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Abstract: Accurate image segmentation is an essential step in image processing. Gaussian mixture model (GMM) 
has been widely used for image segmentation due to its low complexity and high accuracy. However, the model 
assumes that the intensity distributions of images are symmetric, which makes it hard to obtain ideal results for 
images with asymmetric distributions. In addition, the model does not consider any noise, which makes it difficult 
to obtain ideal distribution fitting results when the image contains severe noises. Furthermore, the model only 
considers the distribution information without any spatial information, so it is sensitive to noise when segmenting 
images. To address these issues, we model noise with a Gaussian distribution and couple it into a skewed normal 
mixture model to reduce the effect of asymmetric distributions and noise and can obtain more accurate distribution 
fitting results. To further reduce the effect of noise, we propose a new anisotropic spatial information constraint 
term that preserves detailed information while reducing the effect of noise. Finally, an improved EM algorithm is 
proposed to solve the parameters of the model. Experimental results on synthetic and natural images show that our 
method achieves better segmentation results compared to other models. 

Keywords: Skew normal distribution, Noise estimation, Anisotropic spatial information, Improved EM 
algorithm 

1. Introduction 

In most areas of digital image processing, image segmentation has a wide range of applications, such 
as industrial automation, production process control, online product inspection, image coding, document 
image processing, remote sensing and biomedical image analysis, security monitoring, as well as military, 
sports and other aspects. In the processing and analysis of medical images, image segmentation plays an 
effective role in guiding the three-dimensional display of diseased organs in people's bodies or in 
determining and analyzing the location of lesions; In the analysis and application of road traffic conditions, 
image segmentation technology can be used to separate the target vehicle to be extracted from the fuzzy and 
complex background such as monitoring or aerial photography; Remote sensing image segmentation is also 
widely used in military fields, such as strategic and tactical investigation, military marine mapping, etc. 
High-resolution remote sensing image segmentation data can be used for natural disaster monitoring and 
evaluation, map drawing and updating, forest resources and environment monitoring and management, 
agricultural product growth detection and yield estimation, urban and rural construction and planning, 
coastal area environmental monitoring The development of archaeological and tourism resources provides 
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detailed ground information. The segmentation of target houses and roads plays an indispensable role in 
urban construction and land planning. In the process of transforming data into information, the segmentation 
of remote sensing images plays a very important role 

The methods of image segmentation are to separate the image into non-overlapping regions with the 
same properties. Image segmentation is a very important and difficult problem in many fields such as image 
processing and understanding, pattern recognition and artificial intelligence. It is a key step in computer 
vision technology, so accurate image segmentation is particularly important. 

At present, many image segmentation methods have been proposed1, mainly including threshold 
based image segmentation algorithm, clustering based image segmentation algorithm, finite mixture 
model(FMM) and deep learning based image segmentation algorithm, etc. The finite mixture model is 
widely used because of its simple algorithm and small sample demand. We mainly study image 
segmentation based on finite mixture model. Gaussian mixture model(GMM) is widely used in image 
segmentation because of its simple algorithm and fast running speed. However, it also has many problems, 
for example, it only applies to symmetric data and has no good results for asymmetric data; Only the 
distribution information is considered, and the spatial information is not considered, so a good segmentation 
result cannot be obtained for the data with serious noise. 

As the algorithm is sensitive to noise, many people propose to integrate spatial information, that is, 
Markov into the algorithm. Markov process is a kind of stochastic process, which was proposed by Russian 
mathematician A.A. Markov in 1907. We have selected the algorithm that uses Markov to improve spatial 
information in recent years, as follows: SCDMM6, FRSCGMM13, SCAGMM9, SCGAGMM10 and 
SCGAEM12. These five algorithms have achieved good segmentation accuracy, but in order to better 
reduce the noise interference, we model the noise on the model, which can estimate the variance of various 
noises, not limited to Gaussian white noise.   

In addition to noise modeling, we also improve the spatial information. We propose anisotropic 
spatial information, which makes the algorithm show isotropy in homogeneous regions and anisotropy in 
edge and intersection regions during segmentation. Inspired by these articles, we propose a skew normal 
mixture model with noise estimation and spatial information constraints for image segmentation.  

Our method is to first model the noise, then introduce the anisotropic spatial information, then 
integrate the three ideas into our overall model, and finally use the improved EM algorithm to estimate the 
parameters. The experimental results show that our method has the best segmentation accuracy and 
robustness.  

The rest of this paper is organized as follows. In the second section, in view of our inspiration from 
some articles, we provided the theoretical basis for the feasibility of our method, introduced how to 
construct noise, and proposed and coupled anisotropic spatial information. Finally, we gave how to use the 
improved EM algorithm to estimate parameters. In the third section, we present the experimental results and 
compare them with other five advanced methods. In the fourth section, we summarize. 

2. Proposed method 

2.1. Finite mixture model 

Let 𝑥𝑖 , 𝑖 = (1,2, … , 𝑁) denote the target image, where 𝑥𝑖 with dimension D is an observation at the 𝑖 th 
pixel of the image. Let the neighborhood of the  𝑖  th pixel be presented by𝜕𝑖 . Labels are denoted by 
(Ω1, Ω2, … , Ω𝑘). The finite mixture model (FMM) assumes that each observation 𝑥𝑖 is independent and its 
probability density function(pdf) is defined as: 
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𝑓(𝑥𝑖|Π, Θ) = ∑ 𝜋𝑘𝑝(𝑥𝑖|Θ𝑘)𝐾
𝑖=1                                                          (2.1) 

where Π = {π𝑘}, 𝑘 = {1,2, … , 𝐾} is the prior probabilities for the pixel 𝑥𝑖, which satisfies 0 ≤ π𝑘 ≤ 1, and 

∑ π𝑘
𝐾
𝑘=1 = 1 . 𝑝(𝑥𝑖|Θ𝑘) can be written any kind of distributions11. At present, the most widely used 

distribution is Gaussian distribution. Gaussian distribution 𝜙(𝑥𝑖|Θ𝑘) can be written in the form 

 𝜙(𝑥𝑖|Θ𝑘) =
1

(2𝜋)𝐷/2|Σ𝑘|1/2 exp {−
1

2
(𝑥𝑖 − 𝜇𝑘)𝑇Σ𝑘

−1(𝑥𝑖 − 𝜇𝑘)}                            (2.2) 

where 𝜇𝑘 is the mean, Σ𝑘 is the covariance matrix. Because Gaussian mixture model can not fit asymmetric 
data, we adopt skew normal distribution. The pdf of the skew normal distribution 𝜙(𝑥𝑖|Θ𝑘) can be written by  

𝜙(𝑥𝑖|Θ𝑘) =
1

(2𝜋)𝐷/2|Γ𝑘|1/2 exp {−
1

2
(𝑥𝑖 − 𝜇𝑘 − Σ𝑘

1/2
𝛿𝑘𝜏𝑘)

𝑇
Σ𝑘

−1(𝑥𝑖 − 𝜇𝑘 − Σ𝑘
1/2

𝛿𝑘𝜏𝑘)}       (2.3) 

where 𝛿𝑘 =
𝜆𝑘

√1+𝜆𝑘
𝑇𝜆𝑘

 and 𝜆  is the skewness parameter. Γ𝑘 = Σ𝑘

1

2 (𝐼 − 𝛿𝑘𝛿𝑘
𝑇)Σ𝑘

1

2 . When 𝜆 = 0  it is the 

Gaussian distribution.  

