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Abstract: Most existing models of RGB-D salient object detection (SOD) utilize heavy backbones like 

VGGs and ResNets which lead to large model size and high computational costs. In order to improve this 

problem, a lightweight two-stage decoder network is proposed. Firstly, the network utilizes MobileNet-V2 and 

a customized backbone to extract the features of RGB images and depth maps respectively. In order to mine 

and combine cross-modality information, cross reference module is used to fuse complementary information 

from different modalities. Subsequently, we design a feature enhancement module to enhance the clues of the 

fused features which has four parallel convolutions with different expansion rates. Finally, a two-stage decoder 

is used to predict the saliency maps, which processes high-level features and low-level features separately and 

then merges them. Experiments on 5 benchmark datasets comparing with 10 state-of-the-art models 

demonstrate that our model can achieve significant improvement with smallest model size. 
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1. Introduction 

Salient object detection (SOD) aims to locate and segment the most eye-catching objects in a scene by 

simulating the human visual attention mechanism. SOD has been developed rapidly due to its wide application 

in image processing and computer vision, such as visual tracking [1], image segmentation [2], face recognition 

[3], medical segmentation [4] and so on. In the past years, the development of deep learning has driven SOD 

to achieve promising performance. Most existing SOD methods focus RGB images. However, it is difficult to 

get outstanding result in complex senses, such as camouflaged objects, similar texture, complex backgrounds, 

transparent objects, low-contrast.  

With the popularity of depth device, depth sensor has been widely introduced into different fields to 

capture depth maps, which can provide additional clues for RGB images, such as object edges, 3D distribution, 

spatial structure. Many recent works [5-9] have been proposed and demonstrated that it is effective to improve 

efficiency and performance using auxiliary depth maps to assist RGB images for SOD. Although RGB-D SOD 

has achieved extraordinary results [10-16] in recent years, most methods use cumbersome networks as 

backbones which bring large model size and high computational costs, such as Resnets, VGGs. This makes it 

difficult to apply these methods to the devices with poor computing power. 

In this paper, we propose a lightweight two-stage decoder network (LTDNet) for RGB-D SOD, which 

possesses smaller size and lower computational costs. We employ MobileNet-V2 to extract the features of 

RGB, which reduces the computational cost and network size significantly. For depth stream backbone, we 
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design a lightweight network, which has only 0.89MB for a 3×352×352 input, to extract feature instead of 

VGGs or MobileNets. In order to retain the salient information of two modalities, we utilize a module named 

cross reference module (CRM) [17] to fuse the most salient information of depth features and RGB features. 

Subsequently, we utilize a feature refine module (FRM) to enhance the fused features. We use parallel dilated 

convolutions with different expansion rates to extract the large-scale information of fused features. Finally, 

considering the details of high-level features and the global semantic information of low-level features, a 

lightweight two-stage decoder is used to predict the salient object maps. 

The main contributions of this paper can be summarized as follows: 

⚫ We propose an efficient two-stage decoder to combine different levels features. The decoder can fuse 

the detailed information of high-level features and the global semantic information of low-level 

features in two steps instead of top-down strategy. 

⚫ We design a feature refine module to enhance feature with larger receptive fields and channel 

attention. Four parallel dilated convolutions with different expansion rates can effectively extract the 

large-scale context information of features. 

⚫ We design a lightweight but efficient depth stream backbone instead of using the same backbone for 

RGB and depth. The customized backbone has fewer parameters but fits the model better. 

⚫ Compared with 10 state-of-the-art RGB-D SOD models on 5 datasets, our LTDNet shows 

outstanding performance both in terms of FPS and accuracy of evaluation indicators. 

2. Related Work 

2.1.  Traditional RGB-D Salient Object Detection 

The additional depth information is beneficial to more efficient and accurate localization and 

segmentation of salient objects in RGB images. Early methods utilize hand-crafted features for RGB-D SOD, 

such as boundary, contrast, shape attributes, 3D layout priors, anisotropic center-surround difference prior and 

so on. In [18], Peng et al. proposed a multi-contextual contrast model and built the first large-scale RGB-D 

dataset named NLPR for RGB-D SOD. In [19] Feng et al proposed local background enclosure features to 

solve the false positives due to areas of high contrast in background regions. In [20] Ren et al. obtained a 

saliency map by combining background, depth, region contrast, and orientation priors. In [21], Cong et al. 

proposed a depth-guided transformation model consisting of multilevel RGBD saliency initialization, depth-

guided saliency refinement, and saliency optimization with depth constraints. However, traditional methods 

rely on hand-crafted features that lack high-level semantic representations and robustness in complex scenes.  

