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Abstract: In many computer vision tasks, the extraction of features invariant to affine transform plays 

an important role. To achieve better accuracy, region-based approaches usually need expensive 

computation. Whereas, contour-based methods need less computation, but their performance is strongly 

dependant on the boundary extraction. A method, generic polar radius integral transform (GPRIT), is 

proposed to combine region-based and contour-based method together for the extraction of affine 

invariant features. Polar radius integral transform and central projection transform are all special cases 

of the proposed GPRIT. With GPRIT, any object is converted into a closed curve for data reduction. 

Consequently, stationary wavelet transform is conducted to construct affine invariants. Several 

experiments have been presented to evaluate performance of the proposed GPRIT. 

Keywords: generic polar radius integral transform (GPRIT), invariant, affine transform, feature 

extraction. 

1. Introduction 

Image is an important communication tool and information medium in daily production and life. Image 

feature extraction is one of the key technologies in computer vision and pattern recognition. Affine 

transform, including rotation, translation, scaling and shearing transformations[1][2], can be used as the 

approximate model for images of the same object from different viewpoints. Affine invariant features 

have been applied to target recognition[3][4][5][6], image registration[7][8], digital 

watermarking[9][10] and many other fields. Hence, the study of affine invariant feature extraction has 

attracted wide attention[11][12]. 

To extract affine invariant features, a great number of methods have been developed. Based on 

whether invariant features are extracted from the contour only or from the whole shape region, these 

methods can be divided into categories:[13][14][15][16] contour-based and region-based. Both of these 

two types of methods have their merits and shortcomes. 

Contour-based techniques employ boundary of objects for the extraction of invariant features, and 

they are often of better data reduction. Fourier descriptor[17][18] and wavelet transform[19][20][21] 

are two widely utilized contour-based technique. But contour-based methods are strongly dependant on 

the extraction of contours. They are usually invalid to objects which are consisting of several 

components. Consequently, applications of contour-based methods are limited. 

In contrast to contour-based techniques, region-based approaches usually get high accuracy, but 

some of these approaches are of high computational demands. Affine moment invariants (AMIs)[22][23] 

are the most famous region-based method. But AMIs are sensitive to noise. To improve robustness of 

moment-based techniques to noise, cross-weighted moment (CWM)[24] and multi-scale 

autoconvolution (MSA)[25] have been put forward. But the computational cost of these methods are 

extremely expensive. 

In this paper, generic polar radius integral transform (GPRIT) is proposed to combine 

contour-based technique with region-based technique. By GPRIT, any object is converted into a closed 

curve. All pixels in the image have been utilized. Then, parameterization and stationary wavelet 

transform are conducted on the obtained closed curve. The utilized technique is contour-based. 
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Recently, central projection transform (CPT)[26] and polar radius integral transform (PRIT)[27] have 

been proposed to combine region-based and contour-based techniques together. They are only special 

cases of the proposed GPRIT. Experiments have also been conducted to demonstrate performance of 

the proposed GPRIT. Results show that the derived features are invariant to affine transform. 

Furthermore, GPRIT with small s is more robust to noise. 

The rest of this paper is organized as follows: In section 2, the definition of GPRIT is provided. 

The affine invariance is also discussed. Algorithm is developed for the extracting of affine invariant 

features in section 3. Experimental results are presented in section 4. Finally, some conclusion remarks 

are given in section 5. 

2. GPRIT and its affine invariance 

The definition of GPRIT is provided. Affine invariance of GPRIT is also discussed. 

2.1. Definition of GPRIT 

To conduct GPRIT on an image ( , )I x y , the Cartesian coordinate system needs to be transformed to 

polar coordinate system. The origin is firstly translated to ),( 00 yxO , the centroid of image ( , )I x y .  

Here, 
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In polar coordinate system, ( , )f r   is utilized to denote image ( , )I x y . 

Definition 1. For 0s   and ,h t R , the generic polar radius integral transform (GPRIT) of 

image ( , )f r   is defined as follows: 
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By Eq .(1), it can be observed that )(, t

hsg  is a single-valued function. The set 

)}2,0[|)sin)(,cos)({ ,,  t

hs

t

hs gg  forms a closed curve in Cartesian coordinate system. 

As a result, GPRIT converts any object into a closed curve )(, t

hsg . For example, Fig. 1(a) is an 

image of Coil-20 and Fig. 1(b) is the GPRIT of Fig. 1(a). It is a closed curve. In this paper, GPRIT is 

employed to extract affine invariant features. 

Remark 1. GPRIT is the generalization of PRIT and CPT. 

