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Abstract: Because of the excellent performance and fast speed of deep neural network, U-Net has become 

the most popular network framework for medical image segmentation. For various specific image segmentation 

tasks, researchers have proposed a series of U-Net related methods. However, on the one hand, due to the 

inherent limitations of convolutional neural networks, the variants of U-Net still cannot model long-range 

information well while maintaining detailed texture information. On the other hand, since medical images are 

difficult to obtain a large number of high-quality semantic pixel-level annotations, it is difficult to use 

supervised deep learning networks. To address these issues above, we proposed a modified U-Net structure 

and a Gaussian mixture model (GMM) based loss function. This modified U-Net can be well applied to brain 

MR image segmentation, which can not only restore the detailed information well, but also take into account 

the relatively large-scale local information. The proposed GMM loss can be used for unsupervised training of 

neural networks. It effectively alleviates the shortcomings of difficult access to medical image annotation data 

and improves the performance of deep neural networks. In the experiments in this paper, the GMM loss 

function can also be used as a regular term to assist supervised learning to achieve better results. Experimental 

results on brain MR images demonstrate the superior performance of the proposed model. 

Keyword: Semi-supervised learning; Unsupervised Deep learning; Modified U-Net; Gaussian mixture 

model 

 

1. Introduction 

Image segmentation is the division of an image into a set of non-overlapping regions. Accurate medical 

image segmentation technology can help doctors make accurate clinical diagnosis. Magnetic resonance 

imaging (MRI) has high resolution and high contrast, so it is often used as a theoretical study of medical images. 

MR images of the brain are segmented into three non-overlapping parts, including white matter (WM), gray 

matter (GM), and cerebrospinal fluid (CSF), which is important for physicians studying brain disorders. 

However, due to machine imaging, MRI also has some problems such as uneven gray scale, blurred border, 

complex texture and noise, which brings severe resistance to the task of brain MRI segmentation. 

In recent years, a large number of deep learning-based methods [1] have emerged for brain MR image 

segmentation, in order to improve the accuracy of image segmentation results. Most of these methods are based 

on the supervised convolutional neural network (CNN), which has become popular in recent years, which 

requires high data set size [1,2]. But  the cost of acquiring massive labeled datasets is relatively high and 

labor-intensive for medical images,. 

In the case of limited amount of labeled data, it is difficult to make it difficult to reach the correct decision 

boundary by training the deep learning model., as shown in Fig. 1(a). To overcome this problem, many 
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researchers use data augmentation [3,4] to solve the overfitting problem and obtain more precise decision 

boundaries, which can be found in Fig.1(b). However, these studies still fail to reach a better decision boundary  

[5]. In order to solve the problem of insufficient labeled datasets, a large number of weak/semi-supervised 

image segmentation methods have been proposed [6,7,8]. These image segmentation methods require very 

little high-quality labeled data, which makes the application of deep learning methods in various image 

segmentation tasks gradually expand, such as brain MR image segmentation. 

 
Fig. 1 Comparison of feature visualization. 

Based on the observation of traditional image segmentation methods, the classic finite mixture model 

method for image segmentation is unsupervised [9,10,11,12,13,14]. However, these classical algorithms are 

computationally complex, and it is very easy to obtain local optimal solutions. In addition, they only consider 

the individual characteristics of a single individual rather than the common characteristics of image sets, so 

they are relatively limited in semantic image segmentation. 
Through observations from previous studies, we found that classical finite mixture models can help 

improve the performance of CNN-based deep learning image segmentation models, especially when training 

data is small. Therefore, we propose a loss function based on the Gaussian mixture likelihood function and 

couple it to any deep learning network. The proposed loss function is matched with the deep learning network 

model, which not only utilizes the rich semantic information of the network, but also avoids the shortcomings 

of insufficient spatial information of the limited mixture model. If learning in a supervised way, our loss 

function will act as a regularization term, because the loss function considers the feature of pixel similarity, so 

it can improve the accuracy of the entire image segmentation model. Moreover, because our proposed loss 

function is a self-supervised loss, we can easily graft it to other deep learning networks for semi-supervised or 

unsupervised learning. Our method can obtain the best boundary, as shown in Fig.1(c). 
In recent years, deep learning-based methods, especially U-Net based methods [2], have been successfully 

applied to brain MR image segmentation and achieve outstanding performance. However, these methods have 

deep semantic gaps between the encoders and decoders [15]. Furthermore, the skip connections used in the U-