2.2. Deep Learning-Based RGB-D Salient Object Detection 

With the rapid development of deep learning, various methods based on convolutional neural networks 

(CNNs) have emerged. DF [22] is the first method to introduce deep learning into RGB-D SOD. Qu et al. fed 

hand-crafted features into a special-designed CNN model to fuse low-level salient features into hierarchical 

features and automatically detect salient objects in RGB-D images. In [23], Shigematsu et al. adopted two 

independent convolutional networks to process RGB images and hand-crafted deep features and fused the 

features to achieve salient maps. In CTMF [24], Han et al. utilized CNNs to transfer the structure of RGB 

images to be applicable for depth maps and fuses the high-level representations automatically to obtain saliency 

maps. In PCF [25], Chen et al. proposed a complementarity-aware fusion module to integrate complementary 

information from both modalities. In JL-DCF [10], taking depth map as a special case of RGB map, Fu et al. 

employed a shared CNN for RGB and depth feature extraction and presented joint learning and densely 

cooperative fusion to fuse multi-scale features effectively. In BBS-Net [13], Deng proposed a bifurcated 

backbone strategy to divide the multi-level features into teacher features and student features, and utilized a 
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depth-enhanced module consisted of channel attention and spatial attention to enhance depth features. In S2MA 

[14] Liu et al. constructed a selective self-mutual attention module based on the non-local module to fuse 

multimodal information. In TANet [26], Chen et al. proposed a novel muti-modal fusion network from bottom-

up and top-down perspectives, which introduces channel-wise attention mechanism to adaptively fuse 

complementary information from both modalities in each level. In D3Net [11], Fan et al. proposed a simple 

general three-stream RGB-D SOD architecture and designed a depth depurator unit which can filter low-

quality depth maps. 

Despite these methods have high accuracy, most of them possess large model size and computational cost.  

2.3. Efficient RGB-D Salient Object Detection 

In addition to the above-mentioned methods, some methods take computational cost and model efficiency 

into account. In A2dele [15], Piao et al. proposed a depth distiller constructed by network prediction and 

attention mechanisms to transfer depth information from depth stream to the RGB stream in training phrase, 

and only use RGB stream for SOD in testing phrase. In [27], Chen et al. designed a depth backbone which is 

much more efficient and lighter than traditional heavy backbones to learn feature representations. Although 

these models use special-designed measures, traditional backbones like VGGs and ResNets are still used to 

extract semantic information in RGB stream. 

In recent years, more and more attention has been paid to the application of computer vision in mobile 

devices because of smart car, smart phone and intelligent robot. Due to the limited computational resources, 

traditional cumbersome backbones are not suitable for these mobile devices. A growing number of researchers 

focus on using efficient backbones like MobileNets and ShuffleNets as backbones for RGB-D SOD. In [28], 

Wu et al. used MobileNet-V2 as backbone to extract the feature of RGB images and a tailored network to 

extract the feature of depth maps. In [29], Huang et al. used ShuffleNet as feature extractors and middle-level 

feature fusion strategy to reduce the model size. In general, there is still little work in lightweight network for 

RGB-D SOD because of the weak feature extraction capability of the lightweight backbone 

3. Proposed Method 

3.1. Overview 

The structure of the proposed LTDNet is shown in Fig 1, which mainly consists of four components: 1) 

RGB/Depth backbones; 2) cross reference module (CRM) 3) feature refine module (FRM). 4) two-stage 

decoder.  

Following most RGB-D SOD methods, two individual branches s are respectively used to extract RGB 

image features and depth map features. The RGB branch is based on MobileNet-V2 [30] which discards the 

last maximum-pooling layer and fully connected layer, and the depth branch is a customized lightweight 

backbone which is based on inverted residual bottleneck blocks (IRB). Both branches output five features, and 

the output stride is 2 for each feature. We denote the output of RGB backbone and depth backbone as 

{𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5} and {𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5}, respectively. The extracted features from different branches are 

sent to the CRM [17] to generate more informative features by mining and combining the most discriminative 

channels. We denote the fused features as 𝐹𝑖  (𝑖 = 1,2, … ,5) . Then, the fused features are enhanced by 

extracting large-scale contextual semantic information through FRM, and the enhanced features are denoted 

as 𝐸𝑖  (𝑖 = 1,2, … ,5). Finally, in order to integrate the detailed information of high-level features and the global 

information of low-level features, the enhanced features are decoded in two steps to predict salient object. 
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Fig 1.  Architecture of the proposed LTDNet 

3.2. Customized Depth Backbone 

Table 1.  Detail of the proposed customized depth backbone. About notations, 𝑡: expansion factor of IRB, 𝑐: 

output channels, 𝑛: number of block repeats, and 𝑠: stride of the first block. 

