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Abstract:We propose a new Kantorovich theorem for Newton's method on Lie groups for mappings and matrix 

low-rank optimization problems, which arises from many applications. Under the classical hypothesis of f, we 

establish the convergence criteria of Newton's method from Lie group to its Lie algebra with weakened conditions, 

which improves the corresponding results in [20]. 
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1. Introduction 

In recent years, more and more attentions have been focused on studying numerical algorithms on manifolds. 

Classical optimization problems on manifolds are given by symmetric eigenvalue problems, low-rank nearest 

correlation matrix estimation, invariant subspace computations, optimization problems with equality constraints 

(see [7][9][21]). In this paper we focus on optimization problems on Lie groups. Consider the following problem:  

min
𝑥∈𝑀

𝜙(𝑥),                                      (1.1) 

where 𝑀  is a Riemannian manifold and 𝜙  is a real-valued function on 𝑀 . ee will explore the optimization 

problem when 𝜙 is matrix trace function. It is essentially a kind of constrained matrix optimization problem. Many 

scholars have studied the problem. In [20], 𝜙: 𝐺 → ℝ in (1.1) be given by 

𝜙(𝑥) = −tr(𝑥T𝐶𝑥𝑄) for each 𝑥 ∈  𝐺,                     (1.2) 

where 𝐺 = SO(𝑛, ℝ): = {𝑥 ∈ ℝ𝑛×𝑛|𝑥T𝑥 = I𝑛, det 𝑥 = 1},  C is a fixed symmetric matrix and 𝑄 =

diag(O𝑛−𝜍,𝑛−𝜍 , 𝑄𝜍)  with 𝑄𝜍 = diag(𝑞1, ⋯ , 𝑞𝜍), 0 < 𝑞1 ≤ 𝑞2 ≤ ⋯ ≤ 𝑞𝜍 , solved a kind of matrix trace function 

optimization problem with orthogonal constraints. Xu solved a generalized singular value of a Grassmann matrix 

pair or a real matrix pair. If 𝑄𝜍 = diag(I𝜍 , O𝑛−𝜍,𝑛−𝜍) for 1 ≤ 𝜍 ≤ 𝑛, Xu solved this case by Riemannian inexact 

Newton-CG method [21]. Different from method in [21], ee consider Newton’s method on Lie group to solve this 

problem. 

Brockett studied the optimization problem when 

𝜙(𝑥) = −tr(𝑥T𝑄𝑥𝐷) for each 𝑥 ∈  𝐺                      (1.3) 

in (1.1), where 𝑄 is a fixed symmetric matrix and 𝐷 with the following structure 

𝐷 = diag(1,2, … , 𝑛), 

showed that the minimum 𝑥∗ ∈ 𝐺 occurs when 𝑥∗T𝑄𝑥∗ is a diagonal matrix with diagonal entries (eigenvalues 
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of 𝑄) in ascending order [3][4]. Sato & Iwai studied the maximum value of the following functions on Riemannian 

manifolds: 

tr(𝑈T𝐴𝑉𝑁), 

where 𝑈 ∈ ℝ𝑚×𝑝, 𝑉 ∈ ℝ𝑛×𝑝  and 𝑈T𝑈 + 𝑉T𝑉 = I𝑝, 𝑁 ∈ ℝ𝑝×𝑝  is a diagonal matrix, 𝐴 ∈ ℝ𝑚×𝑛 . The global 

optimal solution of this problem provides a set of left and right singular vectors, and transforms the problem of 

matrix trace function into finding singular values and singular vectors of 𝐴 [16]. Mahony developed the Newton 

method with a single-parameter subgroup on the Lie group, and proved the local convergence [12]; Xu designed 

the Newton-CG method for the Grassmannian manifold problem to solve the singular value of the matrix pair [21]. 

