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Abstract: In this paper we present analytic solutions of a class of matrix minimization model with 

unitary constraints as follows: 
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where 
m n

kA C , 
n t

kB C , 
t m

kC C , 
m n

C  denotes m n  complex matrix set, and c  is a 

complex number, mI  denotes the m -order identity matrix, det( )  and tr( )  denote matrix determinant 

and trace function, respectively. The proposed results improve some existing ones in Xu (2019) [1]. 

Numerical examples are given to verify the validity of the theoretical results. 

Keywords: constrained matrix minimization model, determinant function, trace function, unitary 

constraints. 

1. Introduction 

The matrix optimization model with unitary constraints has important applications in Kronecker canonical 

form of a general matrix pencil, linearly constrained least-squares problem, test signals of mechanical 

systems, and aero engine fault diagnosis, see [2,3,4,5]. 

The latest significant application of matrix optimization model with unitary constraints is in the data 

analysis of DNA micro-array analysis [6,7,8,9]. Xu [1] in 2019 considered the upper bound of chordal 

metric between generalized singular values of Grassman matrix pairs with the same number of columns, 

which can be applied in comparing two sets of DNA micro-arrays of different organisms. Motivated by 

the applications, in this paper we consider analytic solutions of a class of matrix minimization model with 

different dimensional unitary constraints. The considered matrix minimization model are as follows: 
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where c  is a complex number and , ,k k kA B C  are , ,m n n t t m    complex matrices, respectively. In 

this paper we will discuss their analytic solutions. 
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1.1. Literature review 

The existing works related to the constrained matrix problems (1.1) and (1.2) are summarized as follows. 

John von Neumann in 1937 [10] and K. Fan in 1951 [11] studied the maximum value problem of trace 

function for the same dimensional matrix. They presented 
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where  Re x  denotes the real part of the complex number x . A special case of (1.3) was studied by Lu 

[12], where 2m = , and both 1A  and 2A  are positive diagonal matrices with the main diagonal elements 

between 0 and 1 descending simultaneously or in ascending order. Moreover, Sun provided the Hoffman-

Wielandt-type theorem for generalized singular values of Grassman matrix pairs [13,14,15]. Xu et al. [16] 

also considered the constrained optimization problems of Grassman matrix pairs and they presented 
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where min{ , }r m n= , 
k

i  and 
k

i  denote the i -th singular value of 
k  and 

k , which are m n  and 

n m  complex matrices, respectively. Compared with the above special cases, (1.1) and (1.2) are more 

complicated because they involved more unitary constrained conditions. These motivated us to use new 

technique for giving the analytic solutions of (1.1) and (1.2). 

1.2. Organization 

The rest of this paper is organized as follows. In Section 2 we will give some notations and lemmas, 

which are useful to deduce the main results. In Section 3 we will provide the analytic solutions of (1.1) 

and (1.2). In Section 4 numerical examples are given to illustrate the theoretical results. Finally, 

concluding remarks are drawn in Section 5. 

1.3. Notation 

Throughout this paper we always use the following notations and definitions. Let R , C , 
m n

C  and nU  

be the sets of real numbers, complex numbers, m n  complex matrix set and n n  unitary matrices, 

respectively. | |  and [ ]Re   stand for absolute value and real part of a complex number, respectively. The 

symbols mI  and m nO   stand for the identity matrix of order n  and m n  zero matrix, respectively. For a 

matrix 
n nC , det( )  and tr( )  denote the determinant and trace of the matrix  , respectively. We 

denote by ( )i   the set of its singular values, and throughout the paper we assume that its singular 

values are arranged in decreasing order, i.e., 1 2( ) ( ) ( ) 0n         . 

2. Preliminaries 

Lemma 2.1 [1] Let 1, , n n

mA A C  with singular values 1 2( ) ( ) ( ), 1, ,j j n jA A A j m     =  
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and cR . We have the following conclusions: 
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Then the following issues hold true. 
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where the singular values of , ,k k kH   are arranged in decreasing order. This completes the proof. 

3.  Analytic solutions of problems (1.1) and (1.2)  

In this section we provide analytic solutions of constrained matrix minimization models (1.1) and (1.2) as 

follows. 
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where the singular values of , ,k k kA B C are arranged in decreasing order. 