Input Output Block 𝑡 𝑐 𝑛 𝑠 

3522 × 3 1762 × 16 Conv2d - 32 1 2 

1762 × 16 1762 × 16 IRB 1 16 1 1 

1762 × 16 882 × 24 IRB 3 24 3 2 

882 × 24 442 × 32 IRB 3 32 7 2 

442 × 32 222 × 96 IRB 2 96 3 2 

222 × 96 112 × 320 IRB 2 320 1 2 

 

In general, depth have less information than RGB. Therefore, we design a lightweight network as the 

depth backbone instead of treating depth and RGB equally. The customized depth backbone is based on 

inverted residual bottleneck blocks (IRB) of MobileNet-V2, and the details is shown in Table 1. 

Our customized depth backbone is much lighter than MobileNet-V2 (Ours: only 0.89Mb, MobileNet-V2: 

13.82Mb), meanwhile it fits the proposed model better than MobileNet-V2 (see Sec. 4.5). 
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3.3. Cross Reference Module (CRM) 

 
Fig 2.  Architecture of CRM 

In general, features from RGB contain rich texture and semantic information, and features from depth 

contain more discriminative scene layout clues. The features of two modalities are complementary each other. 

CRM [17] aims to generate more informative features by means of mining and combining cross-modality 

information, the detailed structure is shown in Fig 2. 

Specifically, given two input features 𝑅𝑖 and 𝐷𝑖 from RGB backbone and depth backbone, the CRM 

utilizes a global average pooling to acquire the global information of two features respectively. Then, two fully 

connected layers and sigmoid activation function are followed to obtain the channel attention 𝑎𝑡𝑡𝑖
𝑟𝑔𝑏

 and 

𝑎𝑡𝑡𝑖
𝑑𝑒𝑝𝑡ℎ

. The procedure can be defined as 

  𝑎𝑡𝑡𝑖
𝑟𝑔𝑏

= 𝜎(𝑓𝑐2(𝑓𝑐1(𝑔𝑎𝑝(𝑅𝑖)))                             (3.1) 

 𝑎𝑡𝑡𝑖
𝑑𝑒𝑝𝑡ℎ

= 𝜎(𝑓𝑐2(𝑓𝑐1(𝑔𝑎𝑝(𝐷𝑖)))                           (3.2) 

where 𝑔𝑎𝑝(∙) denotes global average pooling operation, 𝑓𝑐1(∙) and 𝑓𝑐2(∙) denote fully connected layers, 

𝜎(∙) denotes sigmoid activation function, 𝑎𝑡𝑡𝑖
𝑟𝑔𝑏

 and 𝑎𝑡𝑡𝑖
𝑑𝑒𝑝𝑡ℎ

 denote the channel attention of 𝑅𝑖 and 𝐷𝑖 

respectively. 

Then, the enhanced features of channel are obtained by channel-wise multiplication, formulated as 

 𝑅̅𝑖 = 𝑎𝑡𝑡𝑖
𝑟𝑔𝑏

⊗ 𝑅𝑖                                  (3.3) 

 𝐷̅𝑖 = 𝑎𝑡𝑡𝑖
𝑑𝑒𝑝𝑡ℎ

⊗ 𝐷𝑖                                 (3.4) 
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where ⊗ denotes channel-wise multiplication operation. 

The 𝑎𝑡𝑡𝑖
𝑟𝑔𝑏

 and 𝑎𝑡𝑡𝑖
𝑑𝑒𝑝𝑡ℎ

 are aggregated by taking the maximum value of the corresponding channel to 

combine the most discriminative channel clues of 𝑅𝑖 and 𝐷𝑖. Then, a sigmoid activation function is followed. 

The specific operation can be expressed as 

 𝑎𝑡𝑡𝑖
𝑚𝑎𝑥 = 𝜎(max (𝑎𝑡𝑡𝑖

𝑟𝑔𝑏
, 𝑎𝑡𝑡𝑖

𝑑𝑒𝑝𝑡ℎ
))                      (3.5) 

where 𝑀𝑎𝑥(∙) indicates the maximum operation, and 𝑎𝑡𝑡𝑖
𝑚𝑎𝑥 is the cross-referenced channel attention. 

Based on 𝑎𝑡𝑡𝑖
𝑚𝑎𝑥 , 𝑅̅𝑖 , 𝐷̅𝑖 , 𝑅𝑖  and 𝐷𝑖 , the features with the most discriminative information can be 

obtained by the following formulas: 

 𝑅̃𝑖 = 𝑅̅𝑖 + 𝑎𝑡𝑡𝑖
𝑚𝑎𝑥 ⊗ 𝑅𝑖                         (3.6) 

 𝐷̃𝑖 = 𝐷̅𝑖 + 𝑎𝑡𝑡𝑖
𝑚𝑎𝑥 ⊗ 𝐷𝑖                         (3.7) 

where 𝑅̃𝑖 and 𝐷̃𝑖 are the enhanced features from different branches. 