Lie groups were originally used to solve differential equations. For solving ordinary differential 

equations on Lie groups, Owren and eelfert used the implicit Euler method for Lie groups [14]. Newton method is 

an effective method for solving approximate solutions of equations, and is widely used in large-scale optimal control 

problems, constrained smooth and non-smooth problems (see [13][15]). In Banach space, Kantorovich’s theorem 

(see [10]) is an important result on Newton’s method. It ensures the quadratic convergence of Newton’s method, the 

existence and local uniqueness of the solution under very mild assumptions that the second Fréchet derivative of 𝑓 

is bounded on a proper open metric ball of the initial point 𝑥0. Smith studied Newton’s method in Riemannian 

manifolds [17][18], Ferreira and Svaiter generalized Kantorovich’s theorem of Newton’s method in Riemannian 

manifolds [5]. Li introduced the concept of the 𝛾 condition of the map 𝑓 and established the 𝛾 condition of the 

Newton’s method of the map 𝑓, extending and developing Smale’s 𝛼-theory and 𝛾-theory [11]. eang established 

Kantorovich’s theorem for Newton’s method on Lie groups, under the classical assumption of the map 𝑓, they 

proved the convergence criterion of Newton’s method to the zeros of the map 𝑓, and obtained the estimation of the 

convergence domains [20]. He established the unique ball of a zero of a map on Lie group and an estimation of the 

radius of convergence ball by Newton’s method on a Lie group [6]. Argyros presented the local convergence analysis 

of Newton’s method, obtained a larger convergence ball and a more precise distance error bound [1]. Argyros 

demonstrated semi-local convergence of Newton’s method with sufficiently weak convergence criteria and tighter 

distance error bounds [2]. 

In this paper, we propose New Kantorovich’s theorems for Newton method on Lie groups for mappings and 

matrix low-rank optimization problems. Under the classical assumption of 𝑓, we establish the convergence criterion 

of Newton’s method from Lie group to its Lie algebra with weakened conditions. The rest of this paper is organized 

as follows. In Section 2 some useful notations, and lemma are given. In Section 3 we will give some theorems and 

an algorithm. Finally, in Section 4 concluding remarks are drawn. 

1. Notions and preliminaries 

Most of the notions and notation that are used in the present paper are standard. ℝ and ℝ𝑛×𝑛 denote the sets 

of real numbers and 𝑛 × 𝑛 matrices with entries in ℝ. The symbols I𝑛 and O𝑚×𝑛 represent the n-order identity 

matrix and the 𝑚 × 𝑛 zeros matrix, tr(·) denote the trace function. A Lie group (𝐺,·) is both a manifold and a 

topological group, and its group multiplication map and inverse map are both 𝐶∞. ee assume that the Lie group 

𝐺 is 𝑛-dimensional. The symbol 𝑒 denotes the identity element of 𝐺. The tangent space 𝑇𝑒𝐺 of 𝐺 at 𝑒 is the 

Lie algebra of the Lie group 𝐺, and is also the set of all left-invariant vector fields of 𝐺 , denoted as 𝒢, equipped 

with the Lie bracket [·,·]: 𝒢 × 𝒢 ⟶ 𝒢. For any element 𝑥 in the Lie group 𝐺, 𝑇𝑥𝐺 represents the tangent space 

of 𝑥. 

Next, we will introduce some definitions that will be used. ee define for each 𝑦 ∈ 𝐺  the left translation 

𝐿𝑦: 𝐺 →  𝐺 by 

                         𝐿𝑦(𝑧) =  𝑦 · 𝑧   for each   𝑧 ∈ 𝐺.                          (2.1) 

The differential of 𝐿𝑦 at 𝑧 is denoted by (𝐿𝑦′)𝑧, which determines a linear isomorphism from the tangent space 

𝑇𝑧𝐺 to 𝑇(𝑦·𝑧)𝐺. The exponential map exp 

exp:     𝒢 → 𝐺
    𝑢 ↦ exp (𝑢)
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is a diffeomorphism on an open neighbourhood of 0 ∈ 𝐺. ehen 𝐺 is Abelian, exp is also a homomorphism from 