2.2. Spatial information on MRF 

In many cases, there will inevitably be noise in the image, and the traditional finite mixture model is 
sensitive to noise. In recent years, many scholars have devoted themselves to the research of denoising in 
image segmentation. Some scholars have found that the correlation between adjacent pixels can be 
characterized by Markov random field (MRF), so that the information of adjacent pixels can be used to 
remove image noise. In order to improve the robustness to the noise, the MRF distribution incorporates the 
spatial relationship of 𝑥𝑖 amongst its neighborhood region ∂𝑖. Based on Hamersley-Clifford theory, MRF can 
be expressed by Gibbs random field: 

𝑃(𝚷) =
1

𝑍
exp 

1

𝑇
{−𝑈(𝚷)}                                                  (2.4) 

where 𝑍 is a normalized constant, 𝑇 is a temperature constant and 𝑈(𝚷) is the smoothing prior. The posterior 
probability density function given by Bayes rules can be written as 

𝑃(𝚷, 𝚯 ∣ 𝐗) ∝ 𝑃(𝐗, 𝚷 ∣ 𝚯)𝑃(𝚷)                                               (2.5) 

Ji et al. 10 employ the Besag approximation for modeling the joint density over pixel priors: 

𝑃(𝚷) ≈ ∏  𝑁
𝑖=1 𝑝(𝜋𝑖 ∣ 𝜋∂𝑖

)                                                 (2.6) 

where 𝜋∂𝑖
 are defined as mixture distributions over the between-cluster priors of neighboring pixels of pixel 

𝑖, i.e., 

http://noise.in/
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𝜋∂𝑖
= ∑  𝑗∈∂𝑖,𝑖≠𝑗 𝜔𝑖𝑗𝜋𝑗                                                         (2.7) 

where 𝜔𝑖𝑗 is the positive weight of each 𝑗(𝑗 ∈ ∂𝑖, 𝑗 ≠ 𝑖), which satisfies ∑𝑗  𝜔𝑖𝑗 = 1 and can be written as 

𝜔𝑖𝑗 =
exp (− ∑  𝑚∈∂𝑖,𝑚≠𝑖,𝑗  |𝐱𝑗−𝐱𝑚|/(𝑁∂𝑖

×(𝑁∂𝑖
−1)))

∑  ℎ∈∂𝑖
 exp (− ∑  𝑚∈∂𝑖,𝑚≠𝑖,𝑗  |𝐱ℎ−𝐱𝑚|/(𝑁∂𝑖

×(𝑁∂𝑖
−1)))

                                   (2.8) 

where 𝑁∂𝑖
 is the number of pixels in ∂𝑖. For the expression of 𝑝(𝜋𝑖 ∣ 𝜋∂𝑖

), the log 𝑝(𝜋𝑖 ∣ 𝜋∂𝑖
) is defined as: 

log 𝑝(𝜋𝑖 ∣ 𝜋∂𝑖
) = −𝛽[𝐾(𝜋𝑖 ∣ 𝜋∂𝑖

) + 𝐻(𝜋𝑖)]                                         (2.9) 

where 𝐾(𝜋𝑖 ∣ 𝜋∂𝑖
) = ∑𝑘=1

𝐾  𝜋𝑖𝑘log 𝜋𝑖𝑘 − ∑𝑘=1
𝐾  𝜋𝑖𝑘log 𝜋∂𝑖𝑘  is the KL divergence between 𝜋𝑖  and 

𝜋∂𝑖
. 𝐻(𝜋𝑖) = −∑𝑘=1

𝐾  𝜋𝑖𝑘log 𝜋𝑖𝑘 is the entropy of the distribution 𝜋𝑖. 

When the pixel 𝑗 is quite differ from other pixels in ∂𝑖, the value of 𝜔𝑖𝑗 becomes quite small and can 
effectively remove noise. However, when the object has slim structure, the factor is hard to preserve detail 
information. 

Depending on the type of energy 𝑈(Π) selected, we can have different kinds of models. The main 
motivation for using this model as opposed to the traditional MRF model on pixel labels is its flexibility with 
respect to the initial conditions, in which the spatial constraints are directly enforced over the neighboring 
priors to obtain a smoother energy function and make the algorithm less dependent on the initializations. 

2.3. Skew normal mixture model with noise estimation 

Since the general skewed normal model can only deal with Gaussian white noise sensitive to noise, we 
model noise. The model is defined as  

𝑦 = 𝑥𝑖 + 𝜇 + 𝜀𝑖  , 𝑖 = 1,2, … , 𝑁                                                   (2.10) 

where 𝑥𝑖 follows 𝑆𝑁(0, Σ, 𝜆) with mean 𝜇, 𝜀𝑖 follows 𝑁(0, Λ). The hierarchical representation can be written 
by  

  𝑦𝑖|𝑥𝑖~𝑁(𝜇 + 𝑥𝑖, Λ)                                                           (2.11) 

 𝑥𝑖|𝜏~𝑁(Δ𝑡, Γ)                                                                    (2.12) 

𝜏~𝐻𝑁(0,1)                                                                    (2.13) 

where  𝛿 =
𝜆

√1+𝜆𝑇𝜆
,  Δ = Σ

1

2𝛿 𝑎𝑛𝑑 Γ = Σ
1

2(𝐼 − 𝛿𝛿𝑇)Σ
1

2 . Then the likelihood function 

of skew normal mixture model with noise estimation is expressed as: 
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𝐿(Θ|𝑌) = ∑ ∑ {−
1

2
log|Λ𝑘| −

1

2
(𝑦𝑖 − 𝑥𝑖 − 𝜇𝑘)𝑇Λ𝑘

−1(𝑦𝑖 − 𝑥𝑖 − 𝜇𝑘) −
1

2
log|Γ𝑘| −

1

2
(𝑥𝑖 −𝐾

𝑘=1
𝑁
𝑖=1

Δ𝑘𝑡𝑖)𝑇Γ𝑘
−1(𝑥𝑖 − Δ𝑘𝑡𝑖) −

𝑡𝑖
2

2
} + 𝐶                                            (2.14) 

where 𝐶 is a constant, 𝑏 is the bias field and others are consistent with the above. 

2.4. Anisotropic spatially information  

Since the model only considers the distribution information and does not consider the location 
information, we also introduce anisotropic spatial information into the model to reduce noise interference.  

The structure tensor14 is proposed to describe the structure of objects. The traditional definition of 
structural tensor is 𝐓𝑋 = ∇𝐼𝑋∇𝐼𝑋

𝑇. Because the eigenvector of traditional structure tensor is based on gradient 
information, it is sensitive to noise. To solve this problem, we improve the traditional structure tensor and 
propose a structure tensor based on nonlocal information to minimize noise interference. Then it is described 
as follows: 

𝐷 = 𝑓1(𝜆̂1, 𝜆̂2)𝜉1(𝜉1)
𝑇

+ 𝑓2(𝜆̂1, 𝜆̂2)𝜉2(𝜉2)
𝑇

                                  (2.15) 

with 

𝑓1(𝜆̂1, 𝜆̂2) = 1/(𝛾 + 𝜆̂1 + 𝜆̂2)
2

, 𝑓2(𝜆̂1, 𝜆̂2) = 1/exp (𝛾)

𝜉1 = ∑  

𝑁𝑖

𝑗=1

𝑤𝑖𝑗𝜉𝑗
1, 𝜉2 ⊥ 𝜉1

𝜆̂1 = ∑  

𝑁𝑖

𝑗=1

𝑤𝑖𝑗𝜆𝑗
1, 𝜆̂2 = ∑  

𝑁𝑖

𝑗=1

𝑤𝑖𝑗𝜆𝑗
2

𝑤𝑖𝑗 = exp (−
∥∥𝑁(𝐱𝑖) − 𝑁(𝐱𝑗)∥∥𝐹

2

ℎ
) / ∑  

|𝑁𝑖|

𝑘=1

exp (−
∥∥𝑁(𝐱𝑖) − 𝑁(𝐱𝑘)∥∥𝐹

2

ℎ
)