Finally, 𝑅̃𝑖 and 𝐷̃𝑖 are concatenated and fed into a 1 × 1 convolutional layer to fuse features from both 

modalities, the procedure can be denoted as 

 𝐹𝑖 = 𝑐𝑜𝑛𝑣(𝑐𝑎𝑡(𝑅̃𝑖, 𝐷̃𝑖))                         (3.8) 

where 𝑐𝑎𝑡(∙) denotes channel concatenation, and 𝐹𝑖 is the fused feature. 

3.4.  Feature Refine Module (FRM) 

 

 
 

Fig 3.  Architecture of FRM 

Since the multi-stage pooling in backbones change the size and spatial structure of features, we design a 

feature refining module (FRM) to obtain multi-scale context information, which contains four parallel dilated 

convolutions with different expansion rates. 

To improve efficiency and reduce parameters, FRM uses four parallel 1 × 1 convolutions to compress 

the channel of 𝐹𝑖 to half. Then, four convolutions with dilation rates of 1, 2, 4, 8 are follows respectively for 

multi-scale information fusion. This procedure can be formulated as 

 𝐹𝑖
𝑑1 = 𝐶𝑜𝑛𝑣3×3

𝑑1 (𝐶𝑜𝑛𝑣1×1(𝐹𝑖))                         (3.9) 

 𝐹𝑖
𝑑2 = 𝐶𝑜𝑛𝑣3×3

𝑑2 (𝐶𝑜𝑛𝑣1×1(𝐹𝑖))                        (3.10) 

 𝐹𝑖
𝑑3 = 𝐶𝑜𝑛𝑣3×3

𝑑3 (𝐶𝑜𝑛𝑣1×1(𝐹𝑖))                        (3.11) 

 𝐹𝑖
𝑑4 = 𝐶𝑜𝑛𝑣3×3

𝑑4 (𝐶𝑜𝑛𝑣1×1(𝐹𝑖))                        (3.12) 
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where 𝑑1 , 𝑑2 , 𝑑3  and 𝑑4  are dilation rates of 1, 2, 4 and 8, 𝐶𝑜𝑛𝑣1×1  denotes 1 × 1  convolution, 

𝐶𝑜𝑛𝑣3×3
𝑑𝑖  (𝑖 = 1,2,3,4) denotes 3 × 3 convolution with dilation rate of 𝑑𝑖 and padding of 𝑑𝑖, 𝐹𝑖

𝑑1, 𝐹𝑖
𝑑2, 

𝐹𝑖
𝑑3 and 𝐹𝑖

𝑑4 are the results obtained. Subsequently, 𝐹𝑖
𝑑1, 𝐹𝑖

𝑑2, 𝐹𝑖
𝑑3 and 𝐹𝑖

𝑑4 are concatenated along the 

channel axis and fed into a 3 × 3 convolution to fuse multi-scale features and compress the channel to the 

same as 𝐹𝑖 . A residual connection is used and a 1 × 1  convolution followed for better optimization. The 

specific operations are formulated as 

 𝐹̅𝑖 = 𝐶𝑜𝑛𝑣1×1(𝐹𝑖 + 𝐶𝑜𝑛𝑣3×3(𝑐𝑎𝑡(𝐹𝑖
𝑑1, 𝐹𝑖

𝑑2, 𝐹𝑖
𝑑3, 𝐹𝑖

𝑑4)))            (3.13) 

where 𝐶𝑜𝑛𝑣3×3  denotes 3 × 3  convolution with padding of 1, 𝑐𝑎𝑡(∙)  denotes concatenate operation. In 

order to uses global contextual information to realign the fused features 𝐹̅𝑖, the attention mechanism is applied 

to 𝐹𝑖, the procedure can be defined as 

 𝐸𝑖 = 𝑎𝑡𝑡(𝐹𝑖) ⊗ 𝐹̅𝑖                            (3.14) 

where 𝑎𝑡𝑡(∙) denotes the same operations as Equ. (1). 

3.5. Two-stage Decoder 

 

Fig 4.  Architecture of Two-stage Decoder 

Unlike most RGB-D SOD methods which apply top-down decoding strategy, we design an efficient 

decoder to integrate both global contextual information and detailed information in two steps. The first step is 
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mainly to aggregate high-level features and low-level features separately to form two features. One has more 

details and the other focuses on global information. The details are shown in Fig 4. 