𝒢 to 𝐺, i.e., 

exp(𝑢 + 𝑣) =  exp(𝑢) · exp(𝑣) =  exp(𝑣) · exp(𝑢)   for all  𝑢, 𝑣 ∈ 𝒢.          (2.2) 

Then we will introduce the differential of 𝑓. Let 𝑓 ∶  𝐺 → 𝒢 be a 𝐶1-map and let 𝑥 ∈ 𝐺. ee use 𝑓′𝑥 to 

denote the differential of 𝑓 at 𝑥. Define the linear map d𝑓𝑥: 𝒢 → 𝒢 by 

          d𝑓𝑥𝑢 = (
d

dt
 𝑓(𝑥 ∙ exp(𝑡𝑢)))

𝑡=0
    for each  𝑢 ∈ 𝒢 .                   (2.3) 

Then, combining the above, we can conclude that 

                         d𝑓𝑥 = 𝑓𝑥
′ ∘ (𝐿𝑥

′ )𝑒.                                (2.4) 

In the remainder of this paper, we always assume that ⟨∙,∙⟩ is an inner product on 𝒢 and ∥∙∥ is the associated 

norm on 𝒢. The distance 𝜌(𝑥, 𝑦) between two elements 𝑥, 𝑦 on 𝐺, the corresponding ball 𝐶𝑟(𝑥) of radius 𝑟 

around 𝑥 of 𝐺 and the 𝐿-Lipschitz condition can be seen in [20]. 

LEMMA 2.1 Let 0 <  𝑟 <
1

𝐿
 and let 𝑥0 ∈ 𝐺 be such that the left inverse map of d𝑓𝑥0

 exists, denoted by d𝑓𝑥0
‡
. 

Suppose that d𝑓𝑥0

‡ d𝑓 satisfies the 𝐿-Lipschitz condition on 𝐶𝑟(𝑥0). Let 𝑥 ∈ 𝐶𝑟(𝑥0) be such that there exist 𝑘 ≥

1  and 𝑢0, . . . , 𝑢𝑘 ∈ 𝒢1 ⊂ 𝒢  satisfying 𝑥 = 𝑥0 · exp 𝑢0 ····· exp 𝑢𝑘  and ∑i=0
k ∥ 𝑢𝑖 ∥ < 𝑟 . Then the left inverse 

map of d𝑓𝑥 exists and 

                        ∥d𝑓𝑥
‡d𝑓𝑥0

∥≤
1

1−𝐿(∑i=0
k ∥𝑢𝑖∥ )

.                              (2.5) 

Proof.  ee write 𝑦0 =  𝑥0 and 𝑦𝑖+1 =  𝑦𝑖 · exp 𝑢𝑖 for each 𝑖 = 0, . . . , 𝑘. According to the 𝐿-Lipschitz condition, 

and for any 𝑧 ∈ 𝒢1, d𝑓𝑥0

‡ d𝑓𝑥0
𝑧 exists and is unique, we can get  

                 d𝑓𝑥0

‡ (d𝑓𝑦𝑖∙exp 𝑢𝑖
− d𝑓𝑦𝑖

) ≤ 𝐿 ∥ 𝑢𝑖 ∥    for each   0 ≤ 𝑖 ≤ 𝑘.                (2.6) 

Noting that 𝑦𝑘+1 = 𝑥, we have 

∥∥d𝑓𝑥0

‡ d𝑓𝑥 − 𝐼𝒢1∥∥ = ∥∥d𝑓𝑥0

‡ (d𝑓y𝑘∙exp 𝑢𝑘
− d𝑓𝑥0

)∥∥

⩽ ∑  

𝑘

𝑖=0

∥∥d𝑓𝑥0

‡ (d𝑓𝑦𝑖⋅exp 𝑢𝑖
− d𝑓𝑦𝑖

)∥∥

= 𝐿 (∑  

𝑘

𝑖=0

∥∥𝑢𝑖∥∥)

< 1.