 

where 𝜉1and 𝜉2 are the local maximum eigenvector variations and minimum eigenvector variations, 𝜆̂1 and 

𝜆̂2  are the eigenvalues along 𝜉1 and 𝜉2 . 𝑤𝑖𝑗 =
𝐺(𝑥𝑖,𝑥𝑗)

∑ 𝐺(𝑥𝑖,𝑥𝑗)𝐾
𝑘=1

 and ∑ 𝑤𝑖𝑗 = 1 . 𝐺(𝑥𝑖 , 𝑥𝑗)  can be written as 

𝐺(𝐱𝑖, 𝐱𝑗) = exp (−(𝑋𝑖 − 𝑋𝑗)
𝑇

𝐷𝑖(𝑋𝑖 − 𝑋𝑗)) × 𝑤𝑖𝑗  and D is the new structure tensor of 𝑋. 𝛾 and ℎ are 

constants.  

2.5. Anisotropic Skew normal mixture model with noise estimation  

In order to coupling spatial information into the model, we introduce an approximation that makes use 
of a auxiliary set of 𝑠𝑖 distribution: 
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log (𝑝(𝜋𝑖 ∣ 𝜋∂𝑖
, 𝑠𝑖)) = −𝛽[𝐾(𝑠𝑖 ∣ 𝜋𝑖) + 𝐾(𝑠𝑖 ∣ 𝜋∂𝑖

) + 𝐻(𝑠𝑖)]                           (2.16) 

So, the likelihood function is written as: 

𝐿(𝚷, 𝚯 ∣ 𝐘) = ∑  

𝑁

𝑖=1

log (∑  

𝐾

𝑘=1

𝜋𝑖𝑘𝑝(𝐲𝑖 ∣ 𝜽𝑘))

−𝛽[𝐾(𝑠𝑖 ∣ 𝜋𝑖) + 𝐾(𝑠𝑖 ∣ 𝜋∂𝑖
) + 𝐻(𝑠𝑖)] −

1

2
[𝐾(𝑞𝑖 ∣ 𝑧𝑖) + 𝐾(𝑞𝑖 ∣ 𝑧∂𝑖

) + 𝐻(𝑞𝑖)]

= ∑  

𝑁

𝑖=1

∑  

𝐾

𝑘=1

{−
1

2
log |𝚲𝑘| −

1

2
(𝐲𝑖 − 𝐱𝑖 − 𝝁𝑘)𝑇𝚲𝑘

−1(𝐲𝑖 − 𝐱𝑖 − 𝝁𝑘)

−
1

2
log |𝚪𝑘| −

1

2
(𝐱𝑖 − 𝚫𝑘𝑡𝑖)𝑇𝚪𝑘

−1(𝐱𝑖 − 𝚫𝑘𝑡𝑖) −
𝑡𝑖

2

2
}

−𝛽[𝐾(𝑠𝑖 ∣ 𝜋𝑖) + 𝐾(𝑠𝑖 ∣ 𝜋∂𝑖
) + 𝐻(𝑠𝑖)] −

1

2
[𝐾(𝑞𝑖 ∣ 𝑧𝑖) + 𝐾(𝑞𝑖 ∣ 𝑧∂𝑖

) + 𝐻(𝑞𝑖)]

 

where 𝐾(𝑎 ∣ b) = ∑  𝐾
𝑘=1 alog a − ∑  𝐾

𝑘=1 alog b , 𝐻(c) = − ∑  𝐾
𝑘=1 clog c . letting 𝑥𝑖,𝑘 = 𝐸[𝑥𝑖 ∣ 𝐲𝑖, 𝜽𝑘 =

𝜽̂𝑘],  Ω̂𝑖,𝑘 = cov[𝑥𝑖 ∣ 𝐲𝑖, 𝜽𝑘 = 𝜽̂𝑘] , 𝑡̂𝑖,𝑘 = 𝐸[𝑡𝑖 ∣ 𝐲𝑖, 𝜽𝑘 =𝜽̂𝑘]  , 𝑡̂𝑖𝑘
2

= 𝐸[𝑡𝑖 ∣ 𝐲𝑖, 𝜽𝑘 =𝜽̂𝑘] . According to the 

truncated normal moment, we can get: 

𝑡̂𝑖,𝑘 = 𝜇̂𝑡𝑖𝑘
+ 𝑊Φ1

(
𝜇̂𝑡𝑖𝑘

𝑀̂𝑡𝑘

) 𝑀̂𝑡𝑘

𝑡̂𝑖,𝑘
2 = 𝜇̂𝑡𝑖𝑘

2 + 𝑀̂𝑡𝑘

2 𝑊Φ1
(

𝜇̂𝑡𝑖𝑘

𝑀̂𝑡𝑘

) 𝑀̂𝑡𝑘
𝜇̂𝑡𝑖𝑘

𝑥𝑖,𝑘 = 𝑟̂𝑖,𝑘 + 𝑠̂𝑖,𝑘 𝑡̂𝑖,𝑘

Ω̂𝑖,𝑘 = 𝑇̂𝑥𝑖𝑘
2 + 𝑠̂𝑖,𝑘𝑠̂𝑖,𝑘

𝑇 (𝑡̂𝑖,𝑘
2 − (𝑡̂𝑖𝑘)2)

𝑡̂𝑖,𝑘𝑥𝑖,𝑘 = 𝑟̂𝑖,𝑘 𝑡̂𝑖,𝑘 + 𝑠̂𝑖,𝑘 𝑡̂𝑖,𝑘
2

 

where 𝑀
∧

𝑇𝑖

2

=
1

1+𝛥𝑇
∧

(𝛴
∧

𝑖+𝛤
∧

)
−1

𝛥
∧

, 𝜇
∧

𝑇𝑖
= 𝑀

∧

𝑇𝑖

2

𝛥2
∧

(𝛴
∧

𝑖 + 𝛤
∧

)
−1

(𝑦𝑖 − 𝜇𝑖) ， 𝑇
∧

𝑏𝑖

2

= (𝛤−1
∧

+ 𝛴𝑖
−1)

−1

， 𝑟
∧

𝑖 =

𝑇
∧

𝑏𝑖

2

𝛴𝑖
−1(𝑦𝑖 − 𝜇𝑖)，𝑠

∧

𝑖 = (𝐼𝑛 − 𝑇
∧

𝑏𝑖

2

𝛴
∧

𝑖

−1

) 𝛥
∧

. 