Net can not retrieve the spatial information lost by pooling operations [2]. In order to deal with these problems, 

many improved U-Net methods have been proposed [15,16,17,18]. Zhou et al. [16] proposed nested and dense 

skip connections to capture fine-grained details of the objects. Chen et al. [19] used the transformers to improve 

the U-Net and can preserve more detail information; however, this method has high computational complexity 

[21]. In this paper, we proposed a modified U-Net, which can effectively makes up for the defect of U-Net 

modeling long-distance information. Compared with transformer-based models, our method contains fewer 

parameters and is easier to converge. 

2. Backgrounds 
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2.1 Gaussian Mixture model 

Let 
D

ix R  , ( )1,2,...,i N=  , denotes an observation at the i  th pixel of an image. i   is its 

neighborhood. In order to divide an image into K   regions 2( , ,..., )i k    , GMM assumes that ix   is 

independent and its probability density function (pdf) is: 

 
1
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where Π   and Θ   are model parameters. 1{ ,..., }K =Π   is the prior probabilities and satisfies: 
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where k  and kΣ  are mean and covariance matrices, respectively. 

Just like the other independent assumptions in statistical analysis, we suppose that ix  is independent. 

Therefore, the maximum likelihood function of GMM is written as; 
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Eq.(2.3) simply solves the model parameters iteratively using the expectation maximization (EM) 

algorithm [22] as follows: 

E step: Define a Q   function of Eq.(2.3), with respect to the conditional distribution of the latent 

variables Z : 
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M step: find the parameters that maximize this quantity: 
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( 1) ( 1)arg max ( | )t tQ  + +=                             (2.6) 

Then the mean, covariance matrix and component weights can be calculate as: 

 

( ) ( )

1

1

1

1

1

ˆ

,

ˆ

ˆ

,

ˆ

1
ˆ ˆ

N

ik i

i
k N

ik

i

N
T

ik i k i k

i
k

N

ik

i

N

ik ik

i

z

z

z

z

z
N



 



=

=

=

=

=

=

− −
=

=











x

x x

Σ                     (2.7) 

Although GMM can obtain satisfactory results for natural images; however, it is sensitive to noise, 

intensity inhomogeneity and weak boundary [10,11,12,13,14]. 

2.2 Bias field formulation 

To reduce the effect of intensity inhomogeneity (also named as bias field) in the MR image, the observed image 

is usually modeled as : 

 I BJ N= +                                       (2.8) 

Where I  is an observed image, J  is the clean image, B  is the unknown bias field and N  is additive 

noise. Each tissue in brain MR images should have a specific value of the measured physical properties. Therefore, 

it can be assumed that the real image is piecewise approximately constant. The bias field is smooth and slowly 

changing in image domain [24,25,26], so the models [25,26] use a low-pass filter to ensure the smoothness of the 

bias field, which also causes the models to easily lose boundary information. To improve robustness, [27,28] use a 

linear combination of a set of orthogonal polynomial basis functions to fit the bias field. 

 

2.3 CNN-Based Deep Learning methods 

1) Supervised methods: When there are enough semantic pixel level labels, the deep neural network method 

becomes the main tool of modern segmentation technology because of its high performance and fast running 

complexity. Because the output maps generated by full convolutional network (FCN [1] have the same input size, 

it is widely used in medical image segmentation. U-Net [2] is a U-shaped framework composed of encoder and 

decoder inspired by FCN, which can achieve feature extraction and precise positioning, thus obtaining more 

accurate results than FCN. 

2) Weakly/Semi-Supervised methods: In the training set with a large number of pixel level annotations, the 

supervised learning method can obtain high-performance semantic segmentation results, but for medical image 

analysis, it is difficult to obtain a large number of tag images with pixel level annotations. To solve this problem, a 

common semi-supervised semantic segmentation method is to generate training samples by using Generative 

Adversarial Networks(GANs) [29]. Hung et al. [30] proposed a discriminator based on GAN to distinguish the 

confidence map from the prediction of labeled and unlabeled data. 

