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Abstract: In this paper, we study the non-global existence of solutions to the following time fractional
nonlinear diffusion equations

oft oft

‘Diu—au+@+t)u =12(ulP*u), xeR", t>0,
u(0,x) =uy(x), u,(0,x) =u,(x), xeR",

where 1<a <2, (01 , 1<a+p<2, re(-1) , p>1, u,u LY (R")(g>1) and

¢ Dg“tu denotes left Caputo fractional derivative of order ¢ . By using the test function method, we prove that

the problem admits no global weak solution with suitable initial data when p falls in different intervals. Our
results generalize that in [4].

Keywords: fractional derivative, blow-up, test function, nonlinear memory.

1. Introduction

Fractional differential equations are widely used to describe abnormal diffusion, Hamiltonian
chaos, dynamical systems with chaotic mechanical behavior and so on, ect. see [5, 10, 12] and the
references therein. In addition, the fractional evolution equations of time appearing in electromagnetic,
acoustic and mechanical phenomena have also attracted much attention. Such equations replace the
first time derivative with the fractional derivative of «, where ¢ belongs to (0,1). In recent years,
time fractional differential equations yield many different results, see [1, 7, 8, 13, 14, 15] and the
references therein. For instance, in [11], the existence and properties of solutions of time fractional
equations in bounded domains are considered by using the expansion of characterisitic functions. In
[2], the quasilinear abstract time fractional development equation in continuous interpolation space is

studied. In [13], the L -type maximum regularity results for abstract parabolic Voltera equations with
inhomogeneous boundary data problems are established by using pure operator theory. In [6], the

LP(L") theory of semilinear time fractional equations with variable coefficients is given by using the
classical theory of partial differential equation theory, such as the Marcinkiewicz interpolation
theorem, the Calderon-Zygmund theorem, and the perturbation arguments.

This paper is concerned with the non-global existence of solutions to the Cauchy problem for a
nonlinear time-fractional with nonlinear memory

{CDoatU —al+ 1+ U =g (ul " u), xeRY, t>0,

o 0.1)
u(0, x) = uy(x), u,(0,x) =u,(x), xeR",

where 1<a<2, fe(0,1), l<a+p<2, re(-11), p>1, u,u eLl'(R")(g>1) and CD(‘;“tu
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denotes left Riemann-Liouville fractional derivative of order « , Ié‘idenotes left Riemann-Liouville

fractional integrals of order A and is defined by

1 g .
5 = A jo (t—s)""u(s)ds.

Inthe case ¢ =2, f=1-y, the damped wave equation

O (0.2)

U, —al+@+t)"u = 127(ulP*u), (t,x)eR",
u(0, x) = u,(x), u,(0,x) =u,(x), xeR".

has been studied by [4], they proved the blow-up results for local (in time) Sobolev solutions. And
applied the test function method to showed that when J-R" Uy (X)dx >0 and J.Rn u,(x)dx >0, if

nd nd nd nd
ey | il 1-y—(@A-n—  l-y-(1-1)—
L>infmax{ 2 2 +( ! 2 )2 _ 4 2
p-1 o 1-y+d VA-A-1) ~ 2Q-y)2-r) 2(1-y)2-r)

n
—+1
for re(-1,0) or re(0,1), or _P__ 2 " forr= 0, the weak solution of (1.2) do not exist
pP-1 22—y
global in time. In the results of our paper, when a = 2, that is what the [4] says.

Recently, there are many papers which considered the existence and nonexistence of the global
solution to semilinear time fractional diffusion equation and diffusion equation with nonlinear
memory.

In [3], using the test function method, Fino and Kirane considered a heat equation with nonlinear
memory. They generalized test function method to fractional case and determined the Fujita critical
exponent of the problem.

For the nonlinear time fractional diffusion equation (i.e. (1.1) with ¥ =1 and the damped term
(1+1t)"u, do not exist),

oft

u(0,x) =uy(x) >0, xeR".

‘Diu—au=ultu, xeR", t>0,
(0. 3)

Zhang and Sun [16] studied the local existence of this problem, where u, eCO(RN), they

obtained that if 1< p<l+%, u blows up in finite time, and if p 21+%, the problem (1.3)

exists a global solution for small initial data. It should be noted that in the critical case p 21+W’

the solution of (1.3) can exist globally. In [15], Zhang and Li studied the local existence and
uniqueness of mild solutions of problem (1.3), and used test function method to show the blow-up and
global existence of the solutions to (1.3).