 

Then, from Banach lemma, the proof is completed.                                     □ 

ee can see that different from optimization problem in [20] the left and right inverse maps of d𝑓𝑥0
 both exist, 

our problem only has the left inverse. 

2. Convergence analysis and Algorithm 

On Lie groups, according to Owren and eelfert [14], we define the iterative formula of Newton’s method with 

initial value 𝑥0 for 𝑓 on the Lie group as follows: 

                𝑥𝑛+1=𝑥𝑛 ∙ exp (−d𝑓𝑥𝑛

‡ 𝑓(𝑥𝑛))       for each  𝑛 = 0,1, … .               (3.1) 

ee use quadratic majorizing function ℎ, which was proposed in [10][19], is defined by 

                       ℎ(𝑡) =
𝐿

2
𝑡2 − 𝑡 + 𝛽    for each  𝑡 ≥ 0.                      (3.2) 

Let 𝛽 > 0, 𝐿 > 0  and assume that 𝜆: = 𝐿𝛽 ≤
1

2
 . {𝑡𝑛}  denote the iterative sequence generated by Newton’s 



Journal of Information and Computing Science, Vol. 17(2022) No. 2, pp 154-160 
 

JIC email for subscription: publishing@WAU.org.uk 

157 

method with initial point 𝑡0 =  0 for ℎ, this is, 

                        𝑡𝑛+1 = 𝑡𝑛 − ℎ′(𝑡𝑛)−1ℎ(𝑡𝑛)     for each   𝑛 = 0,1, ….                    (3.3) 

Then 

                                        𝑟1 =
1−√1−2𝜆

𝐿
                                    (3.4) 

is a zero of ℎ. See [20]. 

Recall that 𝑓 ∶  𝐺 → 𝒢 is a 𝐶1-mapping. From now on, we always assume that 𝑥0 ∈ 𝐺 is such that the left 

inverse map of d𝑓𝑥0
 i.e. d𝑓𝑥0

‡
 exists and set 𝛽: =∥ d𝑓𝑥0

‡ 𝑓(𝑥0) ∥. 

THEOREM 3.1 Suppose that d𝑓𝑥0

‡ d𝑓 satisfies the 𝐿-Lipschitz condition on 𝐶𝑟1
(𝑥0) and 

                                        𝜆 = 𝐿𝛽 ≤
1

2
.                                    (3.5) 

Then the sequence {𝑥𝑛} generated by Newton’s method (3.1) with initial point 𝑥0 is well defined and converges 

to a zero 𝑥∗ of 𝑓. Moreover, we write 𝑣𝑛 = −d𝑓𝑥𝑛

‡ 𝑓(𝑥𝑛) for each 𝑛 = 0,1, …, then the following relations hold: 

                               𝜌(𝑥𝑛+1, 𝑥𝑛) ≤∥ 𝑣𝑛 ∥≤ 𝑡𝑛+1 − 𝑡𝑛,                          (3.6) 

Proof. Note that 𝑣0 is well defined by assumption and 𝑥1 =  𝑥0 · exp 𝑣0, then 𝜌(𝑥1, 𝑥0) ≤∥ 𝑣0 ∥. Since ∥ 𝑣0 ∥=

∥ −d𝑓𝑥0

‡ 𝑓(𝑥0) ∥= 𝛽 = 𝑡1 − 𝑡0, then (3.6) is true for 𝑛 = 0. ee now use mathematical induction. ee assume that 

𝑣𝑛 is well defined and (3.6) holds for each 𝑛 ≤ 𝑘 − 1. Then 

                ∑  𝑘−1
𝑖=0 ∥∥𝑣𝑖∥∥ ≤ 𝑡𝑘 − 𝑡0 = 𝑡𝑘 < 𝑟1   𝑎𝑛𝑑    𝑥𝑘 = 𝑥0 ∙ exp 𝑣0 ····· exp 𝑣𝑘−1.          (3.7) 