On the other hand, consistent regularization is widely studied for semi-supervised segmentation, which 

enhances the consistency of prediction/intermediate features and various disturbances [31]. In addition, the 
bounding box annotation [32], bounding box annotation [33], image level annotation [34,35] and scribbled 

annotations [36] have been used for semantic segmentation. 
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3. Method 

As mentioned earlier, in deep learning-based medical image segmentation methods, the lack of high-quality 

labeled data and the limitation of the receptive field of CNN itself are the two main problems that limit the 

segmentation accuracy of the entire model. In order to solve the defects brought by the dataset and CNN, we 

invented a loss function based on Gaussian mixture likelihood function to improve the accuracy of the model. At 

the same time, we propose an improved U-Net to enhance its ability of remote information modeling. 

3.1 Key observation 

An important research result of this paper is that the softmax layer in the deep learning network can be 

approximated as a probability output, so it is feasible to directly maximize the likelihood function of the Gaussian 

mixture model. It uses the EM algorithm to obtain the posterior probabilities, which is different from the classic 

Gaussian mixture model approach. Specifically, the k th channel softmax output is written as: 
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where ( )kz i  is the output of the network before the softmax. When i  belongs to the k th class, ,i ks  is 

close to 1. Furthermore, like 
1

1
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ikz  in Eq.(2.5) also meets this condition. This similarity illustrates that 

the softmax output can be used as an approximation of the posterior  probability of each pixel. Therefore, we define 

the GMM based loss function as: 
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Where C  is a constant independent of variables, ix  is the input and iks  is the output of softmax layer and 
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      (3.3) 

It is worth noting that Eq.(3.2) is differentiable and can be derived for each parameter. Therefore, it can find 

the minimum value by gradient descent method. The loss function is a self supervised loss function that can be used 

for unsupervised segmentation. In addition, the loss function takes into account the statistical distribution 
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information of image pixel values, so adding statistical distribution information to the network can enhance 

robustness. 

3.2 Application of GMM based Loss Function 

In order to make the edge of the segmented image smoother, we introduce a TV regularization term to combine 

with the Gaussian mixture loss to form the following loss function:  

_
1 1

| ( ) | .
K N

GMM TV GMM k i
k i

L L s
= =

= +  x                    (3.4) 

where   is a non-negative constant. 

 
Fig. 2 The segmentation flow of the proposed method. (a) Semi-supervised segmentation: depth learning network 

with pixel level annotation image SX  and unlabeled image UX . Use CEL  and _GMM TVL  training the network. (b) 

Unsupervised segmentation with bias field estimation. 

 

Fig.2(a) shows the use of our loss in semi-supervised segmentation tasks. Additionally, GMM-based losses can 

be used with any deep neural network, even with little or no high-quality labeled data. 

1) Application for Semantic segmentation: When the model has only a few pixel level semantic annotations, 

we use the traditional cross entropy loss and GMM loss to evaluate the model loss; When there is no annotations, 

we only use GMM loss. In this way, the total loss function is designed as: 

 _ ,Total CE GMM TVL L L = +                               (3.5) 

where CEL  is the cross-entropy loss. When the input has labels,   is set as 1; otherwise, it is set to 0. We 

use CEL  and _GMM TVL  to describe semantic information and pixel similarity to improve model accuracy. 

2) Application for unsupervised segmentation: Eq.(3.5) is a self-supervised loss, and when 0 = , the model 
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is unsupervised. For supervised or semi-supervised models, the network can learn the characteristic information of 

the bias field by using the label information. In unsupervised learning, the model is affected by the bias field and 

can not obtain ideal results. 

Let { , 1,2, , }iB b i N= =   denotes the bias field, which can be modeled by using a linear combination of a 

set of polynomial basis functions: 
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where 1 2{ , , , }MG g g g=   is a set of orthogonal Legendre polynomials with degree P . Then the loss can 

be written as: 
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3.3 A modified U-Net 

The original U-Net [2] is classical Encoder-Decoder architecture, which can produce almost perfect 

segmentation results with enough labeled training data. Although the classical u-net method has good segmentation 

performance, it is usually limited in explicitly modeling long-range correlation due to the inherent defects of 

convolution operation [19]. Therefore, we propose an improved version of U-Net. 
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Fig. 3 The modified U-Net and its respective components. (a) is the overall framework of modified U-Net; (b) is the 

scaling module A ; (c) is the scaling module B; (d) is the skip connection module. 