So, the Q function is written by  

𝑄 (𝜃|𝜃
∧

) = 𝐸[𝐿( 𝚷, 𝚯 ∣ 𝐘 )] 
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= ∑ ∑ 𝜋𝑖𝑘

𝐾

𝑘=1

𝑁

𝑖=1

{−
1

2
𝑙𝑜𝑔|Λ𝑘| −

1

2
(𝑦𝑖 − 𝜇𝑘 − 𝑥

∧

𝑖)
𝑇

Λ𝑘
−1 (𝑦𝑖 − 𝜇𝑘 − 𝑥

∧

𝑖) −
1

2
𝑡𝑟 (Λ𝑘

−1𝛺
∧

𝑖𝑘) −
1

2
𝑙𝑜𝑔|𝛤𝑘|

−
1

2
𝑡𝑟 (𝛤𝑘

−1 (𝛺
∧

𝑖𝑘 + 𝑥
∧

𝑖𝑘𝑥
∧

𝑖𝑘

𝑇

− 2𝑡𝑖𝑘𝑥𝑖𝑘

∧
Δ𝑘

𝑇 + 𝑡
∧

𝑖

2

Δ𝑘Δ𝑘
𝑇))}

− 𝛽[𝐾(𝑠𝑖 ∣ 𝜋𝑖) + 𝐾(𝑠𝑖 ∣ 𝜋∂𝑖
) + 𝐻(𝑠𝑖)] −

1

2
[𝐾(𝑞𝑖 ∣ 𝑧𝑖) + 𝐾(𝑞𝑖 ∣ 𝑧∂𝑖

) + 𝐻(𝑞𝑖)] 

E-step: 𝑍𝑖𝑘 =
𝜋𝑖𝑘𝑝(𝑦|𝜃)

∑ 𝜋𝑖𝑘𝑝(𝑦|𝜃)𝐾
𝑘=1

 

M-step: we can maximize Q as follows: 

𝜋̂𝑖𝑘 =
1

1 + 2𝛽
(

1

2
(𝑞𝑖𝑘 + 𝑞∂𝑖𝑘) + 𝛽(𝑠𝑖𝑘 + 𝑠∂𝑖𝑘

))

𝝁̂𝑘 =
∑  𝑁

𝑖=1 (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)(𝑦𝑖 − 𝑥𝑖,𝑘)

∑  𝑁
𝑖=1 (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)

𝚫̂𝑘 =
∑  𝑁

𝑖=1 (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)𝑡̂𝑖,𝑘𝑥𝑖,𝑘

∑  𝑁
𝑖=1 (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)𝑡̂𝑖,𝑘

2

𝚲̂𝑘 =
∑  𝑁

𝑖=1 (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘) ((𝑦𝑖 − 𝜇𝑘 − 𝑥𝑖,𝑘)(𝑦𝑖 − 𝜇𝑘 − 𝑥𝑖,𝑘)
𝑇

+ Ω̂𝑖,𝑘

∑  𝑁
𝑖=1 (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)

𝚪𝑘̂ =
∑  𝑁

𝑖=1 (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)(Ω̂𝑖,𝑘 + 𝑥𝑖,𝑘𝑥̂𝑖,𝑘
𝑇 − 2𝑡𝑖,𝑘̂𝑥𝑖,𝑘Δ𝑘 + 𝑡̂𝑖,𝑘

2 Δ𝑘Δ𝑘
𝑇)

∑  𝑁
𝑖=1 (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)

 

Where  𝚺𝑘 = 𝚪𝑘 + 𝚫𝑘𝚫𝑘
𝑇 , 𝝀𝑘 =

𝚺𝑘
−1/2

𝚫𝑘

√1−𝚫𝑘
𝑇𝚺𝑘

−1𝚫𝑘

. 

Algorithm: Anisotropic Skew normal mixture model with noise estimation 

Step1: Initialize the parameter 𝚯 using k-means. 

Step2: Calculate the weight factor 𝒘𝒊𝒋. 

Step3: E-step by using  

Step4: M-step by using  

Step5: Check for the convergence of either the objective function, or the parameter 

values. If the convergence criterion is satisfied, stop the iteration; otherwise, go to 

Step 3. 

3. Experiment Results 
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In this paper, we compared our method with the other five most advanced methods, such as SCDMM, 
FRSCGMM, SCAGMM, SCGAGMM and SCGAEM. It is worth mentioning that in the corresponding 
papers of these five comparison methods, the authors have provided a wealth of comparative experimental 
results to prove that their methods are superior to most classical algorithms, including GMM15, SMM16, 
GGMM17 and SPM18. Therefore, in this paper, we only compare with SCDMM, FRSCGMM, SCAGMM, 
SCGAGMM and SCGAEM to prove the superior performance of the proposed algorithm.  

In this section, our first experiment is to test the composite image. The experimental results are shown 
in Figure 1. From the experiment, we can see that our method has obtained the best performance results. Our 
method has obvious denoising effect and better preserves corner information and boundary information. 
Therefore, our method can obtain good performance in synthetic images. 

 

Figure 1: The segmentation results on synthetic images. The first column shows the initial images. The 
second to last column show the ground truth, the segmentation results of SCDMM, FRSCGMM, SCAGMM, 
SCGAGMM and SCGAEM and our method, respectively.  

In order to prove the robustness of our method, we will conduct experiments on the virtual brain map. 
The data used in this paper are as follows: the virtual brain images that we used are from Brain Web 
(http://www.bic.mni.mcgill.ca/brainweb/)  and Internet Brain Segmentation Repository(IBSR) . The 
parameters we set are as follows: ℎ = 0.3, 𝛽 = 0.4,  𝛾 = 1.3. The JS19  is used to quantify the accuracy of 
brain MR image, which is defined as:  

𝐽𝑆(𝑆1, 𝑆2) =
|𝑆1∩𝑆2|

|𝑆1∪𝑆2|
                                                                 (3.1) 

Where 𝑆1 and 𝑆2 are segmentation results and labels, respectively. The JS value is [0,1]. Therefore, the 
higher the JS value is, the better the segmentation result we will obtain. We conducted experiments on 200 
brain images, and the experimental results of the JS values are shown in Table 1. 

As shown in Table 1, we conducted experiments without three different noises in the offset field. From 
the experimental results, we can see that our method has achieved good segmentation accuracy. Although the 
CSF accuracy of SCAGMM is higher than ours at N3F0, with the increase of noise level, the stability of our 
method gradually shows up, and SCAGMM is greatly affected by noise. Therefore, considering all the 
conditions, our method has achieved the best results. 

In order to prove the superiority of our model, we also carried out experiments on the image with offset 
field. Because our model can also get a good fitting effect on the data of asymmetric distribution, our method 
can also improve the brain map with offset field unnecessarily. The experimental results are shown in Table 
2: 

 

 

http://www.bic.mni.mcgill.ca/brainweb/
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Table 1: Average JS values of 200 virtual brain images with different noise 