In order to improve the efficiency of the whole decoding process, we utilize 3 × 3  convolutional 

(followed by BatchNorm layers and ReLU activation) to compress the channel of features passed from the 

FRM, and the compressed channels are 16, 16, 16, 32 and 32. Then, channel attention is utilized to enhance 

features. The process can be formulated as 

 𝐸̅𝑖 = 𝐶𝐴(𝐶𝑃(𝐸𝑖)) (i=1,2,3,4,5)                         (3.15) 

where 𝐶𝑃(∙) represents compress operation, 𝐶𝐴(∙) denotes channel attention as Equ. (1). Subsequently, we 

fuse the high-level features with the high-level features and the low-level features with the low-level features 

by element-wise addition, which produces two features containing different clues, formulated as 

 𝐸̅𝑙𝑜𝑤 = 𝐸̅1 + 𝑢𝑝×2(𝐸2) + 𝑢𝑝×4(𝐸̅3)                     (3.16) 

 𝐸̅ℎ𝑖𝑔ℎ = 𝐸̅4 + 𝑢𝑝×2(𝐸̅5)                          (3.17) 

where 𝑢𝑝×2 indicates bilinear upsampling by a factor of 2, and 𝑢𝑝×4 indicates bilinear upsampling by a 

factor of 4. In the next step, we concatenate 𝐸̅𝑙𝑜𝑤 and 𝐸̅ℎ𝑖𝑔ℎ and feed them into two 3 × 3 convolutions 

(with BatchNorm layers and ReLU activation) to promote the fusion, the procedure can be denoted as 

 𝐸 = 𝐶𝑜𝑛𝑣3×3(𝐶𝑜𝑛𝑣3×3(𝑐𝑎𝑡(𝐸̅𝑙𝑜𝑤 , 𝑢𝑝×8(𝐸̅ℎ𝑖𝑔ℎ))))             (3.18) 

where 𝐸 denotes the fused feature of decoder. Finally, we feed the features obtained in the two stages into 

3 × 3  convolutions whose out channel is 1 followed by a sigmoid activation respectively, and resize the 

saliency maps to the input images size, the procedure can be denoted as 

 𝑃1 =  𝑢𝑝×2(𝐶𝑜𝑛𝑣3×3(𝐸̅𝑙𝑜𝑤))                        (3.19) 

 𝑃2 =  𝑢𝑝×16(𝐶𝑜𝑛𝑣3×3(𝐸̅ℎ𝑖𝑔ℎ))                       (3.20) 

 𝑃3 =  𝑢𝑝×2(𝐶𝑜𝑛𝑣3×3(𝐸))                           (3.21) 

where 𝑃1, 𝑃2 and 𝑃3 is the final saliency maps. 

3.6. Hybrid Loss Function 

We apply a hybrid loss to optimize the network which consists of binary cross-entropy loss (BCE) [31], 

intersection over union loss (IoU) [32] and structural similarity index loss (SSIM) [33], formulated as 

 𝐿𝑃𝑖
= 𝐿𝐵𝐶𝐸(𝑃𝑖, 𝐺𝑇) + 𝐿𝐼𝑜𝑈(𝑃𝑖, 𝐺𝑇) + 𝐿𝑆𝑆𝐼𝑀(𝑃𝑖, 𝐺𝑇)                (3.22) 

where 𝑃𝑖 represents the saliency map generated by decoder, 𝐺𝑇 denotes the ground truth, 𝐿𝐵𝐶𝐸() denotes 

binary cross-entropy loss function, 𝐿𝐼𝑜𝑈() denotes intersection over union loss function, 𝐿𝑆𝑆𝐼𝑀() denotes 

structural similarity index loss function, 𝐿𝑃𝑖
 denotes the loss of saliency map 𝑃𝑖. Then, the total loss can be 

expressed as 

 𝐿𝑡𝑜𝑡𝑎𝑙 = ∑ 𝜆𝑖
3
𝑖=1 𝐿𝑃𝑖

                           (3.23) 

where 𝐿𝑡𝑜𝑡𝑎𝑙 represents the total loss, 𝜆𝑖 is a balance weight of 𝐿𝑃𝑖
. Empirically, we set 𝜆1 = 3, 𝜆2 = 2, 

𝜆3 = 5 to accelerate the convergence of loss. 

4. Experiments 

4.1. Datasets 

We conducted our experiments on five public RGB-D benchmark datasets: NJU2K [34], NLPR [18], 

STERE [35], DES [36] and SIP [11]. NJU2K [34] contains 1985 groups of images collected from 3D movies, 

the Internet, and taken by Fuji W3 stereo cameras. NLPR [18] contains 1000 groups of images taken by 

Microsoft Kinect. STERE [35] contains 1000 groups of binocular images which consist of indoor and outdoor 

scenes. DES [36] consists of 135 groups of image captured by Microsoft Kinect in 7 indoor scenes and most 

of the scenes have a single salient object. SIP [11] consists of 929 high-resolution images captured by Huawei 

Mate10 with high quality depth maps. 

Following [14,28,37-39], we use 700 images of NLPR [18] and 1500 images of NJU2K [34] for training, 



Jian Wang, Wenbing Chen:LTDNet: A lightweight two-stage decoder network for 

RGB-D salient object detection 

JIC email for contribution: editor@jic.org.uk 

110 

and the other 300 images of NLPR [18] and 485 images of NJU2K [34] for testing. Other datasets are used for 

testing. 