From Lemma 2.1 we can conclude that d𝑓𝑥𝑘

‡  exists, for any 𝑧 ∈ 𝒢1 ⊂ 𝒢, (d𝑓𝑥𝑘

−1)d𝑓𝑥𝑘
𝑧 exists and unique, and 

                           ∥ d𝑓𝑥𝑘

‡ d𝑓𝑥0
∥≤

1

1−𝐿𝑡𝑘
= −ℎ′(𝑡𝑘)−1.                             (3.8) 

Therefore 𝑣𝑘 is well defined. Combined with the proof of eang [20], we can obtain the following inequality 

                                ∥ d𝑓𝑥0

‡ 𝑓(𝑥𝑘) ∥≤ ℎ(𝑡𝑘),                                   (3.9) 

Combining this with (3.8) yields that 

    

∥∥𝑣𝑘∥∥ = ∥∥−d𝑓𝑥𝑘

‡ 𝑓(𝑥𝑘)∥∥

⩽ ∥∥d𝑓𝑥𝑘

‡ d𝑓𝑥0∥∥∥∥d𝑓𝑥0

‡ 𝑓(𝑥𝑘)∥∥

⩽ −ℎ′(𝑡𝑘)−1ℎ(𝑡𝑘)
= 𝑡𝑘+1 − 𝑡𝑘 .

                                 (3.10) 

Since 𝑥𝑘+1 =  𝑥𝑘 · exp 𝑣𝑘 , we have 𝜌(𝑥𝑘+1, 𝑥𝑘) ≤∥ 𝑣𝑘 ∥ . Then we can get that (3.6) holds for 𝑛 = 𝑘 , which 

completes the proof of the theorem.                                         □ 

eang [20] gave the relevant proof when d𝑓𝑥(·)
−1  exists, with the proof method of eang [20], when only the left 

inverse exists, the relevant Lemma and Theorem are also true. 

Next, we will introduce the Lie group and its Lie algebra to be used in our optimization problem. Take the Lie 

group 𝐺 to be the special orthogonal group under standard matrix multiplication, let  

                 𝐺 = SO(𝑛, ℝ): = {𝑥 ∈ ℝ𝑛×𝑛|𝑥T𝑥 = I𝑛, det 𝑥 = 1}.                  (3.11) 

Then 𝐺 is a compact connected Lie group, and its Lie algebra is the set of all 𝑛 × 𝑛 skew-symmetric matrices, 

                     𝒢 = so(𝑛, ℝ): = {𝑣 ∈ ℝ𝑛×𝑛|𝑣T + 𝑣 = 0}.                     (3.12) 

Let 𝜙: 𝐺 → ℝ be a 𝐶2-map. Consider the following optimization problem: 

                  min 𝜙(𝑥) ∶= −tr(𝑥T𝐶𝑥𝑄𝜍)    for each   𝑥 ∈ 𝐺,                    (3.13) 

where 𝐶 is a fixed symmetric matrix and 𝑄𝜍 with the following structure 

𝑄𝜍 =  diag(I𝜍 , O(𝑛−𝜍)×(𝑛−𝜍))    for    1 ≤ 𝜍 ≤ 𝑛. 

Let 𝑋 ∈ 𝒢. Following Mahony [12], we use 𝑋̃ to denote the left-invariant vector field associated with 𝑋 defined 

by 

𝑋̃(𝑥) = (𝐿𝑥
′ )𝑒𝑋    for each    𝑥 ∈ 𝐺, 

and 𝑋̃𝜙 is the Lie derivative of 𝜙 with respect to the left-invariant vector field 𝑋̃, that is, for each 𝑥 ∈ 𝐺 we 
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have 

                          (𝑋̃𝜙)(𝑥) =
d

d𝑡
|

𝑡=0
𝜙(𝑥 ⋅ exp 𝑡𝑋).                         (3.14) 