 SCDMM FRSCGMM SCAGMM SCGAGMM SCGAEM Our 
proposed 

            WM 
N3F0   GM 

CSF 

81.93 
76.97 
74.40 

88.46 
87.13 
84.68 

89.20 
87.84 
86.10 

84.82 
78.25 
59.51 

87.83 
86.05 
82.85 

89.79 

87.92 

84.96 

            WM 
N5F0   GM 

CSF 

81.72 
78.86 
73.75 

82.97 
81.42 
78.74 

80.87 
80.11 
80.68 

83.09 
76.92 
58.71 

83.14 
81.57 
79.24 

85.69 

83.88 

81.77 

            WM 
N7F0   GM 

CSF 

80.68 
78.22 
71.65 

77.71 
76.32 
72.03 

71.95 
71.51 
74.10 

78.98 
76.26 
57.52 

78.68 
76.77 
74.28 

82.50 

80.36 

78.42 

Table 2: Average JS values of 200 virtual brain images 

 SCDMM FRSCGMM SCAGMM SCGAGMM SCGAEM Our 
proposed 

                WM 
N3F40     GM 

CSF 

80.41090606 
75.16552033 
73.64107112 

80.41090606 
75.16552033 
73.64107112 

85.53863584 
83.20568389 
84.84778505 

83.96339294 
76.20050661 
58.37108612 

84.22046011 
80.9577525 
81.16930317 

87.37266891 

84.43328313 

83.14093842 

                WM 
N3F80     GM 

CSF 

72.13752077 
69.24323022 
71.20878421 

71.92120214 
72.38326982 
77.98925189 

74.64613541 
74.45114369 
80.36417727 

72.68516795 
70.83142757 
62.27985571 

73.60929157 
70.63662773 
73.72360875 

86.5802139 

84.16833065 

83.53579382 

                WM 
N3F100   GM 

CSF 

68.89410164 
65.31373827 
66.35255802 

68.87784488 
68.2656514 
72.58937826 

71.0531316 
70.44113454 
75.72129046 

69.10978737 
69.06320698 
63.15685939 

70.01211727 
65.14550438 
66.3126772 

86.63171284 

84.17903553 

83.45200705 

As shown by the experimental results in Table 2, although the average accuracy of the CSF of 
SCAGMM in N3F40 is higher than our experimental results, the robustness of SCAGMM becomes worse 
with the increase of the bias field, and the experimental accuracy decreases greatly. Our method has the best 
robustness, and the bias field enhancement even has a tendency to increase CSF. Therefore, our method has 
the best robustness, and in general, our method obtains the best segmentation accuracy. 
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Figure 2: The segmentation results on simulated MR brain images. The first column shows the initial images 
with noise level 3% and bias filed level 40, 80 and 100, respectively. The second to last column show the 
ground truth, the segmentation results of SCDMM, FRSCGMM, SCAGMM, SCGAGMM and SCGAEM 
and our method, respectively.  

As shown in Figure 2, we show the segmentation results of three different bias fields in one of the 
virtual brain images. From the visual effect, we can clearly see that our method has the best segmentation 
results. Our method retains more details, and with the increase of bias field strength, our method does not 
have too much deviation, which indicates that our method is more robust, and we can also draw this 
conclusion from the JS value in Table 1. 

 

Figure 3: The boxplots of the GM segmentation results on simulated MR brain images. The picture shows 
boxplots with noise level 3% and bias filed level 40, 80 and 100, respectively.  

It can be seen from the box graph in Figure 3 that our method obtains the best segmentation result, and 
our method has the lowest variance, so it has the highest stability. We not only conducted experiments on 
virtual maps, but also on real brain maps. The segmentation result of the real brain map is shown in Figure 3. 
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Figure 4: The segmentation results on real MR brain images. The first column shows the initial images. 
The second to last column show the ground truth, the segmentation results of SCDMM, FRSCGMM, 
SCAGMM, SCGAGMM and SCGAEM and our method, respectively. 

In order to prove the robustness of our method, we will conduct experiments on real brain maps. From 
Figure 4, we can clearly see that our method retains more details, and we can also get good segmentation 
results for low contrast images. A large number of experimental data show that our method has better 
segmentation accuracy and higher stability in both virtual and real brain images. 

Because there are complex classes in natural images, natural image segmentation is a big problem in 
image segmentation. As mentioned in 20, we introduce MMIC to determine the number of classes of natural 
images. The definition of MMIC is as follows 

𝑀𝑀𝐼𝐶(𝐾) = 2log𝑝𝑀𝐿𝐸(𝑌 ∣ 𝐾) − 𝑑𝐾log(𝑁)                                      (3.2) 

where 𝐾 is the number of classes in an image, log𝑝𝑀𝐿𝐸(𝑌 ∣ 𝐾) is estimated by ∑ log𝑁
𝑖=1 (∑ 𝑃𝑘

𝐾
𝑘=1 𝛷(𝑦𝑖 ∣

𝜃𝑘)) , 𝑦𝑖  is the i th pixels in image, 𝛷(⋅)  is the pdf of Gaussian distribution. 𝑃𝑘  denotes the mixture 

proportion of the 𝑘  th component. 𝜃𝑘  is the op-timal parameter by maximize the loglikelihood function 

∑ log𝑁
𝑖=1 (∑ 𝑃𝑘

𝐾
𝑘=1 𝛷(𝑦𝑖 ∣ 𝜃𝑘)) , 𝑑𝑘  is number of parameters in the mixture model with K  components 

(dim(𝜃𝐾)), in Gaussian mixture model, the value is 2 ∗ 𝐾. The larger values of MMIC (K) represent the 
better segmentation. 

As shown in Table 3, we listed the MMIC values of the corresponding categories of the following test 
images. We can clearly see that the maximum values of MMIC of images test1, test2, test3, test4, test5, and 
test6 appear at K=3, 3, 6, 3, 2, 2, respectively. When K is equal to 7 or 8, test4 gets a larger value, but in 
view of the small difference and K is too large, we take the K of test4 as 3. 
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Table3: The values of MMIC of the different K 

 K=2 K=3 K=4 K=5 K=6 K=7 K=8 

test1 -210265.69 -160766.25 -184234.59 -206678.33 -199802.34 -210556.47 -217702.63 

test2 -200173.28 -145404.35 -154875.32 -419046.69 -365669.91 -390747.92 -395082.81 

test3 -437013.35 -495592.07 -470183.16 -414504.74 -355404.05 -474000.92 -414836.90 

test4 -802320.32 -235796.21 -291589.19 -291458.25 -311475.41 -226339.18 -227921.21 

test5 -70317 -167835 -292377 -233141 -92179.5 -142873 -207247 

test6 -610675.13 -708297.44 -703198.18 -703039.70 -703340.85 -704084.31 -701885.02 

Natural images are different from the evaluation criteria of brain images. As mentioned in 21, natural 
images use PRI to evaluate the segmentation results. The definition of PRI is as follows: 

𝑃𝑅𝐼(𝑆, 𝑆′) =
2

𝑁(𝑁−1)
∑ [𝑝𝑖𝑗𝐼(𝑙𝑖 = 𝑙𝑗) + (1 − 𝑝𝑖𝑗)𝐼(𝑙𝑖 ≠ 𝑙𝑗)]𝑖,𝑗,𝑖<𝑗                        (3.3) 

where 𝐼(⋅)  is an indicate function, the value of it is 0 or 1.  𝑝𝑖𝑗 =
1

𝐾
∑𝑚=1

𝐾  𝐼(𝑙𝑖
𝑆2𝐾 =  𝑙𝑗

𝑆2𝐾) ,  𝑆1  is the 

experimental result, 𝑆2 is the m-th ground truth in 𝑆2 = {𝑆21, 𝑆22, … , 𝑆2𝐾}. 𝑙𝑖
𝑆1 and 𝑙𝑖

𝑆2 denote the class label 

of pixel 𝑖 for segmentation result and ground truth. The value of PRI is between 0 to 1. 

 

Figure 5: Image segmentation results on natural images (test1). The first column shows the initial image and 
its histogram. The second to last column of the first row show the segmentation results of SCDMM, 
FRSCGMM and SCAGMM, respectively. The second to last column of the second row show the 
segmentation results of SCGAGMM and SCGA-EM and our method, respectively. 

From Figure 5, we can see that our method achieves the best segmentation results. Test1 is a picture 
with a normal distribution of data and a close background to the target. It mainly tests whether the algorithm 
can accurately segment the target and the background. SCAGMM does not completely distinguish the target 
from the background. Although SCDMM, FRSCGMM and SCGM-EM separate the target from the 
background, the target texture is not separated. SAGAGMM not only does not separate the background and 
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objectives, but also confuses the objectives with others. Our method can clearly separate the background and 
target and retain more details of the leopard. 