4.2. Metrics 

Following the works [13-14], we employ five commonly used metrics to evaluate the performance: mean 

absolute error (MAE) [40], maximum F-measure (𝐹𝛽
𝑚𝑎𝑥) [41], S-measure (𝑆𝛼) [42], maximum E-measure 

(𝐸𝜉
𝑚𝑎𝑥) [43].  

MAE [40] calculates the average absolute error between predicted saliency map S and the ground truth 

map GT, and it mainly evaluates the approximation between the predicted saliency map and the ground truth 

map. The specific calculation formula is  

 𝑀𝐴𝐸 =
1

𝑊×𝐻
∑ ∑ |𝑆𝑖,𝑗 − 𝐺𝑇𝑖,𝑗|𝐻

𝑗=1
𝑊
𝑖=1                      (3.24) 

where 𝑊 and 𝐻 represent the width and height of the image, respectively. 

F-measure [41] is the harmonic mean of recall and precision, which is essentially a similarity measure 

based on regions. The specific calculation formula is: 

 𝐹β =
(1+β2)×𝑃×𝑅

β2×𝑃+R
                             (3.25) 

where 𝑃 represents the precision, 𝑅 represents the recall, and β represents the relative importance of recall 

to precision. We set β2 = 0.3 as suggested in recent works. 

S-measure [42] is a structural measure index which evaluates the structural similarity between the 

predicted saliency map and ground truth from regional perception and object perception. The specific 

calculation formula is as follows: 

 𝑆𝛼 = α𝑆𝑜 + (1 − α)𝑆𝑟                         (3.26) 

where 𝑆𝑜 denotes regional perception, 𝑆𝑟 denotes object perception, and α ∈ [0,1] is the balance parameter. 

We refer to [42] which set α = 0.5 as default. 

E-measure [43] is an enhanced-alignment measure that uses local-pixel values and image-level averages 

to obtain image statistics and local-pixel matching information. The specific calculation formula is as follows: 

 𝜉𝐹𝑀 =
2𝜑𝐺𝑇∘𝜑𝐹𝑀

𝜑𝐺𝑇∘𝜑𝐺𝑇+𝜑𝐹𝑀∘𝜑𝐹𝑀
                        (3.27) 

 𝐸𝜉 =
1

𝑊×𝐻
∑ ∑ 𝑓(𝜉𝐹𝑀)𝐻

𝑦=1
𝑊
𝑥=1                      (3.28) 

where ∘ donates the Hadamard product, 𝜑𝐺𝑇 and 𝜑𝐹𝑀 denotes bias matrices of ground-truth map 𝐺𝑇 and 

binary foreground map 𝐹𝑀, 𝑓(∙) represents a quadratic function. 

4.3. Implementation Details 

We implement experiments on a workstation with AMD Ryzen 5 5600X CPU, NVIDIA RTX 3060ti GPU 

with CUDA 11.0. PyTorch [44] toolbox is utilized to accelerated computing. 

In order to prevent overfitting, data augmentation is performed including random horizontal flipping, 

random region cropping, random rotation, color enhancement and so on. After data augmentation, the image 

is resized to 352 × 352. We simply duplicate depth map into three channels as input to depth backbone. 

During training, pre-trained MobileNet-v2 on ImageNet is used to initialize RGB backbone. We use Adam 

optimization to train LTDNet for 160 epochs. The initial learning rate is set as 1e-4, weight decay is 0.0005 

and batch size is 10. Step learning rate policy is used to adjust learning rate that the learning rate is multiplied 

by 0.95 every 10 epochs. 

4.4. Quantitative Comparison and Qualitative Comparison 
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We compare our method with 10 state-of-the-art (SOTA) RGB-D SOD methods, including PCF [25], 

MMCI [46], CPFP [38], DMRA [47], D3Net [11], SSF [48], FCMNet [49], DANet [39], ATST [50], 

A2dele[15]. For fair comparison, the codes and saliency maps are provided by the corresponding authors. 

The results of the quantitative evaluation are shown in Table 2. We can clearly find that the proposed 

model has the smallest size while generally outperforming other methods in S-measure, F-measure, E-measure 

and MAE on the five datasets. Compared to A2dele who is the second smallest in these models, our model 

outperformed it on all datasets. Especially on the SIP dataset, S-measure, F-measure and E-measure increase 

by 5.9%, 6.6%, and 3.6% respectively, while MAE decreases by 27.1%. In addition, our model size is only 

about 1/3 of ATST whose performance is great, but on the NLPR dataset S-measure, F-measure, and E-

measure increase by 2.2%, 4.8%, and 2.0% respectively. Meanwhile, MAE decrease by 14.3%. These 

quantitative comparisons demonstrate the superiority of LTDNet. 

