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Abstract. In this paper, a modified F-expansion method is proposed by taking full advantages of F-expansion
method and Riccati equation in seeking exact solutions of nonlinear PDEs. By the method, rich families of
exact solutions of nonlinear PDEs have been obtained, including soliton-like solutions, trigonometric
function solutions and rational solutions. The method can be applied to solve massive nonlinear PDEs
(group), as well as helps us find new exact solutions. Furthermore, with the aid of computer symbolic
systems (Mathematica or Maple), the method can be conveniently operated. Some illustrative equations are
investigated by this method and some figures of partial solutions are provided for direct-viewing analysis.
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1. Introduction

Amounts of mathematical models can be described by nonlinear PDEs, especially some basic equations
in physics and mechanics. As a result, the research on exact solutions of nonlinear PDEs becomes more and
more important, such as the famous Inverse scattering method, Backlund transformation, Darboux
transformation, Hirota bilinear method and Painleve method [1], He’s Variational iteration method and
Homotopy perturbation method [2, 3]. In recent years, directly searching for exact solutions of nonlinear
PDEs has become more and more attractive partly due to the availability of computer symbolic systems like
Maple or Mathematica which allows us to perform some complicated and tedious algebraic calculation on
computer, as well as helps us find new exact solutions of PDEs, such as Homogeneous balance method [4, 5],
Tanh-function method [6, 7], Sine-Cosine method [8], Jacobi elliptic functions method [9], Riccati equation
method [10, 11], F-expansion and the extended F-expansion method [12-15] and so on.

In this paper, we put forward a modified F-expansion method by taking full advantages of F-expansion
method and Riccati equation in seeking exact solutions of nonlinear PDEs. Before introducing the modified
F-expansion method, we simply describe the F-expansion method as follows:

For the given NLPDE, say two variables X,t
P(u,u,,u,,,U,,U,,...) =0
We seek its traveling wave solution in the formal solution

u@é)=a,+ Y aF'(&), (ay, #0)

With F(&) satisfying the non-linear ODE
F2(&)=PF (&) +QF* (&) +R

Where /_ d , P, Q, R are constants, which is more powerful than Jacobi elliptic functions method,

dg
but the method can just be well used to solve the nonlinear PDEs whose odd- and even-order derivatives
terms do not coexist. In order to overcome this disadvantage, we substitute Riccati equation

(F'(&)= A+BF(&)+CF*(&)) for the ODE (F(&)=PF*(&)+QF*(£)+R). In what follows we

introduce the modified F-expansion method and apply it to some illustrative equations. Using the method, we
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obtain rich families of exact solutions, including soliton-like solutions, trigonometric function solutions and
rational solutions, and some of the solutions are firstly derived by us. In fact, we can apply the method to
amounts of nonlinear PDEs(group) and get many new exact solutions.

The rest of this paper is organized as follows: in Section 2, we give the description of the method; in
Section 3, we apply the method to some illustrative equations. And we conclude the paper in the last section.

2. Summary of the method
Consider a given NLPDE with independent variables X = (X, X,,..., X|,t) and dependent variable u
P(u,ut,uxl,un,...):O (2.1)

Generally speaking, the left-hand side of Eq. (2.1) is a polynomial in U and its various partial derivatives.
The main points of the modified F-expansion method for solving Eq. (2.1) are as follows

First, seek traveling wave solutions to Eq. (2.1) by taking
U(X; 5 Xysees X, 1) =U(E), € =K (X, + Ky X, +.c+ K X, + 0t) (2.2)
where K ,K,,...,K ,® are constants to be determined, inserting (2.2) into Eq.(2.1) yields an ODE for u(&)
P(u,u’,u”,..)=0 (2.3)
Second, suppose that U(E) can be expressed as
u(§)=a0+‘iN aF'(). (ay #0) (2.4)

where @, a, are constants to be determined, F (&) satisfies Riccati equation
F'(&)=A+BF(&)+CF*(¢), (C=0) (2.5)

where A,B,C are constants to be determined, integer N can be determined by considering the homogeneous
balance between the governing nonlinear term(s) and highest order derivatives of U(&) in Eq.(2.3). And

P
(a) when N = P is fraction, let U(£) =v*(£);
q

(b) when N is negative integer, let u(&) =v" (&),
we change Eq.(2.3) into another ODE for V(&) , whose balancing number will be a positive integer.