Let {𝑋1, . . . , 𝑋𝑛} be an orthonormal basis of 𝒢. According to Helmke [8], grad 𝜙 is a vector field on 𝐺 defined 

by 

  grad 𝜙(𝑥) = (𝑋̃1, … , 𝑋̃𝑛) (𝑋̃1𝜙(𝑥), … , 𝑋̃𝑛𝜙(𝑥))
T

= ∑  𝑛
𝑗=1 𝑋̃𝑗𝜙(𝑥)𝑋̃𝑗  for each  𝑥 ∈ 𝐺    (3.15) 

Then is known (see [12][17][18]) that 

                           grad 𝜙(𝑥) = −𝑥[𝑥T𝐶𝑥, 𝑄𝜍],                          (3.16) 

                       grad (𝑋̃𝜙)(𝑥) = −𝑥[𝑥T𝐶𝑥, [𝑄𝜍 , 𝑋T]].                      (3.17) 

Then Newton method with initial point 𝑥0 ∈ 𝐺 can be written in a coordinate-free form as follows. 

Algorithm 3.2 (for 1 ≤  𝜍 ≤
𝑛

2
) 

Step 0. 𝑥0 ∈ 𝐺; 

Step 1. Find 𝑋𝑘 ∈ 𝒢1 = {(
O𝜍×𝜍 𝑋12

−𝑋12
T O(𝑛−𝜍)×(𝑛−𝜍)

) ∣ 𝑋12 ∈ ℝ𝜍×(𝑛−𝜍)} ⊂ 𝒢 such that 

grad 𝜙(𝑥𝑘) + grad (𝑋̃𝑘𝜙)(𝑥𝑘) = 0, 

then 

[[𝑄𝜍 , 𝑋𝑘
T], 𝑥𝑘

T𝐶𝑥] = [𝑥𝑘
T𝐶𝑥𝑘 , 𝑄𝜍]; 

Step 2. 𝑥𝑘+1 = exp 𝑋𝑘 · 𝑥𝑘, where exp 𝑋𝑘 is the matrix exponential of 𝑋𝑘; 

Step 3. See 𝑘: = 𝑘 + 1 and go to Step 1. 

ee can see that due to the special structure of 𝑄𝜍, converting 𝑋𝑘 into a block matrix, the diagonal block is 

zero matrices, which reduces computation and storage space. 

Since 𝑋𝑘  is anti-symmetric, we let 𝑋𝑘 = 𝑈T𝛬𝑈 , where 𝛬 = diag(𝜆1, . . . , 𝜆𝑛)  with 𝜆𝑗(𝑗 = 1, . . . , 𝑛)  being 

pure imaginary numbers. Then it is easy to know exp 𝑋𝑘  is orthogonal. Since 𝑥𝑘  is orthogonal, then 𝑥𝑘+1 =

exp 𝑋𝑘 · 𝑥𝑘 is also orthogonal. 

Let 𝑓 ∶  𝐺 → 𝒢 be a mapping defined by 

                    𝑓(𝑥) = (𝐿𝑥
′ )𝑒

−1grad 𝜙(𝑥)     for each   𝑥 ∈ 𝐺.                      (3.18) 

Define the linear operator 𝐻𝑥𝜙: 𝒢1 → 𝒢 for each 𝑥 ∈ 𝐺 by 

                 (𝐻𝑥𝜙)𝑋 = (𝐿𝑥
′ )𝑒

−1grad (𝑋̃𝜙)(𝑥)     for each   𝑋 ∈ 𝒢1.                   (3.19) 

Then 𝐻(∙)𝜙 defines a mapping from 𝐺 to ℒ(𝒢). ee can get that 

                           (𝐻𝑥𝜙)𝑋 = [𝑥T𝐶𝑥, [𝑄𝜍 , 𝑋T]].                             (3.20) 

Fix 𝑋 ∈ 𝒢1 and define the map 𝑔: 𝐺 → 𝒢 by 

                       𝑔(𝑥) = (𝐻𝑥𝜙)𝑋 = [𝑥T𝐶𝑥, [𝑄𝜍 , 𝑋T]].                         (3.21) 

for each 𝑥 ∈ 𝐺. 