As far as we know, there are few paper consider the existence and non-existence for solutions of
damped fractional diffusion equation. Motivated by the above results, in this paper, we study the non-

global existence of problem (1.1). Particularly, for u,,u, € L'(R")(q>1), p+g=1, u,>0,
U0, x(x)= (IR" g Ve dx)’le_wz+‘x‘2 , we will show that with the following two conditions,
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when q>gq, for re(0,1), or q>l;ﬂ for re(-1,0) or r=0, or g>q, for re(0,1), or
Na +2 . .
> for r=0, or q>q, for re(-1,0), the weak solution of (1.1) admit no global
2(4+1)

weak solution.
@ | U (X)7(x)dx >0 and Ln u, (X) 7(x)dx > 0.

(i) jRn U, (x)dx >0 and jRn u,(x)dx > 0.

where
max{1+ﬂ —Br+(pr)’ —4(ﬂ Dy
21—
qz:na(l—r)—Z,B+\/(2ﬂ+(1—r)na)2+ 1
4p(1-r) 4p(1-r) Bl-r)
g, = inf max{ ne+2 (A-r)na-24 \/(2ﬂ+(l_r)na)2+ 1 }
2a+p)’ 4p@A-r) 4p(1-r) Bl-r)

This paper is organized as follows. In Section 2, some preliminaries are presented and the main
results are listed. Section 3 is devoted to giving the proof of our main results.

2. Preliminaries and main results

To derive the nonexistence of results for the problem (1.1), let us recall some notations and
definitions, we state some results about fractional detrivative and fractional integral which will be
used in the proof of our main results. For T >0, a<(1,2], the Riemann-Liouville fractional

integrals are defined by

12y = 1 It u(s)_ ds, 14U = 1 It u(s)_
T (@) t-9) T (@) (s—t)

For o €(1,2] and T>0, the Caputo fractional derivatives satisfy that if g € AC*([0,T]),
then © D59 and “DZ.g ae.existon [0,T] and

tT

2

o d o o 14
“D59 =7 16 [9(5) - g'(0s - g (O] = 159",

a d (24 a 14
‘Dg=—> e I “[9) - g'(Mt-g(M]=15"g".

In addition, if f eC*([0,T]), °D%f el*(0,T), geAC*[0,T]) and g(T)=g'(T)=0, then

i
we have the following formula of integration by parts

j D;, f gt = jOT(f(t)— f/(0)t - f (0))° Dy gt 2. 1)
Moreover, given f>1 and T >0. Let o(t) = (1—%)5, then for all « € (1,2) we have

Do\t¢T Do\r("T =° Dy o; (2.2)

oft
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Furthermore, by [9], let ¢ e (n—1,n), Be(0,]), a+Be(n-1Ln], ¢ e AC"™([0,T]),
then we have

Do\t¢T Do\r("T = Dy " or (2.3)

oft

Throughout the present paper we write f < g when there exist a constant C >0 such that
f<Cgqg.

Now, we give the definition of the weak solution for (1.1).

Definition 2.1 Let T >0, «€(,2), B<(0,1), gq>1, and b(t)=(@+t) with re(-11).
A weak solution for the Cauchy problem (1.1) on (0,T) x R" with the data u,,u, € i, (R") isa
locally integrable function u e L ((0,T), L} (R")) satisfying the relation

loc

[ 11 QuP ot 0dtex+ [ {7 (w00t + Uy (X)) D o(t, X)dtdx +b(0) . uy(X)gp(0, X)dx
= j j u(t, X)° Dy p(t, x)dltdx - jRn jo u(t, X)Ag(t, x)dtdx (2.4)
- jRn jo u(t, X)b(t)p, (t, X)dltdx — Ln jOT u(t, X)b'(t)p(t, X)dtdx.

forevery 9 e CI¥(R"x[0.T]), ¢, €CI(R"*(0,T)), o(T,)=¢(T,)=0.

We have the following results about the no global existence of weak solution for (1.1).