As shown in Fig 5, to further demonstrate the superiority of our model, we selected five models (8 groups 

of images for each method) in the above methods for visual comparison. Comparing the results in rows 3 and 

4, we can see that our model is better at capturing salient object regions in scenes with multiple objects. 

Observing the results in rows 5 and 7, our model performs better when foreground and background are similar. 

In the rows 2 and 8, we know that our model has better salient object detection ability in c confused background. 

In general, LTDNet outperforms other methods in some complex scenes: multi-object scenes, similar 

foreground and background, confused background scenes and so on. 

Table 2.  Quantitative results compared with ten RGB-D SOD methods on five datasets. ↑/↓ indicates the 

larger/smaller, the better. The best results are highlighted in bold and red. 

Metric 

PCF MMCI CPFP DMRA D3Net SSF FCM DANet ATST A2dele Ours 

CVPR PR CVPR ICCV TNNLS CVPR Science ECCV ECCV CVPR - 

18 19 19 19 20 20 22 20 20 20 - 

[25] [46] [38] [47] [11] [48] [49] [39] [50] [15] - 

Size(Mb) 534 930 278 228 530 125 197 102 123 57 30 

SIP 

𝑆𝛼 ↑ .842 .833 .850 .806 .860 .874 .858 .878 .864 .829 .878 

𝐹𝛽
𝑚𝑎𝑥 ↑ .838 .818 .851 .821 .861 .880 .881 .884 .873 .834 .889 

𝐸𝜉
𝑚𝑎𝑥 ↑ .901 .897 .903 .875 .909 .921 .912 .920 .911 .889 .921 

𝑀𝐴𝐸 ↓ .071 .086 .064 .085 .063 .053 .062 .054 .058 .070 .051 

NJU2K 

𝑆𝛼 ↑ .877 .858 .879 .886 .900 .899 .901 .891 .901 .868 .908 

𝐹𝛽
𝑚𝑎𝑥 ↑ .872 .852 .877 .886 .900 .896 .907 .880 .893 .872 .912 

𝐸𝜉
𝑚𝑎𝑥 ↑ .924 .915 .926 .927 .950 .935 .929 .932 .921 .914 .946 

𝑀𝐴𝐸 ↓ .059 .079 .053 .051 .041 .043 .044 .048 .040 .052 .039 

NLPR 

𝑆𝛼 ↑ .874 .856 .888 .899 .912 .914 .916 .915 .907 .890 .927 

𝐹𝛽
𝑚𝑎𝑥 ↑ .841 .815 .867 .879 .897 .896 .908 .903 .876 .875 .918 

𝐸𝜉
𝑚𝑎𝑥 ↑ .925 .913 .932 .947 .953 .953 .949 .953 .945 .937 .964 

𝑀𝐴𝐸 ↓ .044 .059 .036 .031 .025 .026 .024 .029 .028 .031 .024 

DES 

𝑆𝛼 ↑ .842 .848 .872 .900 .898 .905 .905 .904 .907 .884 .919 

𝐹𝛽
𝑚𝑎𝑥 ↑ .804 .822 .846 .888 .885 .883 .913 .894 .885 .873 .914 

𝐸𝜉
𝑚𝑎𝑥 ↑ .893 .928 .923 .943 .946 .941 .949 .957 .952 .920 .959 

𝑀𝐴𝐸 ↓ .049 .065 .038 .030 .031 .025 .025 .029 .024 .030 .022 

STERE 

𝑆𝛼 ↑ .875 .873 .879 .835 .899 .893 .899 .892 .897 .885 .903 

𝐹𝛽
𝑚𝑎𝑥 ↑ .860 .863 .874 .847 .891 .890 .904 .881 .884 .885 .900 

𝐸𝜉
𝑚𝑎𝑥 ↑ .925 .927 .925 .911 .939 .936 .939 .930 .921 .935 .944 

𝑀𝐴𝐸 ↓ .064 .068 .051 .066 .046 .044 .043 .048 .039 .043 .040 
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4.5. Ablation Studies 

In this section, ablation experiments are conducted, mainly studies: (1) the applicability of the customized 

depth backbone; (2) the necessity of CRM; (3) the impact of FRM on LTDNet. The above three problems are 

analyzed by ablation. We analyze the above problems in terms of four evaluation indexes and visual 

comparison. 

To study the impact of the customized depth backbone, we replace the customized backbone with 

MobileNet-V2. It is not difficult to find that compared with “Ours”, S-measure, max F-measure, and max E-

measure decrease slightly on five datasets in “-Backbone”, while the MAE increase. For example, the S-

measure, max F-measure, and max E-measure decrease by 1.94%, 2.81%, and 2.06% respectively on the SIP 

dataset, while the MAE increases by 13.73%. This indicates that customized depth backbone s more suitable 

for LTDNet. 