Third, substitute (2.4) into Eq.(2.3), and using (2.5), then the left-hand side of Eq.(2.3) can be converted
into a finite series in F"(£) (p=—N,...,—1,0,1,...,N) , equating each coefficient of F"(&)to zero yields
a system of algebraic equations for & (i =-N,...,-1,0,1,....N ) .k, (ﬂ. = 2,...,|) , O.

Fourth, solve the system of algebraic equations, probably with the aid of Mathematica or Maple, a,, K, ,
@ can be expressed by A, B, C (or the coefficients of ODE(2.3)) and kK, . Substituting these results into (2.4),

we can obtain the general form of travelling wave solutions to Eq.(2.3).

Fifth, with the aid of Appendix, from the general form of travelling wave solutions, we can give a series
of soliton-like solutions, trigonometric function solutions and rational solutions of Eq.(2.1).

3. Applications of the method

3.1. Gardner equation
u, +uu, —au’u, +pu, =0, (3.1.1)

XXX
where ¢, S are real constants.
(i) we assume that Eq.(3.1.1) has travelling wave solution in the form

ux,t)=u(), E=k(x+wt) (k=0) (3.1.2)
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Substituting (3.1.2) into (3.1.1), we have
ou’ +uu’ —auu’ + gk*u® =0 (3.1.3)
(ii) Balancing u® with u’u’yields N=1.Therefore we may choose
u)=a,+a F'(&+aF (). (3.1.4)
Substituting (3.1.4) into Eq.(3.1.3), and using (2.5), the left-hand side of Eq.(3.1.3) can be converted into

a finite series in F°(&) (p=-+4,...,-1,0,1,...,4) , equating each coefficient of F (&) to zero yields a system
of algebraic equations for a_, a,, a,, @.

F*:6C°k’pa, —Ckaa’ =0 (3.1.5.1)
F*:12BC?k*Ba, + Cka,’ —2Ckaa,a’ — Bkaa’ =0 (3.1.5.2)
F2. 7B°Ck’Ba, + 8AC’k’ Ba, + Ckwa, + Ckaya, —Ckaaja, + (3.1.5.3)
Bka’ —Ckaa ,a’ —2Bkaaya — Akaa) =0
= B’k’Ba, + 8ABCk’ SBa, + Bkwa, + Bka,a, — Bkaaga, + (3.15.4)
Aka’ - Bkaa ,a’ —2Akaa,al =0
£o. -B’Ck’Ba_, -2AC’k’pa_, —Ckwa_, —Cka_,a, + Ckaa_a; + AB’k’Ba, + (3.15.5)
2A’Ck’ Ba, + Akwa, + Ckaa’ a, + Aka,a, — Akaasa, — Akea a} =0
= :—B3k3,b’a7] —~8ABCk’Ba , — Bkwa , —Cka’, — Bka_,a, + (3.15.6)
+2Ckaa’ a, + Bkaa ,a; + Bkaa’a, =0
E-2. ~-7AB’k’Ba_, —8A’Ck’ Ba_, — Akwa _, — Bka’, + Ckaa’, — (3.1.5.7)
Aka ,a, +2Bkaa’ a, + Akaa a; + Akaa’a, =0
F~:—12A’BKk’Ba_, — Aka®, + Bkaa’, + 2Akaa’,a, =0 (3.1.5.8)
F*:—6A’’Ba_, + Akaa’, =0 (3.1.5.9)
(ii1) Solving the algebraic equations(3.1.5), we have the following solutions of @_,, a&,, a,, @
Casel: when A=0, we have
_ 21,2
BCkaﬂ?ﬁO,aﬁM,a_1=0,a1:i\/ECk\/§,w:%“k“ﬁ (3.1.6)
Case2: when B=0, we have
1
Akaﬂ * 05 aO :Za aﬁl =i'\/gAk ﬁ: al Zi\/ECk\/E, a)=—4L+4ACkZﬂ§ (317)
(24 o o
1
ACKap =0, a,=——.2,=0.4 :iJng\/g, a):_i_zACkzﬂ (3.1.8)
Case3: when A=B=0, we have
1
Cka/?;tO,aO:E,a1=0,a1:i\/gck\/§,w=_i (3.1.9)

Substituting these solutions into (3.1.4),from Appendix,we can obtain many soliton-like solutions,
trigonometric function solutions and rational solutions of Eq.(3.1.1)(where we left the same type solutions
out):