In fact, if we set 0s t= =  and 1h = , then )(, t

hsg  in Eq .(1) is the same as CPT defined in 

[26]. If we set 0t = , then )(, t

hsg  in Eq .(1) is the same as PRIT defined in  [27]. 

2.2. Affine invariance of GPRIT 
Affine transform is the transformation defined as follows 
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A  is a non-singular matrix. For perspective distortions, affine transform can be 

utilized as the best linear approximation model [1][2]. It includes not only similarity transform 

(translation, rotation and scaling ), but also shearing. The following theorem shows that the proposed 

GPRIT keeps the affine transform relation. 

Theorem 1. For 0s   and h R , let 1)1( −+= sht , )
~

,~(
~

rf  denotes the affine transformed 

image of ( , )f r  . Let )
~

(~
, t

hsg  be GPRIT of )
~

,~(
~

rf , and )(, t

hsg  be GPRIT of ( , )f r  . 

Then the following relations hold  
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As mentioned previous, )
~

(~
, t

hsg  and )(, t

hsg  convert images ( , )f r   and )
~

,~(
~

rf  into 

closed curves. The above theorem shows that )
~

(~
, t

hsg  and )(, t

hsg  keep the affine transform 

relation between ( , )f r   and )
~

,~(
~

rf . For instance, Fig. 1(a) and Fig. 1(c) present an image in 

coil-20 and its affine transform. Fig. 1(b) and Fig. 1(d) show GPRIT (closed curves) derived from Fig. 

1(a) and Fig. 1(c) respectively. Here 1, 3s h= = − . It can be observed that GPRITs extracted form 

the original image ( , )f r   and affine transformed image )
~

,~(
~

rf  also satisfy the same affine 

transform relationship. 

 

Fig. 1: (a) A gray scale image. (b) The closed curve  derived from Fig. 1(a). (c) Affine image 

from Fig. 1(a). (c) The closed curve  derived from Fig. 1(c). 

3. The extraction of affine invariant with GPRIT 

By GPRIT , a closed curve can be derived from any object. In order to apply contour-based methods to 

the obtained GPRIT should firstly be parameterized. Thereafter, affine invariant features could be 

extracted from the parameterized curve. We apply wavelet-based methods to the derived closed curve 

in this study. 

3.1. Parameterized GPRIT 
GPRIT should be parameterized to establish one-to-one points correspondence between the obtained 

closed curve and its affine transformed version. The curve normalization approach used in this paper 

mainly composes of the following steps which is called as EAN in [31]: 

• For the discrete GPRIT }1,,2,1,0:))(),({( −= Nkyx kk  , compute the total area of  the 

closed curve by the following formula 
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Let the number of points on the contour after EAN be N too. Denote NSS part /= . 

• Select the starting point on GPRIT as the starting point ))('),('( 000  yxP  of the normalized 

 curve. From ))('),('( 000  yxP , search a point  ))('),('( 111  yxP  along GPRIT, such that 

 the  area of each closed zone, namely the polygon 10OPP  equals to partS , where O denotes 

 the centroid of the object. 

• Using the same method, from point ))('),('( 111  yxP , calculate all the points 

 }1,,2,1{)),('),('( − NiyxP kki   along GPRIT. 

3.2. Extraction of affine invariant features with wavelet transformation 

We will derive affine invariant features from the normalization GPRIT by SWT.  

)(, t

hsg

)(, t

hsg
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Let )](),([  yx  be the normalized GPRIT of object 
1F , and )]~(~),~(~[  yx  be that of 

2F , 

an affine transformation version of 
1F . Based on the determinant properties, the basic relative 

invariance function can be defined as follows: 

),()()()(),,(  xWyWyWxWjiS jiji −=
 

where W is the SWT operator, and ji,  are the resolution level indexes )( ji  . The above S can be 

normalized as follows 

 ,
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
 =  (5) 

where •  denotes the norm of )(2 RL . Then ),,( jiI  in Eq .(5) is an absolute invariant. 

),,( jiI  in Eq .(5) will be utilized as an invariant representation of the object. In the rest of this 

paper, the resolution level indexes i  and j  in Eq .(5) are omitted for brevity, and denote 

),,( jiI  as )(I . To eliminate the effect of starting point for )(I , a one-dimensional 

Fourier-transform is applied on )(I . The effect of starting point is eliminated by ignoring the phase 

in the coefficient and only keeping the magnitudes of the coefficient. 

 

 

 

Fig. 2: (a) 30 fish images. (b) 30 Chinese characters. (c) 26 English capital letters. 