 
Fig 5.  Visual comparisons with SOTA methods 
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Table 3.  Ablation study of LTDNet. -backbone: uses MobileNet-V2 to replace the customized depth 

backbone. -CRM(C): use concatenation and convolution to replace CRM. -CRM(+): use element-wise addition 

and convolution to replace CRM. -FRM: remove FRM from the model. -FRM(RFB): use RFB to replace FRM. 

Metric -Backbone -CRM(C) -CRM(+) -FRM -FRM(RFB) Ours 

SIP 

𝑆𝛼 ↑ .861 .880 .875 .872 .869 .878 

𝐹𝛽
𝑚𝑎𝑥 ↑ .864 .883 .881 .877 .869 .889 

𝐸𝜉
𝑚𝑎𝑥 ↑ .902 .922 .917 .915 .913 .921 

𝑀𝐴𝐸 ↓ .058 .049 .051 .055 .055 .051 

NJU2K 

𝑆𝛼 ↑ .900 .899 .898 .895 .903 .908 

𝐹𝛽
𝑚𝑎𝑥 ↑ .900 .898 .898 .896 .900 .912 

𝐸𝜉
𝑚𝑎𝑥 ↑ .937 .940 .937 .937 .942 .946 

𝑀𝐴𝐸 ↓ .042 .042 .041 .045 .041 .039 

NLPR 

𝑆𝛼 ↑ .925 .821 .921 .912 .922 .927 

𝐹𝛽
𝑚𝑎𝑥 ↑ .913 .910 .911 .895 .911 .918 

𝐸𝜉
𝑚𝑎𝑥 ↑ .958 .958 .959 .949 .958 .964 

𝑀𝐴𝐸 ↓ .025 .025 .024 .030 .025 .024 

DES 

𝑆𝛼 ↑ .915 .919 .899 .929 .916 .919 

𝐹𝛽
𝑚𝑎𝑥 ↑ .907 .912 .876 .926 .907 .914 

𝐸𝜉
𝑚𝑎𝑥 ↑ .953 .958 .928 .968 .953 .959 

𝑀𝐴𝐸 ↓ .023 .022 .027 .021 .024 .022 

STERE 

𝑆𝛼 ↑ .897 .900 .900 .893 .899 .903 

𝐹𝛽
𝑚𝑎𝑥 ↑ .890 .895 .894 .892 .892 .900 

𝐸𝜉
𝑚𝑎𝑥 ↑ .934 .940 .938 .939 .939 .944 

𝑀𝐴𝐸 ↓ .044 .041 .041 .044 .042 .040 

In the necessity analysis of CRM, we set up two groups of experiments: (1) replace CRM with element-

wise addition and 3 × 3 convolution (“-CRM(+)” in Table 3), (2) replace CRM with concatenation operation 

and 3 × 3 convolution (“-CRM(C)” in Table 3). Looking at Table 3, we find that the performance of the two 

groups of ablation experiments is slightly worse than that of the model in this paper (except for the S-measure 

and E-measure of the SIP dataset in the "CRM(C)" group). For example, the S-measure, max F-measure, and 

max E-measure decrease by 2.18%, 4.16%, and 3.23% respectively on the DES dataset, while the MAE 

increases by 22.73%. This demonstrates that the use of CMR can generally enhance the performance of 

LTDNet. 

In the ablation analysis of FRM, we also set up two groups of experiments: (1) remove FRM (“-FRM” in 

Table 3); (2) replace FRM module with RFB [51]. Comparing “-FRM” and “Ours”, it is easy to find that the 

performance of the model is generally reduced after removing the FRM (except for the DES dataset). In 

addition, the performance is all degraded after  
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Fig 6.  Visual comparisons of ablation experiments 

replacing FRM with RFB module. For example, the S-measure, max F-measure, and max E-measure decrease 

by 1.03%, 2.25%, and 0.87% respectively on the SIP dataset, while the MAE increases by 7.84%. The 

experiments show that FRM can improve the performance of LTDNet in most senses, and is more suitable for 

our model than others modules like RFB. 

As shown in Fig 6, we selected 4 groups of images from ablation experiments for comparison. We clearly 

find that each component in LTDNet is reasonable and efficient. 

5. Conclusion 

In this paper, we propose an efficient model called LTDNet. Considering the problem of expensive 

computational cost brought by lumbersome models, we use lightweight backbones to replace traditional 

cumbersome backbones. MobileNet-V2 is utilized to extract features from RGB maps and an efficient 

backbone is designed to extract features from depth maps. To mine the most discriminative information, we 

use CRM to fuse cross-modality clues to achieve complementarity between RGB and depth. In addition, we 

use FRM, which has a large receptive field, to enhance the fused features. Finally, a lightweight two-stage 

decoder is used to obtain saliency maps. Experiments on 5 benchmark datasets show that the proposed model 

has the fewest parameters, while performing better than SOTA methods. 
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