Proof. (i) If  max{ , , },p m n t= min{ , , }r m n t=   and by singular value decompositions of ,kA ,kB kC  

we have 

   , , ,k k k k k k k k k k k kA P Q B M N C S H T=  =  =             (3.3) 

 

where 
1, ,k k mT P + U , ,k k nQ M U , ,k k tN S U 1, ,k s= and assume that 

1 1sP P+ = , 

( , , ) ,k m n

k rdiag O C  =   ( , , ) ,k n t

k rdiag O C  =   ( , , )k t m

k rH diag H O C =   and min{ , , }r m n t=  

with 

1 1 1( , , ), ( , , ), ( , , ),k k k k k k k k k

r r r r r rdiag diag H diag h h    =  = =  

1 1 10, 0, 0.k k k k k k k

r r r rH h h         =     

It follows that 

                         
1 1

.
s s

m k k k k k k m k k k k k k k k k k k k

k k

cI A U B W C V cI P Q U M N W S H T V
= =

 =                                 (3.4) 

Let ,k k k k nQ U M U U ,k k k k tN W S W U 1 ,k k k k mT V P V+  U then we have 
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, ,
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
, ,

, ,
1

min | det( ) |

min | det( [ ] ) |

min | det( ) | .

k n k t k m

k n k t k m

k n k t k m

s

m k k k k k k
U W V

k

H

m s s s s s s s
U W V

s

m k k k k k k
U W V

k

cI A U B W C V

P cI P QU M N W S H TV N W S H T V P

cI U W H V

  
=

  

  
=



=    

=   





U U U

U U U

U U U

           (3.5)

 

which together with Lemma 2.1 lead to (3.1) hold true. 

(ii) If max{ , , },p m n t= then min{ , , },r m n t= and by singular value decompositions of , ,k k kA B C we have 

, , ,k k k k k k k k k k k kA P Q B M N C S H T=  =  =  

where 
1, ,k k mT P + U , ,k k nQ M U , ,k k tN S U 1, ,k s= and assume that 

1 1sP P+ = , 

( , , ) ,k m n

k rdiag O C  =   ( , , ) ,k n t

k rdiag O C  =   ( , , )k t m

k rH diag H O C =   and min{ , , }r m n t=  

with 

1 1 1( , , ), ( , , ), ( , , ),k k k k k k k k k

r r r r r rdiag diag H diag h h    =  = =  

1 1 10, 0, 0.k k k k k k k

r r r rH h h         =     

Similar to the derivation in (3.3) and (3.4), we can inferred  

, ,
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
, ,

, ,
1

min | tr( ) |

min | tr( [ ] ) |

min | tr( ) | .

k n k t k m

k n k t k m

k n k t k m

s

m k k k k k k
U W V

k

H

m s s s s s s s
U W V

s

m k k k k k k
U W V

k

cI A U B W C V

P cI P QU M N W S H TV N W S H T V P

cI U W H V

  
=

  

  
=



=    

=   





U U U

U U U

U U U

            (3.6)

 

which together with Lemma 2.1 and (3.6) lead to (3.2) hold true. This completes the proof. 

Remark 1 A few comments are in order. 

• When ,m n t= = 1k = and , ,k k k k k kA B C H=  =  = are nonnegative diagonal matrices with 

10 ,n     10 ,n    10 nh h   then min{ , , }r m n t= and Theorem 3.1 reduces to 

Lemma 2.8 of [1] and Theorem 3.2 reduces to Lemma 3.1 of  [1], respectively. This implies that 

Theorems 3.1 and 3.2 improve Lemmas 2.8 and 3.1 of [1] partially. 

• In Theorems 3.1 and 3.2 we provide analytic solutions of extended constrained matrix minimization 

problems with different dimensional matrices. The results of this research improve Lemmas 2.8 and 3.1 of 

[1] partially to more general cases, which can be further applied in gene data analysis with different 

dimensional datasets. 

4. Numerical examples 
In this section we will give some synthetic examples to illustrate the efficiency of the proposed theoretical 

results. 

(i) Case 1: for max{ , , },m m n t= let
6 4

2 4

,
k

k

F
A

I





 
=  
 

C 4 2 ,k

kD E
B

kD E


+ 

=  
− 

C  and 

( ) 2 6

2 6 ,k

kC D E I 

= + C  where 1,2,3,4k = and ,C D are generated by MATLAB command 

randn(2)+randn(2)*i and F are generated by MATLAB command randn(4)+randn(4)*i . Let 2c i= , we 
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use the command ( )orth   to generate 5000 groups of different random unitary matrices , , ,k k kU W V  the 

results in Fig. 1 and  Fig. 2. 