4. Experiments 

In this section, the proposed method is tested with the following experiments. Firstly, it is shown that 

the extracted features are invariant to affine transform. Secondly, we test the algorithm of affine 

invariant feature extraction based on GPRIT with additive noise. 

Four databases of images are employed to test the performance of the proposed method. 20 

images in the famous Columbia Coil-20[30] and Fig. 2(a) are employed to test performance of the 

proposed method to gray-scale images. Each image is size of 128128 in Coil-20. Fig. 2(a) contains 

30 fish images. The size of these images is 400 200 . Fig. 2(b) and Fig. 2(c) are employed to test 

the performance of GPRIT to binary images. Fig. 2(b) shows 30 Chinese characters. The size of each 
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image in Fig. 2(b) is 256256 . Fig. 2(c) includes 26 English capital letters with Times New Roman 

front, and each letter is of size 256256 .  

4.1. Affine invariance 

In this subsection, affine invariance of the proposed method is tested with several similar Chinese 

characters in Fig. 2(b). Results on other images are similar. 

4.2. Robustness to noise 

Let ))(,),(),(( 110 −= NFFFY    be resample vector for GPRIT of image ).( rf , and 

))
~
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110 −= NFFFY    be resample vector for GPRIT of image )
~

.~(
~

rf . Furthermore, 

set N=511. Let 
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It is clearly that Eq .(6) can be used to measure the effect of noise on the general contour. 

Considering the influence of the parameters of GPRIT and intensities of Gaussian noise 

on extraction of affine invariant features. In this experiment, we still select Coil-20[30] and 

Fig. 2(a) as test image. Firstly, the affine invariant features are compared with AMIs and 

MSA when parameter 1s = , h  is -1.00, -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75, 

respectively. The experimental results are as shown in Table 1. Secondly, the affine invariant 

features are compared with AMIs when parameter 1h = − , s  is 0, 0.25, 0.50, 0.75, 

1.00 ,1.25, 1.50, 1.75, 2.00, respectively. In this experiment, AMIs method takes 3 affine 

invariants and MSA method selects 29 affine invariants, the mean value of Gaussian noise is 

0, and intensities of Gaussian noise are 0.001, 0.002, 0.003, 0.004, 0.005, and 0.006, 

respectively. According to Eq .(6), relative errors of GPRIT before and after adding Gaussian 

noise are calculated. The experimental results are as shown in Table 2. Here that no matter 

how s and h change, relative errors of GPRIT are smaller than that of AMIs and MSA with 

the increase of noise. That is to say, robustness of GPRI is better. 

Considering the influence of the parameters of GPRIT and the level of ‘salt&pepper’ 

noise on extraction of affine invariant features. In this experiment, we still select 30 character 

images and 26 English capital letters as test images. Firstly, the affine invariant features are 

also compared with AMIs and MSA when parameter 1s = , h  is -1, -0.75, -0.50, -0.25, 

0.00, 0.25, 0.50, 0.75, respectively. The experimental results are as shown in Table 3  

Table 1: Errors of GPRIT of different h in Coil-20[30] when s =1 with different Gaussian noise 

parameters intensity of Gaussian noise 

s=1 noise free 0.001 0.002 0.003 0.004 0.005 0.006 

h=-1 0.0213 0.1111 0.1364 0.1521 0.1648 0.2121 0.1854 

h=-0.75 0.0202 0.0995 0.1225 0.1496 0.1401 0.1616 0.1687 

h=-0.50 0.0190 0.0906 0.0998 0.1280 0.1371 0.1488 0.161 

h=-0.25 0.0176 0.0815 0.1147 0.1216 0.1482 0.1487 0.1797 

h=-0.00 0.0165 0.0963 0.1130 0.1353 0.1578 0.1776 0.1825 

h=0.25 0.0159 0.1073 0.1527 0.1756 0.1966 0.2250 0.2480 

h=0.50 0.0217 0.1611 0.2221 0.2592 0.2841 0.3138 0.3344 

h=0.75 0.0241 0.2219 0.2992 0.3418 0.3816 0.4092 0.4318 

AMIs 0.0008 0.7134 0.8344 0.8988 0.9415 0.9587 0.9790 

MSA 0.0081 0.2611 0.3404 0.3944 0.4364 0.4673 0.4938 
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Secondly, affine invariant features are compared with AMIs when parameter 1h = − , 

s  is 0, 0.25, 0.50, 0.75, 1.00 ,1.25, 1.50, 1.75, 2.00, respectively. In this experiment, AMIs 

method takes 3 affine invariants and MSA method selects 29 affine invariants, and each 

image adds noise. Intensities of noise are 0, 0.001, 0.002, 0.003, 0.004, 0.005, and 0.006. 