Theorem 2.2 Let f€(0,1) and pe(l,©), ae(L,2), a+Le(L2).Assume that the data
(Uy,u,) € LY(R™), g > 1and satisfies the conditions

[ 02 (dx>0, [ 1) x()dx>0, (2. 5)

Where y(x) =(jRn e V"M 4x) e V" then if p satisfies for r e (0,1) the condition

2 — —
P max{l+ﬂ ~pr(Br) —4(p Dy (2. 6)
p— 1 25@-r)
or for re(-1,0) and r=0 the condition
p_1+p
p-1 B 2.7
then the problem (1.1) admits no global weak solution.
Theorem 2.3 Let f(0,1), re(-11), a(@,2), a+f<1L2), p,g>1. Assume that
the data (u,,u,) € L*(R") and satisfies the conditions
IR" U, (X)dx >0, J.Rn u, (x)dx > 0. (2.8)
Then, if p satisfies for r € (0,1) the condition
p >na(1—r)—2ﬁ+\/ 1 L9y na +4 2.9)
p-1  2pQ-r) @-r)? 28" pa-r)

or for r =0 the condition
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p na + 2

> , (2.10)
p-1 2(f+1)

or for r € (—1,0) the condition

P >infmax{”“+2-(1‘r)““‘2/3+\/(2ﬂ+(1‘r)”“)2+ L1 ew

p-1 20+ 4B(01-r) 46(1-r) LL-r)

then the problem (1.1) admits no global weak solution.

3. Proof of main results

In this section, we give the proof of Theorems 2.2 and 2.3. For the sake of convenience, we use
C to denote a positive constant which may vary as a result of the estimation process, but it does not
necessarily influence the analysis of the problem.

Proof of Theorem 2.2 Suppose that u is weak solution of (1.1). Take y € C;(R") such that
1, |x<1
0, [x|>2.
o (T)=0, @ (T)=0 and ¢, 20. Taking ¢(x,t) = y(X)w,(x)° thTgoT (t) as a test function in
definition of weak solution, using (2.3), then

[l 2 1" 200 @dtax+ [ t+,) 200w, (9 Dg 7 (Oeltdx +bOCT [ _uy(x) 20w, ()X
= [ [ uz (X, (9° Dy (ctac+ [ [ u[-A(z (0w, () D (et

~[ [} ub(®) (), ()° DL r (dtek ~ [ [ ub'(8) 7(X)w, (¥)° DS (.

0

0<w(x)<1 and t//(x):{ Let l//n(X)=l//(%), n=12,... and ¢, €L'(0,T) ,

(3.1)

2 2
L
¥ - Hence,
2 1xf n2 4 2,3
n*+[x| (n® +[x")2
|Ax| <3y, note that A(yy,) =(Ax)w, +2Vy- Ay, +(Ay,)x . Then by (3.1), letting n — oo
and using the dominated convergence theorem, we have

(] OT o zocctax+ [ | OT (Ut +U;) 7°Dgprcltdx +Q)CT [ U,z
<[ [ lulx|° g7 0]dtdx+ [ 3ul 2
+]. [ bl 7| D e |dtax+ [ [ p'®)lul 2| D4

tT Pr
Denote f(t)=IRn|u|;(dx, f(O)=jRnu0;gdx>O, f(1)=IRnul;(dx>0,then f(t)>0. Since

A simple calculation shows that Ay = (—

dtdx (3.2)

¢ Dtl‘l‘}r (pT

dtdx.

ueC(0,T],L'(R")), we know f eC([0,T]). So follows from Jensen’s inequality and (3.2), we
have

jOT f P dt + jOT (Ft+ f(0))° D=7, dt +C.Tb(0) f (0)

tT
< jOT | D57 (t)dt +3j0T f|°Dg e ()fat + LT b(t) f |°Df*pr (0]t +jOT b (t) f|°Df e ().
(3.3)
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Taking ¢ (t) = (1—%)k(k > ﬂp_+11;t <T), we have

jOT frp,dt+ [ (@t + f(0))° DY p,dt +C.T ”b(0)  (0)

tT

tT

)
+[ b(t)f‘ D@lgoz(t)\du j b(t)f‘th‘Tgoz(t)‘dt
1 1 1
= [ oL, "Dy pdt +3[ f(ﬂz %”CDﬂTcozdt

5 1c B+ pC (3.4)
+ j b(t) f @, "°Df}"p,dit + j )f(pz %P Dt‘T(pzdt
b

<'[0Tf‘ D“*ﬂ¢2(t)‘dt+3j £|° D4, (t)dt

b
T T 3
<3 [T t2p,0t+C, 0, 2 Dy ,)"dt +C j 7, D/ ¢,) " dt
1

p
Lo
+C,[ b®)"0," Dtﬁ%z)p

1,7
<§Io fPodt+ 1, +1,+1,+1,.