. I 1 1
() when A=0, B=1, C=-1; from Appendix, then F (<) :E+§tanh(5 &) . By casel, we have

soliton-like solutions of Eq.(3.1.1)
2 —
o= Loy \Etanh[lkmwt)]
20 2 a 2 4o
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(I1) when A=0, B=-1, C=1; from Appendix, then F(&) 2%—%Coth(%§). By casel, we have

soliton-like solutions of Eq.(3.1.1)
2
_ 1o —k / k(x+2k aff -1 0]
4o

(IIT) when A= % ,B=0,C= —%; from Appendix, then F (&) =coth & +csché or tanh & +iseché .

By case2 ,we have soliton-like solutions of Eq.(3.1.1)

=—+\/_k\/7csch[k(x Mt)]
4o
:—+\/_k\/7lsech[k(x Mt)]
4o
uj :L1—6k\@{coth[k(x+Mt)]icsch[k(x+mt)]}
20 2 \a da 4a

U, = L $ﬁ k\/g{tanh[k(x +Mt)] +isech[k(x +%t)]}
20 2 a 4a da

(IV) when A=1, B=0, C=—1; from Appendix, then F(&)=tanh & or coth£ . By case2,we have
combined soliton-like solutions of Eq.(3.1.1)

=—+«/_k\/7coth[k(x Mtﬂfk\ftanh[k(x M)]

(V) whenA=C = 5 , B=0; from Appendix, then F(&)=sec&+tané or csc& —coté . By case2
we have trigonometric function solutions of Eq.(3.1.1)

=_+\/_k\/7sec K(x+ kzaﬂ_lt)]
4a
:_+x/7k\/7csc K(x+ k2O[ﬁ_lt)]
4o
:iiﬁk\/gsec[k(x——zkzaﬂ”t)]iﬁk\/ztan[k(x——zwam1t)]
20 2 a 4a 2 a 4a
: =Liﬁk\/zcsc[k(x——zkzaﬂJrlt)]iﬁk\/zcot[k(x——zwaﬂ“t)]
20 2 a 4a 2 a 4a

(VI) when A=C = -5 B =0; from Appendix, then F(&)=secé —tané or cscé +coté . Bycase2
we have trigonometric function solutions of Eq.(3.1.1)

ulz:Liﬁk\/gsec[k(x——zwaﬂ+1t)]iﬁk\/ztan[k(x——ZkzaﬁHt)]
20 2 a da 2 o da

u, =Liﬁk\/Ecsc[k(x_mt)]iﬁk\/gcot[k(x_Mt)]
200 2 a 4o 2 a 4da

(VII) when A=C =1, B=0; from Appendix, then F(&)=tan& . By case2, we have trigonometric
function solutions of Eq.(3.1.1)

=—+\/7k\/7cot[k(x+—16k afp 1t)]+\/7k\/7tan k(x+—16k2f’8_lt)]
104

c
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1 8k? 1
u15=Zi\/gk gtan[k(x—%t)]

(vill) when A=C=-1, B=0; from Appendix, then F(&)=cot& . By case2, we have

trigonometric function solutions of Eq.(3.1.1)

Uy = iix/gk gcot[k(x—

8k’af +1
a—ﬂt)]
4o

1
(IX) when A=C =0,C #0; from Appendix, then F(&) = —m. By case3, we have rational
+

solutions of Eq.(3.1.1)
Uy, =L¢\/ECK s 11
2a @ Ck(x——1t)+4
4a

Where C,K, A are arbitrary constants and C #0.
We can see that abundant exact solutions for Gardner equation have been obtained by the modified F-
expansion method, and many of them are firstly derived by us. Following, we provide some figures of partial

solutions for direct-viewing analysis. We choose a = f =k =1.
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Fig. 1.2: The soliton-like solution Uy is shown at “+” and “+” ((c)) and “+” and “-((d))
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(a) (b)

Fig. 2: The periodic solutionU,, is shown at “+” and “+” ((a)) and *-” and *“-”((b))

3.2. Breaking Soliton Equation
U,—4uu, —2uu, +Uu, =0 (3.2.1)

XXXY

Eq.(3.2.1) could describe the (2+ 1)-dimensional interaction of Riemann wave propagation along the y-
axis with long-wave propagation along the x-axis[16]. The Breaking Soliton Equation has been researched
by many scientists[17-20], and many exact solutions for Eq.(3.2.1) have been derived. Here we use our
method to solve it and get a series of its soliton-like solutions, trigonometric function solutions and rational
solutions.