 
Figure 6: Image segmentation results on natural images (test2). The first column shows the initial image and 
its histogram. The second to last column of the first row show the segmentation results of SC-DMM, 
FRSCGMM and SCAGMM, respectively. The second to last column of the second row show the 
segmentation results of SCGAGMM and SCGA-EM and our method, respectively. 

From Figure 6, we can see that our method achieves the best segmentation results. Test2 is also a 
picture of data showing normal distribution. All the methods can accurately segment the ship and the 
mountain, but FRSCGMM classifies the reflective part of the water as a separate category, and does not 
accurately identify it. SCDMM, SCAGMM, and SCGAGMM did not accurately segment the bridge. 
Although SCGM-EM segmented the bridge, it did not completely retain the details of the bridge, and 
planned some parts of the bridge as the sky. Obviously, our method retains the information of the bridge 
completely. However, all methods do not retain the reflection of the bridge in the water, which will be an 
urgent problem to be solved in the future. 

 
Figure 7: Image segmentation results on natural images (test3). The first column shows the initial image and 
its histogram. The second to last column of the first row show the segmentation results of SC-DMM, 
FRSCGMM and SCAGMM, respectively. The second to last column of the second row show the 
segmentation results of SCGAGMM and SCGA-EM and our method, respectively. 

From Figure 7, we can see that our method achieves the best segmentation results. From the histogram 
of test3, we can clearly see that this is a 6 classification problem with mixed distribution of data. When both 
symmetric and asymmetric distributions appear in the data, our method can still maintain stability. In 
addition to our method, the other five methods do not have a good segmentation of the mountain level. Our 
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method perfectly separates the tree from the mountain, and the mountain trend remains the most complete, so 
our method has the best segmentation performance. 

 
Figure 8: Image segmentation results on natural images (test4). The first column shows the initial image and 
its histogram. The second to last column of the first row show the segmentation results of SC-DMM, 
FRSCGMM and SCAGMM, respectively. The second to last column of the second row show the 
segmentation results of SCGAGMM and SCGA-EM and our method, respectively. 

From Figure 8, we can see that our method achieves the best segmentation results. Although the 
histogram of test4 shows two categories, our experience and the results of MMIC show that we should divide 
it into three categories: sky, tree and moon. We added noise to highlight the advantages of our method. From 
the figure, we can clearly see that SCDMM and SCAGMM are significantly affected by noise, while 
FRSCGMM and SCGM-EM do not separate the moon. Although SCGAGMM can clearly divide the three 
categories, it divides part of the tree information into the sky. Our method not only removes noise, but also 
separates the tree, sky and moon, and retains the most detailed information. Therefore, our method still 
shows high stability in the case of high noise in the image. 

 

Figure 9: Image segmentation results on natural images (test5). The first column shows the initial image and 
its histogram. The second to last column of the first row show the segmentation results of SC-DMM, 
FRSCGMM and SCAGMM, respectively. The second to last column of the second row show the 
segmentation results of SCGAGMM and SCGA-EM and our method, respectively. 

From Figure 9, we can see that our method retains the most detailed information. It is difficult to 
determine the number of K from the histogram of test5, but MMIC can know that K is 2. All methods can 
roughly distinguish the target from the background, but the retention of details is quite different. 
SAGAGMM has not completely reserved the stamen part in the upper left corner, and many information is 
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planned as the background part. In addition, the other five methods have no good retention for the target 
stamen stem. Most of them divide the flower stem as the background, while our method retains the most 
details. From the visual point of view, our method has obtained the best segmentation results. 

 

Figure 10: Image segmentation results on natural images (test6). The first column shows the initial image 
and its histogram. The second to last column of the first row show the segmentation results of SC-DMM, 
FRSCGMM and SCAGMM, respectively. The second to last column of the second row show the 
segmentation results of SCGAGMM and SCGA-EM and our method, respectively. 

According to the MMIC value, we set the number of K as 2 in Figure 10. It can be seen from the figure 
that the other five methods do not clearly distinguish the flowerpot from the table. SCDMM, SCAGMM, 
SCGAGMM and SCGM-EM all divide the highlighted part of the table into another category, while our 
method completely preserves the table part. FRSCGMM divides a part of the flowerpot into tables, and does 
not completely retain the information of the flowerpot, so our method obtains the best segmentation results. 

We conducted experiments on 70 natural images, and the PRI values of the experiments are shown in 
Table 4: 

Table 4 : The values of PRI with 70 natural images 

 SCDMM FRSCGMM SCAGMM SCGAGMM SCGM-EM Our 
proposed 

PRI 0.714±0.043 0.740±0.028 0.721±0.027 0.677±0.039 0.736±0.019 0.759±0.011 

From Table 4, we can see that our method also has the best segmentation accuracy on natural images, 
and our method has the smallest variance, so our method has the highest stability. 

On the other hand, the objective function of our method is non convex. Therefore, our method may fall 
into local optimization. The global optimization method can be used to find the global optimum. In addition, 
the method is based on light tail distribution, which makes it cannot obtain accurate results on images with 
heavy tail form. Our future work will focus on improving the robustness of initialization and selecting more 
robust statistical distributions 

4. Conclusion  

In recent years, GMM has been widely used in image segmentation. Aiming at some shortcomings of 
GMM, we propose a skewed normal model with anisotropic spatial information and noise estimation. Our 
method can fit the distributed data rather than the symmetric data. Moreover, our method has stronger anti-
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interference ability to noise and can obtain more accurate segmentation results. Experimental results show 
that our method achieves the best segmentation accuracy. 

However, our method still has some problems. For example, we can't fit the heavy tailed data very well. 
In the future research work, we will introduce the student T distribution into our model. In future work, we 
will also try to combine the model with deep learning to get better segmentation results. 

Appendix 

Derivation of the proposed method , the complete log-likelihood function 𝑄 has the form: 

𝑄(𝚯 ∣ 𝚯̂) = 𝐸[𝐿(𝚷, 𝚯 ∣ 𝐗) ∣ 𝐗, 𝚯̂]

=  ∑  𝑁
𝑖=1   {l o g ∑  𝐾

𝑘=1   {𝜋𝑖𝑘
1

√(2𝜋)𝑛|𝚪𝑘|
e x p {−

1

2
(𝐱𝑖 − 𝝁𝑘 − 𝚫𝑘𝑠̂𝑖,𝑘)

𝑇
𝚪𝑘

−1(𝐱𝑖 − 𝝁𝑘 − 𝚫𝑘𝑠̂𝑖,𝑘)

−
1

2
(𝑠̂𝑖,𝑘

2 − (𝑠̂𝑖,𝑘)
2

) 𝚫𝑘
𝑇 𝚪𝑘

−1𝚫𝑘 −
1

2
𝑠̂𝑖,𝑘

2 }}}

 −𝛽[𝐾(𝑠𝑖 ∣ 𝜋𝑖) + 𝐾(𝑠𝑖 ∣ 𝜋∂𝑖
) + 𝐻(𝑠𝑖)]

 −
1

2
[𝐾(𝑞𝑖 ∣ 𝑧𝑖) + 𝐾(𝑞𝑖 ∣ 𝑧∂𝑖

) + 𝐻(𝑞𝑖)]

       (4.1) 

Then we utilize EM algorithm to maximize the energy 𝑄, In the E-step, we fix Θ and Π to maximize 𝑄 over 
𝑠 and 𝑞. In the M-step, we fix 𝑠 and 𝑞 to maximize 𝑄 over Θ and Π. 

