density functions, proposed by Rosenblatt [25] and Parzen [26], also known as the 

Parzen window. The kernel density estimation method does not use a priori knowledge about the data 
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distribution and does not attach any assumptions to the data distribution; it is a method to study the 

characteristics of the data distribution from the data sample itself. The kernel density estimation method is 

expressed in mathematical language as, let 
1 2, , , nx x x  be an independent and identically distributed random 

variable in R . The formula for the kernel density estimation method is as follows. 

                   
1

1
( ) ( ),

n
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i

x x
f x k x R
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−
=  ,                                                               (9) 

Where 0h  , h  is the window width or smooth parameter, n  is the total number of samples, 
1
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−
  is 

the kernel function, there are three common kernel functions of the following forms. 

(1) Gaussian kernel: 
21

( ) exp( ),
22

u
k u u


= − −    ,                                                        (10) 

(2) Epanechnikov kernel: 

23
( ) (1 ), 1

4
k u u u= −  ,                                                                  (11) 

(3) Bigweight or Quartic kernel: 

215
( ) (1 ), 1

16
k u u u= −  ,                                                                (12) 

Where 
iu x x= − . In this paper, we choose to use the Gaussian kernel. The probability density function for 

fitting the Taipei station 
13N  data using the Gaussian kernel density estimation is shown in Figure 4. 

Figure 4 shows the probability density distribution of Taipei station 
13N , the horizontal axis is the value 

of 
13N , Figure 4a shows the probability density function of 

13N , named as fall in section 3.2. Figure 4b shows 

the probability distribution function of 
13N .  

 

Figure 4 Probability density distribution of N13 at Taipei 

3. Results 

3.1 The difference between the modified index (
13N ) and the original index (

27N ) 

1) Differences in ionospheric background values 

In this paper, the ionospheric disturbed index is corrected by adjusting the ionospheric background value. 

As mentioned above, different ionospheric background values can lead to the difference of ionospheric 

disturbed index. Figure 5 shows the variation of the difference of a different method for ionospheric 

background values with season and local time at Taipei station. The vertical coordinate axis in the figure is the 
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difference between the sliding median value of the past 27 days minus the sliding median value of the 13 days 

before and after under the same moment. The horizontal axis is LT (Local Time). The red curve with star is 

the difference LT in summer, and the red line is its mean value. The black, blue and green lines correspond to 

winter, spring and autumn, respectively. Here, the spring, summer, autumn and winter seasons are formed from 

45 days before and after the vernal equinox, summer solstice, autumn equinox and winter solstice, which are 

labeled as ME (March Equinox season), JS (June Solstice season), SE (September Equinox season) and DS 

(December Solstice season), respectively. As seen in Figure 5, the difference becomes larger when the local 

time is from 06:00 to 18:00 LT, and the maximum difference is about 4.4TECu, 4.6TECu, 4.9TECu and 2TECu 

in spring, summer, autumn and winter, respectively. In addition, the difference is positive in summer and 

winter, while it is almost negative at all LT in spring and autumn. The mean values of the difference in the 

four seasons can reach 2.2TECu, 2TECu, 1.3TECu and 1.3TECu, respectively. From the Taipei station, it can 

be seen that the ionospheric background values vary in both LT and season. In general, the different 

ionospheric background values vary significantly and are not constant. 

 

Figure 5 Variation of the difference of different ionospheric background values with LT and season  

2) 
13N  index characteristics 

In this paper, 
13N  is chosen as an index to determine the ionospheric state. The variation of 

13N  with 

local time and season is analyzed. Figure 6 shows the distribution of 
13N  with local time at each disturb level 

(the criteria are referred to Nishioka[5]). The horizontal axis represents LT, and the vertical axis is the 

proportion of the occurrence in the corresponding level. As seen from the figure, at the quiet level, the 

percentage of quiet periods at each moment is about 80%, which basically does not change with local time. At 

the positive and moderate negative disturbances, the percentage of each moment is about 5%, which varies 

somewhat, but not obviously, with local time. At the strong negative storm, the percentage of each moment 

varies more obviously with LT, which gets the smallest value around midnight and obtains larger values mainly 

at sunrise and in the afternoon. 

Figure 7 shows the variation of Taipei station N13 with seasons. Subplots a-e represent five classes: strong 

negative disturbance, moderate negative disturbance, quiet period, moderate positive disturbance, and strong 

positive disturbance, respectively. In one subfigure, the horizontal axis represents the four seasons, and the 

vertical axis represents the occurrence proportion of the corresponding ionospheric state. 

 As can be seen from Figure 7, the proportion of quiet period in each season is basically unchanged, which 

is about 80%. It is almost the same in 4 seasons. While in the other disturb levels, the ratio varies with season 

slightly.  

In general, when 
13N  is used as the ionospheric disturbed index, the determination of the ionospheric 

quiet state basically does not vary with local time and season, which is the same as N27 in Nishioka[5] 
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Figure 6 Variations of N13 with LT in different disturb level at Taipei station 

 

Figure 7 Variation of N13 with season in different disturb level at Taipei station 

3）Disturbance level difference 

According to the disturbed class classification method of Nishioka [5], the ionospheric disturbance is 

classified into five classes according to the value of 
TECN : strong negative disturbance when 2TECN  , 

moderate negative disturbance when 2 1TECN−   − , quiet period when 1 1TECN−   , moderate positive 

disturbance when 1 3TECN  , and strong positive disturbance when 3TECN  . In this section, the class 

difference is studied between the index of N13 and N27. The results are shown in Figure 8. 