(1) we assume that Eq.(3.2.1) has traveling wave solution in the form

ux, y,t)=u(é), & =k(x+ly+at) (k=0) (3.2.2)
Substituting (3.2.2) into (3.2.1) ,we have
ou” —6klu'u” +k*u® =0 (3.2.3)

(4

(ii) Considering the homogeneous balance between u'u’ and U ) in (3.2.3), we suppose that the

solution of ODE(3.2.3) can be expressed as

u@)=a, +a, F(&)" +aF() (3.2.4)
where @,,a_,,a, are constants to be determined. Substituting (3.2.4) into Eq.(3.2.3), and using (2.5), the

p
left-hand side of Eq.(3.2.3) can be converted into a finite series in F7(5) (p=-5,...,-1,0,1,...,5) , equating
each coefficient of F " (&) to zero yields a system of algebraic equations for a_,,a,,a,,l,®.

F°: 24C*k*la, —12C%k’la’ = 0 (3.2.5.1)
F*: 60BC’k*la, —30BC?k’la’ = 0 (3.2.5.2)
F2. 50B*C’k*la, +40AC’k"la, +2C*k’wa, +12C°K’la_,a, — (3.2.53)
| 24BCK’la? —24ACK’la} =0 o
2. 15B°Ck*la, + 60ABC’kla, + 3BCk’wa, +24BC’k’la_,a, - (3.2.54)
- 6B’k’la’ —36ABCK’la’ =0 o
. B%k‘la, +22AB*Ck‘la, +16 A’C’k*la, + B’k’*wa, + 2ACk*wa, +12B*Ck’la_a, +
F': (3.2.5.5)
12ACK’la_a, —12AB*k’la? —~12A’Ck*la> = 0
, B’Ck'la_ +8ABC’k‘la_, + BCk’wa_, + 6BC’k’la’, + AB’k*la, + 8 A’BCk“la, +
EO. ! 1 ! ! ! ' (3.2.5.6)

" ABK’wa, —6A’BK’la} =0

JIC email for contribution: editor@jic.org.uk



Journal of Information and Computing Science, Vol. 2 (2007) No. 1, pp 03-16 9

o B'k*la_, +22AB°Ck‘la_, +16A’C’k*la_, + B’k’wa_, + 2ACK’wa_, +

S (3.2.5.7)
12B*Ck’la’, +12AC’k’la’, —12AB’*k’la ,a, —12A’Ck’la_ja, =0
F2, 15AB’k*la_, + 60A’BCk‘la_, +3ABk’wa_, + 6B°k’la’, + (3258)
' 36ABCK’la’, —24A’Bk’la_a, =0 o
oy 50A’B’k‘*la_, +40A’Ck’la_, +2A’k*wa., +24AB*K’1a%, + (3.2.5.9)
24A°CKY1a% —12A%la_a, =0 o
F™: 60A’Bk‘la_, +30A’Bk’la%, = 0 (3.2.5.10)
B 41,4 31,3142 _
F. 24AK a, +12A°’1aZ, =0 (32.5.11)
(iii) Solving the algebraic equations(3.2.5), we have the following solutions of a_,,a,,a,,l,®
Casel: when A=0, we have
a,=a,,a,=0,a=2Ck, =1, o=-B*’l. (3.2.6)
Case2: when B =0, we have
a,=a,,a,=0,a=2Ck, =1, ®=4ACK’l; (3.2.7)
a,=a,,a,=-2Ak, a =2Ck, I =1, @ =16ACK’l . (3.2.8)
Case3: when A=B=0, we have
a,=a,,a,=0,a=2Ck, =, #=0; (3.2.9)
a,=a,, a=-——, a=2Ck,l=I, ®=0 (3.2.10)

6CKkl

Substituting these solutions into (3.2.4),from Appendix,we can obtain many soliton-like solutions,
trigonometric function solutions and rational solutions of Eq.(3.2.1)(where we left the same type solutions
out):

() when A=0, B=1, C=-1; from Appendix, then F(&) =%+%tanh(%§). By casel, we have

soliton-like solutions of Eq.(3.2.1)
u =a,—-k-k tanh[%k(x +1ly —Kk’It)]

(I) when A=0, B=-1, C=1; from Appendix, then F (&) :%—%Coth(%f). By casel, we have

soliton-like solutions of Eq.(3.2.1)
u,=a,+k—k coth[%k(x+ ly —k>It)]

(IIT) when A = % ,B=0, C= —%; from Appendix, then F(&)=coth & +csché or tanh & +iseché .