 

Fig. 1: Computing 

4

1

| det( ) |m k k k k k k

k

cI A U B W C V
=

 .     Fig. 2: Computing 

4

1

| tr( ) |m k k k k k k

k

cI A U B W C V
=

 . 

In Fig. 1 the green line represent the value of 
1 1

4

( ( ) ( ) ( ) | |)
r

i k i k i k

i k

A B C c  
= =

−  . The blue dots indicate 

that the value of 
1

| det( ) |
s

m k k k k k k

k

I A U B W Cc V
=

  with 5000 groups of different random unitary matrices 

, , .k k kU W V If let ,H H

k k kU Q M= ,H H

k k kW N S= and 
1,

H H

k k kV T P += with , ,k kQ M , ,k kN S 1,k kT P + given by 

(3.3), then 
1

0 | det( ) |
s

m k k k k k k

k

I A U Bc Wa C V
=

=   is computed marked by red "*". Seen in Fig. 1 we have 

0

1 1

4

( ( ) ( ) (| d .) | |e ( | )t )
r

i k i k i k

i

m

k

k k k k k kcI A U B W C c aV A B C  
= =

=  − 
 

In Fig. 2 the green line represent the value of 
4

1 1

| | ( ( ) ( ) ( ))
r

i k i k i k

i k

m c A B C  
= =

−  . The blue dots 

calculated from 5000 groups of samples represent 
4

1

| tr( ) | .m k k k k k k

k

cI A U B W C V
=

  If let 

,H H

k k kU Q M= ,H H

k k kW N S= and 
1,

H H

k k kV T P += with , ,k kQ M , ,k kN S 1,k kT P + given by (3.6), then 

0

1

4

) || tr( m k k k k k k

k

b cI A U B W C V
=

=   is computed marked by red "*". Seen in Fig. 2 we have 

0

1 1

4

| tr( ) | | | ( ( ) ( ) ( )) .
r

i k i k i k

i k

m k k k k k k m c A B C bcI A U B W C V   
= =

=  − 
 

(ii) Case 2: for max{ , , },n m n t=
 
let 

5 10

5

,
k

k

D
A

I


 

=  
 

C ( ) 4 12

2 8 ,kB k E I 

= C and 

12 8

3 5

,
k

k

D
C

I





 
=   
 

C  where 1,2k = and ,C D are generated by MATLAB command randn(5)+randn(5)*i 

and F are generated by MATLAB command randn(8)+randn(8)*i . Let 20 10c i= − , we use the 

command ( )orth  to generate 5000 groups of different random unitary matrices , , ,k k kU W V  the results in 

Fig. 3 and Fig. 4. 
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Fig. 3: Computing 
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 .  Fig. 4: Computing 
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I A U B W Cc V
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  with 5000 groups of different random unitary 

matrices , , .k k kU W V If let ,H H
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k k kW N S= and 
1,

H H

k k kV T P += with 
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I A U Bc Wa C V
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by red "*". Seen in Fig. 3 we have 
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In Fig. 4 the green line represent the value of 
2
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i k i k i k

i k

m c A B C  
= =

−  . The blue dots 

calculated from 5000 groups of samples represent 
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1

| tr( ) | .m k k k k k k
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cI A U B W C V
=

  If let 

,H H

k k kU Q M= ,H H

k k kW N S= and 
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H H

k k kV T P += with , ,k kQ M , ,k kN S 1,k kT P + given by (3.6), then 

1

0
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=

=   is computed marked by red "*". Seen in Fig. 4 we have 

0

1 1
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i k

m k k k k k k m c A B C bcI A U B W C V   
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(iii) Case 3:  for max{ , , }t m n t= , let 
8 4

4

,k

k D
A

I


 

=   
 

C ( ) 4 12

4 8 ,k
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,
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F
C

I





 
=   
 

C  where 1,2,3k = and ,C D are generated by MATLAB command 

randn(4)+randn(4)*i and F are generated by MATLAB command randn(8)+randn(8)*i . Let 1c i= + , 

we use the command ( )orth  to generate 5000 groups of different random unitary matrices , , ,k k kU W V  

the results in Fig. 5 and Fig. 6. 
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1

0 | det( ) |
s

m k k k k k k

k

I A U Bc Wa C V
=
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In Fig. 6 the green line represent the value of 
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Hence, case (i)-(iii) verify the efficiency of Theorem 3.1. 