 

Fig.3 (a) shows the modified U-Net structure. Compared with the original u-net, the new network architecture 

adopts improved up scaling module and skip connection module. The network adopts the coding and decoding 

structure similar to that of U-net. The coding process includes two original U-net coding sequences and two scaling 

module(see Fig.3 (b)). To obtain a larger field of view, we add a 3  3 convolution in the scale block A. Each 

sequence or scale block is followed by a maximum pooling operation with a size of 22 and a step of 2. After each 

down sampling, the number of filters in the convolution layer is doubled. Similarly, the decoding process uses 2 

layers of improved scale block B and 2 layers of conventional decoding sequences. In scale block B, a 3  3 

convolution is added. In this paper, the bilinear interpolation is used in the up sampling process to obtain more 

accurate results. 

The U-Net uses skip connection to fuse coded and decoded feature information, which will lead to differences 

between two groups of potentially incompatible features in the learning process, thus affecting the accuracy of the 

model [15]. In this paper, we propose an improved skip connection module, which consists of a series of 

convolutional modules, to reduce the difference between the encoding module and the decoding module. Each 

convolution module includes a 33 convolution and a ReLU module. The number of convolutional modules in the 

skip connection module decreases with the increase of the number of coding layers. 

 

4. Experimental Results 

4.1 Dataset 

1) Internet Brain Segmentation Repository (IBSR): 

To evaluate the semantic segmentation performance, we use data sets from IBSR 
(http://www.cma.mgh.harvard.edu/ibsr/), which provides 3D brain MR images and segmentation labels with a 

resolution of 256128256 voxels. All these images is normalized into [0,1] . 
2) MRBrainS18: The MRBrainS18 (https://mrbrains18.isi.uu.nl/) is a Grand Challenge on MR Brain 

Segmentation at MICCAI 2018, which consists 7 sets of labeled brain MR images with size 24024048. Some 
data sets have bias fields. 
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4.2 Implementation Details 

When the input image contains pixel-level semantic labels, the model trains the deep neural network using a 

semi-supervised method; otherwise, the network is trained in an unsupervised manner. All experiments were 

performed on NVIDIA GeForce GTX 3090 GPU (24GB). 

1) Semi-Supervised Semantic Segmentation: To illustrate the advantages of the GMM based loss in this paper, 

we use use it into U-Net [2], U-Net++ [16], TRMFCN [18], ViT [20], TransUNet [19], MTUNet [21] and the 

improved U-Net proposed in this paper on IBSR and MRBrainS18. All the methods used in the experiments have 

the same initial parameters. Adam optimization algorithm is used for model training. The learning rate is 
410−

, the 

batch size is 20 and the epochs is 200. 

2) Unsupervised Segmentation: Our method can transform the existing supervised or semi-supervised 

segmentation network into unsupervised network by using _GMM BL . For this purpose, we use the unlabeled IBSR 

data sets to train the network. 

4.3 Results 

1) Semi-Supervised Semantic Segmentation: In this experiment, we couple TotalL  into six methods and set 

the hyper-parameter   as 
1010−

 on randomly chosen 1/4, 1/2 and 3/4 labeled data of the IBSR and MRBrainS18. 

Since the labeled data can help the deep learning network to learn the characteristics of the bias field, this experiment 

of all semi-supervised methods do not consider any bias field estimation. We used recall to illustrate the advantages 

of the proposed network and _GMM TVL . 

Table.1 and Table.2 list the average recall values, which illustrates that _GMM TVL  improves the accuracy of 

all these methods when there is only 1/4 labeled data sets. To show the accuracy of each tissue, we use intersection 

over-union (IoU) to evaluate the model segmentation results and the mean values on IBSR and MRBrainS18 with 

1/4 labeled data sets are shown in Table.3 and Table.4. It can be found that our method can obtain more accurate 

results(higher mean values). Furthermore, our method obtains a higher CSF value, which indicates that our method 

can retain more details, and obtains a smaller variance in most cases, which indicates that our method is more robust. 

 

Table 1 Recall values of semi-supervised methods with different ratio of labeled data on IBSR. 