From eang [20] we know that d𝑓𝑥 =  𝐻𝑥𝜙 for each 𝑥 ∈ 𝐺, 𝑓(·) and 𝐻(·)𝜙 be defined by (3.18) and (3.19), 

and with the same initial point, the sequence generated by Algorithm 3.2 for 𝜙 is consistent with the one generated 

by Newton’s method (3.1) for 𝑓 defined by (3.18). 

ee can have that (𝐻𝑥𝜙)(·) is not a surjective map from 𝒢1 to 𝒢 but injective map while 𝑥0 is well defined. 

Let𝑥0 ∈ 𝐺be such that (𝐻𝑥0
𝜙)‡  exists, and let 𝛽𝜙 ≔∥ (𝐻𝑥0

𝜙)‡(𝐿𝑥0

′ )
𝑒

−1
grad 𝜙(𝑥0) ∥. (𝐻𝑥0

𝜙)‡ denote the left 

inverse of 𝐻𝑥0
𝜙. eang [20] gave the relevant proof when (𝐻𝑥0

𝜙)−1 exists, with the proof method of them, when 
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only the left inverse exists, the following Theorem is also true. 𝑟1 is defined by (3.4). 

THEOREM 3.3  

Suppose that 

                                  𝜆 ≔ 𝐿𝛽𝜙 ≤
1

2
                                     (3.22) 

and (𝐻𝑥0
𝜙)‡(𝐻(∙)𝜙) satisfies the 𝐿-Lipschitz condition on 𝐶𝑟1

(𝑥0). Then the sequence generated by Algorithm 

3.2 with initial point 𝑥0 is well defined, and it converges to a critical point 𝑥∗ of 𝜙 at which grad 𝜙(𝑥∗) = 0. 

Furthermore, if 𝐻𝑥0
𝜙 is additionally positive definite and the following Lipschitz condition is satisfied: 

∥
∥(𝐻𝑥0

𝜙)
‡

∥
∥ 𝐻𝑥⋅exp 𝑢𝜙 − 𝐻𝑥𝜙 ∥ ⩽ 𝐿 ∥ 𝑢 ∥  for 𝑥 ∈ 𝐺 and 𝑢 ∈ 𝒢 with 𝜌(𝑥0, 𝑥)+∥ 𝑢 ∥< 𝑟1,    (3.23) 

then 𝑥∗ is a local solution of (3.13). 

Now we have that Algorithm 3.2 is feasible. ee can use Algorithm 3.2 to solve a class of matrix 

trace function optimization problems like (3.13).  

Compared with problem in eang [20], if 𝑄 is a rank-deficient matrix and the structure makes the Lie algebra 

become a subset of the orthogonal matrix Lie algebra, which yields new optimization problem. Then in Algorithm 

3.2, 𝐻𝑥0
𝜙 is not a reversible mapping as in eang [20], and can only satisfy the left inverse mapping. At this point, 

it is necessary to prove the convergence analysis when only the left inverse exists. Compared with problem (1.2) 

the conditions are weakened. ehen 𝜍 = 𝑛 our problem reduces to model in eang [20]. 

3. Concluding remarks 

In this paper, we provide New Kantorovich’s theorems for Newton method on Lie groups for mappings and 

matrix low-rank optimization problems, which arises from many applications and can solve many problems in 

various fields. Under the classical assumption of 𝑓, we establish the convergence criterion of Newton’s method 

from Lie group to its Lie algebra with weakened conditions, which improves the corresponding results in eang [20]. 

In addition, a new algorithm is proposed to solve this optimization problem, and the feasibility of the algorithm is 

proved. 
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