P
" 1 (C Dt‘T ?,) Pt

The treatment of the second term of left-hand side (3.4) as follows:

[ (F@t+ FO)Dg g, dt<CT*7((0)+ F (D)),

tT
Let t =Tz ,we have

1 5 N B
L=, 0. D p) = [[A-0) T -0 )T

tT

(k-a-p) 2 1-(a+f) P
p-1

7( )p
Teifaeg e eadr=cr

Similarly,
152
,=CT P
Now we estimate |, and I,. For this reason, we distinguish between the three cases r € (0,1),
r=0and re(-10) in b(t)=1+T)".

Case 1 When r € (0,1), the function b(t) = (1+1t)" is strictly increasing. So
bt)<b(T)=@+T)", te[0,T].
We have

1 T k

jb(t) 1(p2p*1(CthT+lgoz)pldt<j @+T)P A-7) PAT - r)kﬂl)pler
o p NPk (i) P

@+ T)PT (A J-( _T)< Iy, o )H’

and
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P k P

__° P
P 1—g) PIT (L= 1) )P Tdr

T o L £ 1 (r-
L= [ D@1, (CDhp,) " dt=C[ (1+1)

r-1)-P- (k-p) P

17/}%1 ! ( -1 -1 p-1
=CT ° j0(1+rT) Pi(1-7) Pt ridg,

We split the integral

1 7" 1
J‘O ZIO +IT’m
into two integrals. Let us choose me (0,1). If k is large, then
bk

-m (r--F (k=p)2-
jOT L+7T) Pid—7) Pl Plde<CT™.

In the second integral we use the integrand the estimate

-2 (r-)-2

(r 1-m -1
(Q+7T) <@A+T7M P

If k is large,

(P (k=5) pk (r-D)p (k=p) pk (r-Dp

[Ty Pa-0) Pt de<@e T P [ @-0) P de<CEaTHT) P
The optimal choice of m is given by the condition (for large T )

p
(l—m)(r—l)a

’

-m

that is,
__@-np
p-1+(1-r)p
Therefore, we get the estimate
L Bp_ (np

p-1 p-1+(1-r)p
|, <CT .

Based on the above estimate, we can conclude

%IOT f Pp,dt + CT“7(£(0) + f (1)t) +C,T "b(0) f (0)

- P 5P —(B+1-1r)—P— _fp__(-np
e e S ) e R

+T p-1 p-1+(1-r)p )

<C(T +T
When t=0, we have b(0)=1, by the condition (2.5), we can getthat f(1)>0, f(0)>0, so

+T

1-(arp)L 152 1(panLt
p-1 p-1

+T P47

L fp_ (-0p

CT7f(0)<C(T 4T Pl ARy

That is

- P P —(p+1-r)P_ P @Np
f(O) - C(Tl (a+B) p71+ﬁ +_|_1 ﬂp71+ﬂ +T1 (B+L r)p—1+ﬁ +Tl ﬂpfl p—l+(1—r)p+ﬁ)

Let all exponent of T be negative is to guarantee
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p P @-rp
1-(¢+p)—+p<0, 1- — +/4<0
( ﬂ)p—l d ﬁp—l p-1+(1-r)p d
since (2.6), we get f (0) = 0 by taking T — oo, which contradicts with f (0) > 0. Hence, there no-
global weak solution for (1.1).

Case 2 For r =0, then the function b(t) =1. Repeating the estimates from the previous subsection
we arrive at (1, =0)

1—(a+ﬂ)ﬁ (S Ny B |

%J‘; f p(pzdt + CTl—a—ﬂ f (O)QC(T +T p-1 4T p—l) .

So,

p p p
1-(a+p)—+p 1-p—+p 1-(p+1)—+p
LT P 4T p-L

f(0)<C(T
. p 1+4 . . . .
Since 1 > 7 we get f(0)=0 by taking T — oo, which contradicts with f(0)>0.
p —
Hence, there no-global weak solution for (1.1).

).

Case 3 When r € (—1,0), the function b(t) = (L+1t)" is decreasing. If we write b(t) = (1+1)°,
se(0,1), then

(g1 e k (k-p-1)p

I, =T p’1J:(1+rT)iE(l—r)ia(l—r) 1 g7,

and

p _(s)p k (k=p)p

= et —
l,=T p’lJ‘O(1+rT) Pl(1-7) Pl1-7) " dr.