 U-Net U-Net++ TRMFCN ViT TransUNet MTUNet Our method 

CEL  

1/4 91.95 92.79 92.67 87.76 92.27 93.13 93.62 

1/2 93.83 94.49 94.27 89.15 94.03 94.70 94.95 

3/4 94.54 95.11 95.01 89.96 94.61 95.29 95.50 

_CE GMM TVLL +  

1/4 92.89 92.87 93.07 88.02 92.56 93.24 93.64 

1/2 94.17 94.61 94.43 89.37 94.11 94.76 95.01 

3/4 94.73 95.26 95.03 89.99 94.65 95.31 95.54 

Table 2 Recall values of semi-supervised methods with different ratio of labeled data on MRBrainS18. 

 U-Net U-Net++ TRMFCN ViT TransUNet MTUNet Our method 

CEL  

1/4 87.63 87.31 87.47 65.18 87.11 79.75 88.07 

1/2 88.39 88.04 88.19 65.95 87.83 80.71 88.79 

3/4 88.27 88.62 88.71 66.41 88.37 81.13 89.33 

_CE GMM TVLL +  
1/4 87.91 87.58 87.72 65.17 88.04 82.09 88.09 

1/2 88.82 88.42 88.53 65.99 88.97 82.89 88.92 
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3/4 89.93 88.99 88.97 66.47 89.41 83.32 89.39 

 

Fig.4 shows four examples of the segmentation results on 1/4 labeled data. The first four rows show the 

segmentation results on IBSR and the other four rows show the results on MRBrainS18. Odd rows are based on 

CEL , and even rows are based on _CE GMM TVL L+ . The detail information of the results show that the models with 

_GMM TVL  can obtain more accurate results. In addition, even in the case of a small amount of labeled data, our loss 

can improve the accuracy of learning methods. 

2) Unsupervised Semantic Segmentation: The experiment of unsupervised learning methods directly illustrates 

that the combination of GMM method and deep learning network increase the accuracy of semantic segmentation 

methods. The bias field changes the intensity distribution of brain MRI images and greatly reduces the segmentation 

accuracy of unsupervised models. The bias field is coupled into the learning model to improve the segmentation 

performance. 

 

Table 3 Quantitative results of semi-supervised brain MR images of IBSR val set using 1/4 labeled data. 

 CSF GM WM 

CEL  

U-Net 78.82±0.4390 92.13±0.0463 89.17±0.5819 

U-Net++ 81.56±0.3839 92.96±0.0392 90.22±0.4993 

TRMFCN 79.91±0.4310 92.55±0.0433 89.63±0.5837 

ViT 58.77±1.0172 86.03±0.1156 79.12±1.5737 

TransUNet 77.63±0.0429 92.04±0.0429 88.91±0.5973 

MTUNet 81.19±0.3449 93.14±0.0325 90.48±0.4590 

Our 81.64±0.3422 93.20±0.0319 90.63±0.4227 

_CE GMM TVLL +  

U-Net 79.25±0.4241 92.20±0.0453 89.21±0.5657 

U-Net++ 81.58±0.3843 93.00±0.0397 90.28±0.5126 

TRMFCN 80.26±0.4244 92.59±0.0435 89.67±0.5887 

ViT 59.37±1.0012 86.92±0.1036 79.91±1.4331 

TransUNet 78.21±0.0413 92.54±0.0402 89.41±0.5737 

MTUNet 81.41±0.3437 93.24±0.0317 90.54±0.4523 

Our 81.74±0.3388 93.30±0.0313 90.71±0.4225 

 

Fig.5 shows the segmentation results on images form IBSR, which have severe intensity inhomogeneity. The 

loss based on GMM transforms supervised/semi supervised learning model into unsupervised model with superior 

performance. GMM has not consider any information of bias field, which makes it hard to find satisfactory results. 

Coupling the bias field information improves the performance of our method. To quantify the accuracy of our 

method, we computed the precision, recall, F1-score and JS values as evaluation metrics, which can be found in 

Table.3. This images of IBSR contain a small amount of CSF, and brain MRI analysis focuses on GM and WM, so 

we only gives quantitative results of GM and WM. For GM and WM, we use the proposed loss function method to 

achieve 10% and 4% higher accuracy than GMM respectively, which shows that the depth learning network can 

achieve improved image segmentation without ground truth labels. 
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Table 4 Quantitative results of semi-supervised brain MR images of MRBrainS18 val set using 1/4 labeled data. 