According to Eq .(6), relative errors of GPRIT before and after adding ‘salt&pepper’ noise 

are calculated. The experimental results are as shown in Table 4. The experimental results for 

binary images also show that with the increase of noise, relative errors of GPRIT are smaller 

than that of AMIs and MSA. In other words, GPRIT is more robust. 

Table 2: Errors of GPRIT of different s in Coil-20[30] when h=-1 with different Gaussian noise 

parameters intensity of Gaussian noise 

h=-1 noise free 0.001 0.002 0.003 0.004 0.005 0.006 

s=0.25 0.0189 0.0833 0.1173 0.1339 0.1662 0.1685 0.1736 

s=0.50 0.0203 0.0898 0.1174 0.1353 0.1478 0.1648 0.1706 

s=0.75 0.0210 0.1016 0.1288 0.1391 0.1445 0.1572 0.1909 

s=1.00 0.0213 0.1111 0.1364 0.1521 0.1648 0.2121 0.1854 

s=1.25 0.0217 0.1290  0.1543 0.1744 0.1902 0.1753 0.2064 

s=1.50 0.0225 0.1459 0.1724 0.1802 0.2011 0.2139 0.1952 

s=1.75 0.0234 0.1652 0.1909 0.2044 0.2093 0.2251 0.2308 

s=2.00 0.0242 0.1840 0.2109 0.2225 0.2373 0.2344 0.2422 

AMIs 0.0008 0.7134 0.8344 0.8988 0.9415 0.9587 0.9790 

MSA 0.0081 0.2611 0.3404 0.3944 0.4364 0.4673 0.4938 

Table 3: Errors of GPRIT of different h in Fig. 2(b) when s=1 with different ‘salt&pepper’ noise 

parameters intensity of  ‘salt&pepper’ noise 

s=1 noise free 0.001 0.002 0.003 0.004 0.005 0.006 

h=-1 0.0426 0.0595 0.0784 0.1144 0.1322 0.1639 0.1937 

h=-0.75 0.0361 0.0582 0.0823 0.1107 0.1376 0.1590 0.1836 

h=-0.50 0.0295 0.0479 0.0750 0.0904 0.1148 0.1351 0.1740 

h=-0.25 0.0259 0.0418 0.0643 0.0919 0.1071 0.1188 0.1419 

h=-0.00 0.0242 0.0376 0.0526 0.0766 0.0868 0.105 0.1143 

h=0.25 0.0222 0.0347 0.0425 0.0634 0.0761 0.0915 0.0983 

h=0.50 0.0332 0.0448 0.0589 0.0703 0.0888 0.0998 0.1095 

h=0.75 0.0358 0.0818 0.117 0.1539 0.1917 0.2228 0.2503 

AMIs 0.0092 0.7979 1.4354 2.1057 2.5642 3.2236 3.5866 

MSA 0.0274  0.2010  0.2509  0.2914  0.3835  0.4184  0.4934  

Affine transforms are generated by the following transform matrix: 
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where {0.8,1.2}k , {1, 2}  , {0 ,72 ,144 ,216 ,288 }
    

 , { 1.5, 1, 0.5,0,b − − −  

0.5,1,1.5} . Therefore, each image is transformed 140 times. In the following experiments, the 

classification accuracy is defined as: 
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100%,r

t

n

N
 =   

where rn  denotes the number of correctly classified images, tN  denotes a total number images 

applied in test. 

Table 4: Errors of GPRIT of different s in Fig. 2(b) when h=-1 with different ‘salt&pepper’ noise 

parameters intensity of  ‘salt&pepper’ noise 

h=-1 noise free 0.001 0.002 0.003 0.004 0.005 0.006 

s=0.25 0.0272 0.0439 0.0666 0.0881 0.1124 0.1265 0.1525 

s=0.50 0.0309 0.0485 0.0739 0.0975 0.1200 0.1372 0.1745 

s=0.75 0.0370 0.0619 0.0775 0.1078 0.1308 0.1504 0.1997 

s=1.00 0.0426 0.0566 0.0850 0.1190 0.1470 0.1685 0.2016 

s=1.25 0.0447 0.0618 0.0905 0.1172 0.1491 0.1742 0.1802 

s=1.50 0.0417 0.0632 0.0826 0.1068 0.1224 0.1705 0.1994 

s=1.75 0.0446 0.0720 0.1050 0.1312 0.1563 0.1669 0.2087 

s=2.00 0.0483 0.0793 0.1028 0.1364 0.1496 0.2106 0.2307 

AMIs 0.0092 0.7979 1.4354 2.1057 2.5642 3.2236 3.5866 

MSA 0.0274  0.2010  0.2509  0.2914  0.3835  0.4184  0.4934  

Considering the influence of the parameter of GPRIT and the intensities of Gaussian noise on 

extraction of affine invariant features. In this experiment, we still select 20 gray-scale images in 