We split the integral

1 7" 1
[ A
into two integrals. Let us choose me (0,1). If k is large, then

p k

T-m - (k-B-1)—————
jo @L+7T) PP(1-7) P Pld<CT ™.
In the second integral we use the integrand the estimate
s s
L+7T) PE<@+TE™) Pt
If k is large,

_sp (k-p-1) p—k (k-p-1) p—k sp

S _sp _sp
[La+em) ™ @-0) "1 de<@e T P (@-7) PP dr<CEaTHT) P

The optimal choice for m is given by the condition (for large T )

sp
—(1-m)>—
a-m-E

T"=T -,
that is,

JIC email for contribution: editor@jic.org.uk
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S
m=—P
p—1+sp
So we can estimate |, to get
L (BDp_ s

p-1  p-l+sp
|, <CT :

By same method, we can estimate 1, to get

Bp_ (L+s)p

p-1 p-1+(1+s)p
|, <CT .

Then we have

bt 1pP DR L PP (9)p
CT/HO)SC(T  Pl4T PLaT Ppoopdw g ol plliop)

So,

Hmﬁ')ﬁw 1p Py DR s LB (+s)p

f (0) < C(T i e R DL s R p-1+(1+s)p ) .

Let all exponents of T be negative is to guarantee
1-5—L_1p<o0,
p-1

since (2.7), we get f(0) =0 by taking T — oo, which contradicts with f (0) > 0.

Hence, there no-global weak solution for (1.1).
Next, we give the proof of Theorem 2.3.

Proof of Theorem 2.3 Let ® e C;’(R") such that d(x) =1 for |x|<1, ®(x) =0 for |x|>2
@ 2P
and 0<d(X)<1 . We defined ¢,(x)=(®(T 2))"* and taking (oz(t)z(l—%)k ,

k>(a+[5’)—Fil—1 . Assume that U is a weak solution of (1.1), and define
01 () =° D4 (9,(¥)p, (1)), then we have
[ ] 120uP) D4 (9,000, (t))dltex
[ @ 00t+Uy(0)° DE DY (9,(0)p, (D)dtdx + b(O) [ uy(x)er (0, X)alx
= [ ], u(t.)° D°Df (¢, (), (O)dtdx — [ _ [ u(t, X)AC DL (,(¥)e, ())eltex

~[. [ u(t. b2, (2, (), )dtdx — [ [ ut, )b'(1)° DE (¢,(x)er, (1)cltx.

(3.5)
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1. The estimate for the left-hand of (3.5).
Including the test function, we get after using the formula of integration by parts

[ ], 140u)°Df (0, (e, 0)dtdx = [ [ ©DA1AUP) (¥, ()eltex

- j R .[o " @, (X)e, (t)ditdx.

(3.6)

For the second term of the left-hand side of (3.5)
[ ], 00t +uy(0)° D& D (¢, (x)er, (1)dltdx
=[] 00t +uy(0)° D (@, (), O)dtdx = [ [ (W (x)t+U, (X)), (x)° D g, (t)dtx.
For the third term, after using (2.2), we get
b(0)|_, U ()2 (0, X)dx =b(0) | Uy (X)° D (22 (X)2, (0))dx =b(O)CT | Uy (), (X)dx.  (3.8)

2.The estimates for the right-hand of (3.5).
For the first term,

Ln jOTu(t,x) Dj: °Df; (¢,(X)g, (1))dltcx = jRn jOTu(t,x)gol(x) Dy, (t)dltdx (3.9)

By a simple calculation, we have, for i =1,2,...,n

(3.7

2 a p+l
m()—w T(@(T )WL (T )+ 2P T @ ),
(p-2)° p-1 w5 (T 2%)
Observing that |®@ [<1and ® € C;’(R"), one see that

2 1

| Ap]<CT(@(T 2x))P* =CT “pp.

for some positive constant C independent of T . Combining the above estimates and observing
0<¢, <1, we derive

j ju(t X)AC DS (1 (), (1)) dtclx = j [u(t X)Ag,(X)° Df 0, (t)dtdlx. (3. 10)

For the third term,

j j u(t, X)b(t)a, Dt‘T(gol(x)goz(t))dtdx:—_[Rn J‘Ju(t,x)b(t)gol(x) Df ", (H)dtdx. (3. 11)