 CSF GM WM 

CEL  

U-Net 85.56±0.2102 75.59±0.1303 71.98±2.6008 

U-Net++ 85.09±0.2316 75.35±0.1498 71.83±2.5624 

TRMFCN 85.60±0.2083 75.27±0.1452 72.15±2.3695 

ViT 47.12±0.6582 47.96±0.3079 46.01±3.7844 

TransUNet 83.84±0.2076 75.37±0.1175 71.91±2.6133 

MTUNet 82.49±0.0.2782 66.34±0.6290 59.72±2.4865 

Our 85.79±0.2000 76.91±0.1068 72.80±2.7132 

_CE GMM TVLL +  

U-Net 85.95±0.1955 76.60±0.1061 73.01±2.3719 

U-Net++ 85.55±0.2035 76.16±0.1437 73.25±2.5269 

TRMFCN 85.70±0.2080 76.04±0.1292 72.86±2.0678 

ViT 48.02±0.6152 48.36±0.3007 46.61±3.5724 

TransUNet 84.24±0.2011 76.11±0.1015 72.21±2.5123 

MTUNet 83.25±0.2402 67.24±0.6079 61.37±2.4215 

Our 86.09±0.1908 77.12±0.1356 73.01±2.6338 

 

Table 5 Unsupervised segmentation accuracy based on IBSR data. 

 Precision Recall F1-Score JS 

GMM 
GM 80.90 52.60 63.42 46.90 

WM 74.79 74.86 74.17 59.92 

Our method 

without bias 

field 

correction 

GM 85.12 60.12 70.17 54.56 

WM 73.12 80.02 75.59 61.46 

Our method 

with bias 

field 

correction 

GM 89.26 68.39 77.29 63.15 

WM 77.96 84.74 80.79 68.16 

 



 

Journal of Information and Computing Science, Vol. 17(2022) No. 2, pp 138-153 

 

JIC email for subscription: publishing@WAU.org.uk 

149 

 

Fig. 4 Semi supervised brain segmentation results of 1/4 calibration data in IBSR and MRBrainS18. The first to last 

columns are the initial image, the ground truth, the segmentation results of UNet, UNet++, TRMFCN, ViT, TransUNet, 

MTUNet and our method, respectively. The first four rows show the segmentation results of ISBR. The other rows show 

the results of MRBrainS18. Odd rows are based on CEL , and even rows are based on _CE GMM TVLL + . 
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Fig. 5 Results of the unsupervised brain segmentation. The first row shows the initial images. The second row to third 

row shows the segmentation results of GMM, and our method, respectively. 

5. Discussion 

Our method can achieve good performance in both semi-supervised and unsupervised situations, but there are 

still some limitations. Non negative constant   in Eq.(3.5) balances the influences of CEL  and _GMM TVL . The 

bigger  , the stronger the model's ability to extract sample personality characteristics. We use 200 images as a test 

set to verify the impact of   on the segmentation results. The average recall value is shown in Fig.6 (a). It has 

been shown that when   is set to about 
1010−

, our method can obtain satisfactory results. 

  in Eq.(3.4) is a non negative constant that will affect the accuracy of the model. It should be small enough 

to maintain clarity, while a bigger value can reduce the effect of noise. Fig.6(b) shows the average recall value of 

  and illustrates that when it is set to 80, we obtain more accurate results. 

6. Conclusion 

In this paper, we propose a novel GMM loss based deep learning framework, which can realize semi-supervised 

and unsupervised segmentation. The main motivation of the loss function proposed in this paper is that the output 

of the softmax layer of the deep learning model and the posterior probability in the Gaussian mixture model are 

surprisingly similar, so the improved GMM likelihood function can be minimized using the deep learning network. 

the learning of a small number of calibrated samples or data without calibrated samples can be realized. Experiments 

on various data sets have proved the effectiveness of the loss function. 
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Fig. 6 The mean Recall values of   and   on brain MR images (a) Recall values of  . (b) Recall values of  . 
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