In figure 8, the ionospheric state is first divided into 5 classes as strong negative disturbance, moderate 

negative disturbance, quiet period, moderate positive disturbance and strong positive disturbance according to 

N27, listed in sub-figure a-e. the data amounts of each class are 1103, 47484, 298897, 49312 and 4915, 

respectively. Then, the ionospheric disturbance index 
13N  is used in each class to judge the ionospheric state 

based on the same standard above. The same ionospheric state is represented by the same colour. As shown in 

Figure 8, the strong negative disturbance, moderate negative disturbance, quiet period, moderate positive 

disturbance and strong positive disturbance are dark blue, pink, yellow, green and light blue, respectively. It 

can be seen clearly that, in each subfigure, there are always the different ionospheric state based on the different 

NTEC. The digital details are shown on the top of the color histograms. The numbers are the ratio of the 
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difference, namely the amount of ionospheric state according to N27 divided by the amounts of the ionospheric 

state based on N13 in each subfigure. The percentages of the same judgements are 86.13%, 72.15%, 90.71%, 

65.1%, and 59.39% for strong negative disturbance, moderate negative disturbance, quiet period, moderate 

positive disturbance, and strong positive disturbance, respectively. A more obvious difference is shown in 

subfigure e. It can be seen that, in the period of strong positive disturbance based on N27, there are about 38.51% 

classified as moderate positive disturbance, even 2.1% classified as quiet period based on N13. It exists in the 

other classes shown in subfigure a-d. 

 

Figure 8 The class difference is studied between the index of N13 and N27 at Taipei station 

3.2 The determination of Ionospheric disturbance 
Based on the parameter 

TECN , the ionospheric TEC condition can be judged subjectively, but there is no 

clear basis for the determination criteria of quiet period or disturbed condition. In this paper, based on the 
13N  

index, the cross-validation method is used to construct the optimized model to find out the ionospheric 

disturbed proportion and the criteria of ionospheric disturbance. The specific approaches are as follows. 

(1) The critical index value for determining the ionospheric disturbed condition and the quiet period is 

defined as the / 2  quantile of the distribution function (Note: αis a undetermined variable). Based on the 

distribution function obtained from all data (Figure 4b in Section 2.3), the 
13N  value corresponding to the 

upper and lower / 2  quantile is obtained as the critical value for determining the ionospheric disturbed 

condition or the quiet period. Naturally, the ionospheric disturbed proportion is  . 

 (2) The original data are divided into multiple data sets, consisting of training set and test set, for the 

cross-validation method. Firstly, the data of 2002 to 2014 is divided into 13 copies according to the year. 

Secondly, the first copy of the 13 ones is selected as the test set, and the left 12 copies are used as the training 

set, which forms the first group dataset. By analogy, there are still another 12 groups dataset formed. The 

datasets are named as the year of the test set. 

Based on the kernel density estimation method in Section 2.3, the probability density functions of 

training sets, named fm, are obtained as shown in Figure 9. In general, the probability density function curves 

of each group of data have similar trends and are approximately symmetrically distributed, and they have a 

maximum value of about 0.65, when 
13N  is less than 0. 
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Figure 9 Probability density function of each group of 
13N  data at Taipei station 

 (3) According to the definition in approach (1), some N13 data in each test set are chosen for a given   

in the function of fall as disturb state. These data are denoted as 1' 2' ', , , m

m m mx x x . Taking these m’ data into formula 

(13), the sum of squares of errors for the jth dataset is gotten. 
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' ' 2

' 1

2
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( ( ) ( ))
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i i

all m m m
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j f x f x
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


=

= − ,                                                             (13) 

Where =1,2, , 40 , =1,2, ,j n , n represents the number of groups, 2ˆ
j
 is the error sum of squares, namely 

the average variance.  

Figure 10 shows the variation of 2ˆ
j  with the disturbance proportion  . The horizontal axis is the 

ionospheric disturbed proportion  , and the vertical axis is the 2ˆ
j  of each group of data. Generally speaking, 

each 2ˆ
j  increase with disturbed proportion   until to about 12% clearly except 2004. In order to get more 

accurate result, the average situation is considered in the next step. 

 

Figure 10 Variation of 2ˆ
j  with the proportion of disturbance   

 (4) According to the cross-validation method based on the probability density function, the optimal 

ionospheric TEC disturbed proportion  should get the maximum of ˆ ' in formula (14). 
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Where n is the number of dataset. 

Figure 11 shows the variation of Taipei station ˆ '  with the disturbed proportion  . Considering the 

special variation of 2004 (group 3) in Figure 10, all 13 groups and 12 groups except group3 are checked, which 

are shown in Fig. 10a and Fig. 10b, respectively. It can be seen both of the ˆ '  increase with   gradually and 

achieves a maximum value when   is about 25% . Then, the ˆ '  is basically stable and no longer changes 

significantly. It means that the optimal ionospheric TEC disturbed proportion   is 25%. By checking the fall 

above, the corresponding N13 should be about 1TECN  −  or 1TECN  . 

 

Figure 11 Variation of Taipei station ˆ '  with the proportion of disturbance   

4. Conclusion 

Based on the ionospheric TEC data obtained from Taipei station, the ionospheric TEC disturbed 

characteristics are studied by a modified 
TECN  index firstly, where the TEC background value is replaced with 

the 27days centered at the very moment. Then the Cross-validation method is introduced to judge the 

ionospheric state. The main results are as follows. 

1）The new index almost keeps the same statistical characters against with season and local time, however, they are 

always different at one time. It is suggested that the ionospheric state may be decided by the index.  

2）the Cross-validation method is effective method as theory foundation to judge the ionospheric state, which is always 

defined subjectively. Based on the modified NTEC index, the results of Cross-validation method show that the proportion 

of the disturbed ionospheric state is about 25%, and the corresponding NTEC range is less than -1 or larger than 1. 
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