For the fourth term, we have

jRn J.OTu(t,x)b'(t)C D/, (¢(X)9, (1)) dtclx = j j u(t, X)b'(t)e, (X)° DY, (t)dltdlx. (3.12)

We deduce from (3.6) to (3.12) to get
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[ ] WP 20, @cltex -+ [ [ (W (0t+U, (X)), (0)° D, (D)t +BO)CT [ uy(x)e (X)elx
=[.[ "u(t, X)g, (x)° D g, (t)dtdx + [ |- "u(t, X)b(t)p,(x)° D/ "o, (t)dtdx

[ [ ut. )20, (x)° D4, (dtdx - [ [ u(t, )b (D), (x)° D, (tdtdx.
Then

o] OT U’ 2. (x)gp, (et + [ LT Ute, (X)° Dg; ', (t)dltdx

+[ [ g (0° D, (0t +bO)CT {0 (X)g (X)X

<[], Ut 0 @00 D7, @) dtdx+ [ f[1 ut )l b(t)g, (01D e, (1) dte
[t ) A ()FDEe, M dtax+ [ [T ue,x)l | D@ 9,9 DL, (1) dtd.

Now, by the assumption and T >0, C, > 0, the integrals over the data are assumed to be positive for
large k and b(0) >0, we may conclude from (3.13) the following estimate:

J.R” J.oT Jul” @, (X)e, (t)dltdx
<[ Jo 1 ut ) 0,00 D (0 dtdx+ [ [T ut 9l b©g, (DY e, (1) didx (3,10

+j j | u(t, )l Ag, () Dl (1)) ditdlx + j j [ u )l | B @,()I°Dfe, (1)l dtdx.

In order to estimate the terms of the right-hand of (3.14), let w(t, X) = ¢, (X)@, (t) . We apply the &
Young’s inequality, then we find the estimate for the first term of

(3.13)

1 1
[ ] e, (0]° Dg o, (0) dtex = [ [ July & Xy (¢, X0, (X)|° D0, (1) e

(3.15)
T r L N p
<e[ [ Wy 0ddx+C@)|f [ v e (0|0 Df‘?ﬂ(oz(t)‘p’l dtdx,
Similarly, for the second term
T p+1
[ ][ lulbye, ()| Df*, (0] dix
PP b (3.16)
<ef [T vt Cf, T 70007 0 0[5 0,0 Ha,
the third term
IR”I |U|A¢1(X)‘ Dt\T(pz(t)‘dth
(3.17)

b
<SJRH J-(;r |u|p (//(t, X)dth + C(E)J‘Rn J.(;r 74 p-1 (t, X) |A(01(X)|p ‘ th_(oz (t)‘ —1 dth

and the fourth term
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[ f [ullo' ()], ()| D4, (1) ctx
(3.18)

<ef, j Ju” y (¢, x)dtdx+ ()] j y P -1(t O ‘1(x)‘ Dth)z(t)"’pldtdx.

Taking into account the estimates (3.15)-(3.18), we may conclude from (3.14), for £ >0 small
enough and (t, X) = ¢,(X)@,(t) , the estimate

[ ]. W 9,000, ()dtex

<c@f, [[v P00 0] D2, 0 di
), | Tw‘pl-l(t,x)b(t)pp-lcoﬁ*(x)\ D', (0] o
@ [ v 0Bl o 09 D (0]
@ [ v 70T D] d
<c@([, @0ad)([; %(t)'p*\CDﬁ%(t)\fldt

P

b _ 1 P
+j b(t)* e, (t) *|° )

f;lcoz(o\p e [T, S 1\C D/

(3.19)
sCE([, w0d)(1,+1,+1.)+C@),.

5
N

Obviously, jRn @, (X)dx = jQ @,(x)dx, where Q , ={x e R":|x|<2T2}.
T2

-
NIR

First, let x=T 2y, we have

na 2p ne
_T2 p-1 _ o
Ja L Agax =T IMQ (@(y))"*dy=CT 2 (3. 20)
with some C > 0.

Then, we have to estimate the integrals |,, 1,, I; and |, . By Fubin's theorem, we got for |, the
estimate

_ P
1-(a+p) b1

T L P
= [ @) "|°Df g, (0] dt=CT

tT

(3.21)
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Before we estimate |, and I, we deal with |, first.