E-step: By fixing 𝚯 and 𝚷, we can optimize over 𝑠𝑖. The terms involving 𝑠𝑖 in 𝑄 are: 

𝐾(𝑠𝑖 ∣ 𝜋𝑖) + 𝐾(𝑠𝑖 ∣ 𝜋∂𝑖
) + 𝐻(𝑠𝑖)

=  − ∑  𝐾
𝑘=1   𝑠𝑖𝑘log 𝑠𝑖𝑘 + ∑  𝐾

𝑘=1   𝑠𝑖𝑘log 𝜋𝑖𝑘 − ∑  𝐾
𝑘=1   𝑠𝑖𝑘log 𝑠𝑖𝑘 + ∑  𝐾

𝑘=1   𝑠𝑖𝑘log 𝜋∂𝑖𝑘 + ∑  𝐾
𝑘=1   𝑠𝑖𝑘log 𝑠𝑖𝑘

=  − ∑  𝐾
𝑘=1   𝑠𝑖𝑘log 𝑠𝑖𝑘 + ∑  𝐾

𝑘=1   𝑠𝑖𝑘log (𝜋𝑖𝑘𝜋∂𝑖𝑘)

    (4.2) 

The above formula is a negative KL-divergence which becomes zero when: 

𝑠𝑖 ∝ 𝜋𝑖𝑘𝜋∂𝑖𝑘                                                                        (4.3) 

By applying the similar derivation holds for 𝑞𝑖, we can get 

𝑞𝑖 ∝ 𝑧𝑖𝑘𝑧∂𝑖𝑘                                                                       (4.4) 

Therefore, we can get the updating functions for 𝑠𝑖 and 𝑞𝑖 in our method. 

M-step: By fixing 𝑠 and 𝑞, we can maximize 𝑄 over 𝚯 and Π. The terms involving Π and Θ are: 

 ∑  𝑁
𝑖=1   {log ∑  𝐾

𝑘=1   {𝜋𝑖𝑘𝑝(𝐱𝑖 ∣ 𝚯)}}

 −𝛽 [𝐾(𝑠𝑖 ∣ 𝜋𝑖) + ∑  𝑗∈∂𝑖
 𝐾 (𝑠𝑗 ∣ 𝜋∂𝑗

)] −
1

2
[𝐾(𝑞𝑖 ∣ 𝑧𝑖) + ∑  𝑗∈∂𝑖

 𝐾 (𝑞𝑗 ∣ 𝑧∂𝑗
)]

                 (4.5) 

First of all, let us consider the derivation over 𝑧𝑖, then the terms involving only 𝑧𝑖 
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are: 

 −
1

2
[𝐾(𝑞𝑖 ∣ 𝑧𝑖) + ∑  𝑗∈∂𝑖

 𝐾 (𝑞𝑗 ∣ 𝑧∂𝑗
)]

=  −
1

2
[∑  𝐾

𝑘=1  𝑞𝑖𝑘log 𝑞𝑖𝑘 − ∑  𝐾
𝑘=1  𝑞𝑖𝑘log 𝑧𝑖𝑘 + ∑  𝑗∈∂𝑖,𝑗≠𝑖   (∑  𝐾

𝑘=1  𝑞𝑖𝑘log 𝑞𝑗𝑘 − ∑  𝐾
𝑘=1  𝑞𝑖𝑘log 𝑧∂𝑗𝑘)]

(4.6) 

By ignoring the terms independent of 𝑧𝑖𝑘, we get 

−
1

2
[− ∑  

𝐾

𝑘=1

 𝑞𝑖𝑘log 𝑧𝑖𝑘 − ∑  

𝑗∈∂𝑖,𝑗≠𝑖

  ∑  

𝐾

𝑘=1

 𝑞𝑗𝑘log 𝑧∂𝑗𝑘] 

Where 

𝑧∂𝑗
= ∑  𝑚∈∂𝑗,𝑚≠𝑗 𝛼𝑗𝑚𝑧𝑖 = 𝛼𝑗𝑚𝑧𝑖 + ∑  𝑚∈∂𝑗,𝑚≠𝑖,𝑗 𝛼𝑗𝑚𝑧𝑚                              (4.7) 

To make the M-step tractable, we using Jensens inequality to bound terms: 

log 𝑧∂𝑗𝑘 = log ∑  𝑚∈∂𝑗,𝑚≠𝑗 𝛼𝑗𝑚𝑧𝑚𝑘 ≥ 𝛼𝑗𝑚log 𝑧𝑖𝑘 + log ∑  𝑚∈∂𝑗,𝑚≠𝑖,𝑗 𝛼𝑗𝑚𝑧𝑚           (4.8) 

Since 𝛼𝑗𝑖 = 𝛼𝑖𝑗, we obtain: 

1

2
[− ∑  𝐾

𝑘=1  𝑞𝑖𝑘log 𝑧𝑖𝑘 − ∑  𝑗∈∂𝑖,𝑗≠𝑖  ∑  𝐾
𝑘=1  𝑞𝑗𝑘log 𝑧∂𝑗𝑘]

=
1

2
[− ∑  𝐾

𝑘=1  𝑞𝑖𝑘log 𝑧𝑖𝑘 − ∑  𝑗∈∂𝑖,𝑗≠𝑖  ∑  𝐾
𝑘=1  𝑞𝑗𝑘log (∑  𝑚∈∂𝑗,𝑚≠𝑗  𝛼𝑗𝑚𝑧𝑚𝑘)]

≥
1

2
[∑  𝐾

𝑘=1  𝑞𝑖𝑘log 𝑧𝑖𝑘 + ∑  𝑗∈∂𝑖,𝑗≠𝑖  (∑  𝐾
𝑘=1  𝑞𝑗𝑘(𝛼𝑗𝑖log 𝑧𝑖𝑘) + ∑  𝑚∈∂𝑗,𝑚≠𝑗  𝛼𝑗𝑚log 𝑧𝑚𝑘)]

=
1

2
[∑  𝐾

𝑘=1  𝑞𝑖𝑘log 𝑧𝑖𝑘 + ∑  𝐾
𝑘=1  ∑  𝑗∈∂𝑖,𝑗≠𝑖

 𝑞𝑗𝑘(𝛼𝑗𝑖log 𝑧𝑖𝑘) + ∑  𝑗∈∂𝑖,𝑗≠𝑖  ∑  𝑚∈∂𝑗,𝑚≠𝑗  𝛼𝑗𝑚log 𝑧𝑚𝑘]

 (4.9) 

By only preserving the terms involving 𝑞𝑖, then the remaining terms are: 

1

2
[− ∑  𝐾

𝑘=1  𝑞𝑖𝑘log 𝑧𝑖𝑘 − ∑  𝐾
𝑘=1  ∑  𝑗∈∂𝑖,𝑗≠𝑖  𝑞𝑗𝑘log 𝑞𝑗𝑘(𝛼𝑗𝑖log 𝑧𝑖𝑘)]

=
1

2
[− ∑  𝐾

𝑘=1  𝑞𝑖𝑘log 𝑧𝑖𝑘 − ∑  𝐾
𝑘=1  ∑  𝑗∈∂𝑖,𝑗≠𝑖  𝛼𝑗𝑖𝑞𝑗𝑘log 𝑧𝑖𝑘]

=
1

2
[∑  𝐾

𝑘=1  (𝑞𝑖𝑘 + ∑  𝑗∈∂𝑖,𝑗≠𝑖  𝛼𝑗𝑖𝑞𝑗𝑘)log 𝑧𝑖𝑘]

⟹
1

2
∑  𝐾

𝑘=1   (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)log 𝑧𝑖𝑘

                                         (4.10) 