Coil-20[30] and 30 fish images in Fig. 2(a) as test images. Firstly, the affine invariant features are 

compared with AMIs and MSA when parameter 1s = , h  is -1.00, -0.75, -0.50, -0.25, 0.00, 0.25, 

0.50, 0.75, respectively. The experimental results are as shown in Fig. 3(a) and Fig. 3(b). Secondly, the 

affine invariant features are compared with AMIs and MSA when parameter 1h = − , s  is 0, 0.25, 

0.50, 0.75, 1.00 ,1.25, 1.50, 1.75, 2.00, respectively. In this experiment, AMIs method takes 3 affine 

invariants and MSA method selects 29 affine invariants, the mean value of Gaussian noise is 0, and the 

intensities of Gaussian noise are 0, 0.001, 0.002, 0.003, 0.004, 0.005, and 0.006, respectively. The 

experimental results are as shown in Fig. 3(c) and Fig. 3(d). With the increase of noise, accuracy of 

AMIs and MSA decreases obviously. Accuracy of GPRIT decreases with the increase of noise intensity. 

However, accuracy of GPRIT is higher than that of AMIs and MSA when intensity of noise is same. 

That is to say, the invariants constructed based on GPRIT have better robust performance. 

Considering the influence of the parameter of GPRIT and the intensities of ‘salt&pepper’ noise on 

extraction of affine invariant features. In this experiment, we still select Fig. 2(b) and 26 English capital 

letters as test image. Firstly, affine invariant features are also compared with AMIs and MSA when 

parameter 1s = , h  is -1, -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75, respectively. The experimental 

results are as shown in Fig. 4(a) and Fig. 4(b). Secondly, affine invariant features are compared with 

AMIs and MSA when parameter 1h = − , s  is 0, 0.25, 0.50, 0.75, 1.00 ,1.25, 1.50, 1.75, 2.00, 

respectively. In this experiment, AMIs method takes 3 affine invariants and MSA method selects 29 

affine invariants, and each image adds  ‘salt&pepper’ noise. Intensities of noise are 0, 0.001, 0.002, 

0.003, 0.004, 0.005, and 0.006. The experimental results are as shown in Fig. 4(c) and Fig. 4(d). 

With the increase of noise, the accuracy of AMIs and MSA decreases obviously. Accuracy of 

GPRIT decreases with the increase of noise intensity. However, the accuracy of GPRIT is higher than 

that of AMIs and MSA. That is to say, the invariants constructed based on GPRIT have better robust 

performance. 

Experiments are carried out on binary images, and the results are consistent with gray-scale 

images. So it can be concluded that more robust GPRIT can be utilized for extracting image features 
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(a) (b) 

  

(c) (d) 

Fig. 3: (a) Accuracy of GPRIT of different h in Coil-20[30] when s=1 with different Gaussian noise. (b) 

Accuracy of GPRIT of different h in Fig. 2(a) when s=1 with different Gaussian noise. (c) Accuracy of 

GPRIT of different s in Coil-20[30] when h=-1 with different Gaussian noise. (d) Accuracy of GPRIT 

of different s in Fig. 2(a) when h=-1 with different Gaussian noise. 

5. Conclusion 

To extract affine invariant features, GPRIT is proposed in this paper. With GPRIT, any image 

is converted into a closed curve. The obtained closed curve is firstly parameterized to 

establish one-to-one points correspondence between GPRITs of the image and its transformed 

version. Then SWT is conducted on the parameterized GPRIT. Finally, Fourier transform is 

applied to derive affine invariants. The proposed GPRIT is the generation of PRIT and CPT. 

Experiments have also been conducted to demonstrate performance of the proposed method. 

Results show that the proposed method is robust to noise. 
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(a) (b) 

  

(c) (d) 

Fig. 4: (a) Accuracy of GPRIT of different h in Fig. 2(b) when s =1 with different ‘salt&pepper’ noise. 

(b) Accuracy of GPRIT of different h in Fig. 2(c) when s =1 with different ‘salt&pepper’ noise. (c) 

Accuracy of GPRIT of different s in Fig. 2(b) when h=-1 with different ‘salt&pepper’ noise. (d)  

Accuracy of GPRIT of different s in Fig. 2(c) when h=-1 with different ‘salt&pepper’ noise. 
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