= ar 1(X)IA¢1(X)Ip—1 dx)(j oF 1(t)‘ Dt‘Tgoz(t)‘a dt) =1,,1,,. (3. 22)

@
T2

Observing that |®(x)|<land ®(x) € C;’(R"), so

1 p ap 1
A (I3 <CT“(@(T 7)7)"* =CT P
Then
_ap na
1y = Qacol‘Jl(x)lAco(x)IpldKCT e (3.23)
Moreover, we have the relations
P ) —k P Y
j o O Dy (" dt = [ @-7)" (T (A-2) ") Tde<CT 2 (5 gy
After replacing (3.23) and (3.24) into (3.22) we find
_Bp_ap na
|, <CT °* P12 , (3.25)

with some constant C > 0.

Now we estimate |, and ;. Similar to the treatment of |, and I, in Theorem 2, the calculation
process is omitted here for convenience, we can get the following result:
(1) When r € (0,1), the function b =b(t) = (1+1)" is strictly increasing, then

(gL pp__ (A-Np

p-1 p-1 p-1+(1-r)p
A ST

, (3.26)

I2N

At this point, including all the estimates we may conclude

(a+B)p “ na i (f+1-r)p : na i psp (-r)p  na i (a+pB)p  na 1

J.Q J.()T|U|pV/(t’X)dth<C(T P12 4T pl 2 T plpl@np 2 T bl '2‘)

(3.27)

To have that all exponents of T on the right-hand side are negative it is sufficient to guarantee

_pp__ A=0p nha ., g
p-1 p-1+0-nNp 2

Consequently,
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p >na(l—r)—Zﬁ+\/(2ﬁ+(1—r)na)2+ L
p-1  4p01-r) 4p(1-r) BQA-T)
that is condition (2.9) with 5 €(0,1), a €(,2) . Then the estimate (3.27) will be write

[ ]l wtxdtdx T, (3. 28)

NIR

where 6 =(p,n,y,r)>0. Then after passing to the limit T — oo in (3.27) and using the dominated
convergence theorem and the fact that

!im w(t,x)=1forall (t,x)e(0,T)xR",
It follows
'[Ow'[Rn|u|pdtdx =0.

This gives immediately u =0 and this is a contradiction to (2.8).

(2) For r =0, the function b =1. Repeating the estimate from the previous subsection we arrive at
(|3 =0)

(a+ﬂ)p=na"1 (1+,H)p{na"1 (a+ﬁ)plna"1

[ [Pvoodaxcc = 2 tr e B

As above we derive the condition
p S na +2
p-1" 2(8+1)
that is condition (2.10) with =€ (0,1), @ € (1,2) . In the same way we conclude u =0 and this a
contradiction to (2.8).

(3) When r € (0,-1), then the function b =b(t) = (1+1)" is decreasing. Then

(B PPy P __(s+)p

- - 1
<-|- p-1 p-l+sp <-|- p-1 (2+s)p-1 .

IZN ’ISN

Next, we can conclude the following estimate:

P 2y —(/5'+1)L— P ey p___Ls)p e

T ~(a+p)-E -
IQ IO |u|pv,//(t,x)dtdx<C(T Lz 4T ploplesp 2 el (Ze)pl 2 T

T

_ L
(a+p) p—1+ 2 +1)

(3.29)

To have all exponents of T on the right-hand side are negative it is sufficient to guarantee
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—(a+ﬂ)i+n—a+l<0 and —f8 p___(+9)p %<0,
p-1 2 p-1 (2+s)p-1 2

The first inequality implies the relation

p . na +2
p-1" 2(a+pB)

From the second inequality we verify

p >(s+1)na—25+\/(2ﬂ+(s+1)na2+ 1

p-1 45(s+1) 48(s+1) B(s+1)

Cause of s =—r, we derived the condition

—>infmax{ na +2 _(1—r)na—2ﬂ+ (2ﬁ+(1—r)na)2+ 1 } (3. 30)
p-1 2a+p)" 4BL-r) 48(1-r) pL-n~’ '

that is condition (2.11) with £ €(0,1) and « €(1,2) . Then find the estimate

P

[ [ P vt dtax ST, (3.31)
Qg 0

T

where & =d(p,n,y,r)>0. Then after passing to the limit T — oo in (3.31) and using the dominated
convergence theorem and the fact that

!mw(t, x) =1 forall (t,x)e(0,T)xR",
It follows
J.:J.Rn|u|pdtdx =0.
This gives immediately u =0 and this is a contradiction to (2.8).
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