Where the distribution 𝑞∂𝑖
 is 

𝑞∂𝑖
= ∑  𝑗∈∂𝑖,𝑗≠𝑖 𝛼𝑖𝑗𝑞𝑗                                                             (4.11) 

By applying the similar derivation holds for 𝜋𝑖, we can get: 
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𝛽 ∑  

𝐾

𝑘=1

(𝑠𝑖𝑘 + 𝑠∂𝑖𝑘)log 𝜋𝑖𝑘 

Where the distribution 𝑠∂𝑖
 is: 

𝑠∂𝑖
= ∑  𝑗∈∂𝑖,𝑗≠𝑖 𝛼𝑖𝑗𝑠𝑗                                                              (4.12) 

Consequently, the lower bound of complete log-likelihood function 𝑄 involving the posterior 𝑧𝑖 and prior 𝜋𝑖 
becomes: 

log ∑  

𝐾

𝑘=1

{𝜋𝑖𝑘𝑝(𝐱𝑖 ∣ Θ)} + 𝛽 ∑  

𝐾

𝑘=1

(𝑠𝑖𝑘 + 𝑠∂𝑖𝑘)log 𝜋𝑖𝑘 +
1

2
∑  

𝐾

𝑘=1

(𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)log 𝑧𝑖𝑘 

1

2
∑𝑘=1

𝐾  (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘) =
1

2
∑𝑘=1

𝐾  𝑞𝑖𝑘 +
1

2
∑𝑘=1

𝐾  𝑞∂𝑖𝑘 = 1 . By expanding the posterior 𝑧𝑖𝑘 , we find that 

maximizing 

log ∑  𝐾
𝑘=1   {𝜋𝑖𝑘𝑝(𝐱𝑖 ∣ Θ)} + 𝛽 ∑  𝐾

𝑘=1   (𝑠𝑖𝑘 + 𝑠∂𝑖𝑘)log 𝜋𝑖𝑘 +
1

2
∑  𝐾

𝑘=1   (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)log 𝑧𝑖𝑘

= log ∑  𝐾
𝑘=1   {𝜋𝑖𝑘𝑝(𝐱𝑖 ∣ Θ)} +

1

2
∑  𝐾

𝑘=1   (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)log 𝑧𝑖𝑘 + 𝛽 ∑  𝐾
𝑘=1   (𝑠𝑖𝑘 + 𝑠∂𝑖𝑘)log 𝜋𝑖𝑘

= log ∑  𝐾
𝑘=1   {𝜋𝑖𝑘𝑝(𝐱𝑖 ∣ Θ)} +

1

2
∑  𝐾

𝑘=1   (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)log {
𝜋𝑖𝑘𝑝(𝐱𝑖∣Θ)

∑  𝐾
𝑘=1  𝜋𝑖𝑘𝑝(𝐱𝑖∣Θ)

} + 𝛽 ∑  𝐾
𝑘=1   (𝑠𝑖𝑘 + 𝑠∂𝑖𝑘)log 𝜋𝑖𝑘

=
1

2
∑  𝐾

𝑘=1   (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)log (𝜋𝑖𝑘𝑝(𝐱𝑖 ∣ Θ)) + 𝛽 ∑  𝐾
𝑘=1   (𝑠𝑖𝑘 + 𝑠∂𝑖𝑘)log 𝜋𝑖𝑘

(4.13) 

is equivalent to maximizing: 

1

2
∑  

𝐾

𝐾=1

(𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)log 𝑝(𝐱𝑖 ∣ 𝚯) + ∑  

𝐾

𝐾=1

(
1

2
(𝑞𝑖𝑘 + 𝑞∂𝑖𝑘) + 𝛽(𝑠𝑖𝑘 + 𝑠∂𝑖𝑘)) log 𝜋𝑖𝑘 

Then, the Lagranges multiplier is used to enforce the constraint ∑𝑘=1
𝐾  𝜋𝑖𝑘 = 1 for each data point, and we can 

easily get the updating function for the prior 𝜋𝑖𝑘 : 

𝜋̂𝑖𝑘 =
1

1+2𝛽
(

1

2
(𝑞𝑖𝑘 + 𝑞∂𝑖𝑘) + 𝛽(𝑠𝑖𝑘 + 𝑠∂𝑖𝑘

))                                           (4.14) 

Similarly, we obtain the following update equations for 𝝁, 𝚪 and 𝚫 , and . The energy function can be 
rewritten as: 

𝑄∗  =
1

2
∑  𝐾

𝐾=1   (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)log 𝑝(𝐱𝑖 ∣ 𝚯) + ∑  𝐾
𝐾=1   (

1

2
(𝑞𝑖𝑘 + 𝑞∂𝑖𝑘) + 𝛽(𝑠𝑖𝑘 + 𝑠∂𝑖𝑘)) log 𝜋𝑖𝑘

 =
1

2
∑  𝐾

𝐾=1   (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)log {
1

√(2𝜋)𝑛|𝚪𝑘|
e x p {−

1

2
(𝐱𝑖 − 𝝁𝑘 − 𝚫𝑘𝑠̂𝑖,𝑘)

𝑇
𝚪𝑘

−1(𝐱𝑖 − 𝝁𝑘 − 𝚫𝑘𝑠̂𝑖,𝑘)

−
1

2
(𝑠̂𝑖,𝑘

2 − (𝑠̂𝑖,𝑘)
2

) 𝚫𝑘
𝑇 𝚪𝑘

−1𝚫𝑘 −
1

2
𝑠̂𝑖,𝑘

2 }} + ∑  𝐾
𝑘=1   (

1

2
(𝑞𝑖𝑘 + 𝑞∂𝑖𝑘) + 𝛽(𝑠𝑖𝑘 + 𝑠∂𝑖𝑘))) log 𝜋𝑖𝑘

    (4.15) 



Kaili Zhang:A skew Normal Mixture Model with Noise Estimation for  

image segmentation 

JIC email for contribution: editor@jic.org.uk 

136 

Let ∂𝑄∗

∂𝝁𝑘
= 0,

∂𝑄∗

∂Γ𝑘
−1 = 0 and ∂𝑄∗

∂Δ𝑘
= 0, we can obtain: 

𝝁̂𝑘 =
∑  𝑁

𝑖=1   (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)(𝐱𝑖 − 𝚫𝑘𝑠̂𝑖,𝑘)

∑  𝑁
𝑖=1   (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)

𝚫̂𝑘 =
∑  𝑁

𝑖=1   (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)𝑠̂𝑖,𝑘(𝐱𝑖 − 𝝁𝑘)

∑  𝑁
𝑖=1  (𝑞𝑖𝑘 + 𝑞∂𝑖

)𝑠̂𝑖,𝑘
2

𝚪̂𝑘 =
∑  𝑁

𝑖=1   (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘) ((𝐱𝑖 − 𝝁𝑘 − 𝚫𝑘𝑠̂𝑖,𝑘)(𝐱𝑖 − 𝝁𝑘 − 𝚫𝑘𝑠̂𝑖,𝑘)
𝑇

+ (𝑠̂𝑖,𝑘
2 − (𝑠̂𝑖𝑘)2)𝚫𝑘𝚫𝑘

𝑇 )

∑  𝑁
𝑖=1  (𝑞𝑖𝑘 + 𝑞∂𝑖𝑘)

 

Where 

𝚺𝑘 = 𝚪𝑘 + 𝚫𝑘𝚫𝑘
𝑇

𝝀𝑘 =
𝚺𝑘

−1𝚫𝑘

√1 − 𝚫𝑘
𝑇 𝚪𝑘

−1𝚫𝑘
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