5. Concluding remarks 

In this paper we give analytic solutions of a class of constrained matrix minimization problems as follows: 

, ,
1

min | det( ) |
k n k t k m

m k k k k k

k

s

k
U W V

cI A U B W C V
  

=
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U U U

 

, ,
1

4

min | r( ,) |t
k n k t k m

m k k k k k k
U W V

k

cI A U B W C V
  

=


U U U

 

where , ,,m n n t t m

k k kA B C    C C C  c  is a complex number, mI  denotes the m-order identity matrix, 
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m n
C  denotes m n  complex matrix set, det( )  and tr( )  denote matrix determinant and trace function, 

respectively. Our proposed results improve the corresponding existing ones in [1]. Numerical examples 

are given to illustrate the efficiency of the proposed theoretical results. 

6. References 

[1]   W. W. Xu, W. Li, L. Zhu and X.P. Huang, The Analytic Solutions of a Class of Constrained Matrix 

Minimization and Maximization Problems with Applications, SIAM Journal on Optimization, 29 (2019), 

pp.1657-1686. 

[2]   W. W. Xu, H. K. Pang, W. Li and W. J. Sun, On the Explicit Expression of Chordal Metric between 

Generalized Singular Values of Grassmann Matrix Pairs with Applications, SIAM Journal on Matrix Analysis 

and Applications, 39 (2018), pp.1547-1563. 

[3]   Y. Shen, X.Liu, An alternating minimization method for matrix completion problems, Discrete and Continuous 

Dynamical Systems-S, 13 (2020), pp.1757-1772. 

[4]   B. Gao, X. Liu, Y. X.Yuan, Parallelizable Algorithms for Optimization Problems with Orthogonality 

Constraints, SIAM Journal on Scientific Computing, 2018, 41 (2018), pp.1949-1983. 

[5]   C. C. Paige, M. A.Saunders, Towards a Generalized Singular Value Decomposition, SIAM Journal on 

Numerical Analysis, 18 (1981), pp.398-405. 

[6]   Y. H. Zha, A numerical algorithm for computing the restricted singular value decomposition of matrix triplets, 

Linear Algebra and Its Applications, 168 (1992), pp.1-25. 

[7]   V. G. Volkov, D. N. Dem'Yanov, Application of Matrix Decompositions for Matrix Canonization, 

Computational Mathematics and Mathematical Physics, 59 (2019), pp.1759-1770. 

[8]   H. Sato, T. Iwai, A Riemannian optimization approach to the matrix singular value decomposition, Siam 

Journal on Optimization, 23 (2013), pp.188-212. 

[9]   Z. Wen, C. Yang, X. Liu, Trace-Penalty Minimization for Large-Scale Eigenspace Computation, Journal of 

Scientific Computing, 66 (2016), pp.1175-1203. 

[10]   F. van Loan, Generalizing the singular value decomposition, SIAM Journal on Numerical Analysis, 13 (1976),     

pp.76-83. 

[11]   K. Fan, Maximum Properties and Inequalities for the Eigenvalues of Completely Continuous Operators,    

Proceedings of the National Academy of Sciences of the United States of America, 37 (1951), pp.760-766. 

[12]   Q. K. Lu, The elliptic geometry of extended spaces, Acta Mathematica Scientia, 13(1963), pp.49-62. 

[13]   J. G. Sun,  Perturbation Analysis for the Generalized Singular Value Problem, Siam Journal on Numerical  

Analysis, 20 (1983), pp.611-625. 

[14]   J. G. Sun, Perturbation analysis of generalized singular subspaces, Numerische Mathematik, 79 (1998), 

pp.615-641. 

[15]   J. G. Sun, Condition Number and Backward Error for the Generalized Singular Value Decomposition, SIAM    

Journal on Matrix Analysis and Applications, 22 (2000), pp.323-341. 

[16]   W. W. Xu, Y. Lu, L.Zhu, An extension of analytic solutions of a class of constrained matrix minimization 

problems, Journal of Computational and Applied Mathematics, 372 (2020), pp.1-11. 