By case2, we have soliton-like solutions of Eq.(3.2.1)
u, = a, — k coth[k(x +ly —k*It)]F k csch[k(x + ly —k’It)]
u, = a, —k tanh[k(x +ly — k’It)] Fik sech[k(x +ly — k*It)]
(IV) when A=1, B=0, C=-1; from Appendix, then F(£)=tanh& or coth & . By case2,we have
combined soliton-like solutions of Eq.(3.2.1)
U, = a, — 2k tanh[K(x +ly —16k*It)]— 2k coth[K(x + ly —16k*It)]

(V) whenA=C = % , B=0; from Appendix, then F(&)=secé+tané or csc& —coté . By case2,

we have trigonometric function solutions of Eq. (3.2.1)
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u, = a, +ksec[K(x+ly +k>It)]+k tan[k(x +ly + K’It)]
u, = a, + kesc[K(x+ly +k’It)] -k cot[k(x + ly + k*It)]
U, = a, + 2K tan[k(x + Iy + 4k’It)]

U, = a, — 2K cot[K(x +ly + 4k>It)]

1
(VI)when A=C = 5 B =0; from Appendix, then F(&)=sec& —tan& or csc & +coté . By case2,

we have trigonometric function solutions of Eq. (3.2.1)

U, = a, —ksec[k(x+ly+k’It)]+k tan[K(x + ly + k°It)]
u,, = a, —kcsc[k(x+ly + k’It)]— k cot[k(x + ly + K*It)]

(VI) when A=C =1, B=0; from Appendix, then F({)=tan& . By case2, we have combined
trigonometric function solutions of Eq. (3.2.1)
U, = a, + 2k tan[K(x + ly + 16k*It)]— 2k cot[K(x + ly + 16k’It)]

where @,,K, | are arbitrary constants in - VII.

(VIIT) when A=B=0,C #0; from Appendix, then F(&)=— C§1 r By case3, we have rational
+
solutions of Eq.(3.2.1)
U —a - 2Ck
=% Ck(x+ly)+ 4
2Ck

(]
u, =a, +——[Ck(X+ly+awt)+A]—
L A e vy,

where a,,C, K, |, @ are arbitrary constants and C#0.

Following, we provide some figures of partial solutions for direct-viewing analysis. We choose

a,=0k=l=1t=0.
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Fig. 6: The periodic solution U, Fig. 7: The periodic solutionU,,

3.3. Variant Boussinesq equations
ut+(uv)x+vxxx=0 (3311)
vV, +u, +w, =0 (3.3.1.2)

As models for water waves, v is the velocity and u is the total depth. Eq.(3.3.1) has been researched by
Wang[4], Fan[21] and Lv[22], and some exact solutions have been derived. Here we will obtain more exact
solutions, including soliton-like solutions, trigonometric function solutions and rational solutions, and some
of them are new.

6))] We assume that Eq.(3.3.1) has traveling wave solution in the form
ux,t)y=u(), v(x,t)=v(&), <&E=k(x+mt) (k=0) (3.3.2)
Substituting (3.3.2) into (3.3.1) ,we have
ou’ +u'v+uv +k*u® =0 (3.3.3.1)
oV +u +wW =0 (3.3.3.2)

(i) Balancing between the governing nonlinear term(s) and highest order derivatives in
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Eq.(3.3.3).Therefore we may choose
u@ =a,+a,F(§+aF (&) +a,F () +a,F (&) (3.3.4)
V(&) =by +b,F (&) +bF(S) (3.3.5)

Substituting (3.3.4)and(3.3.5)into Eq.(3.3.3), and using (5), the left-hand side of Eq.(3.3.3.1) can be
converted into a finite series in F p(é:)( p=-4,..,-1,0,1, ...,4) and the left-hand side of Eq.(3.3.3.2) can be

converted into a finite series in Fq(f)(q=—3,...,—1,0,1,...,3) , equating each coefficient of

p q
F () ( F(5) )to zero yields a system of algebraic equations for ao, a, , a, , 4 , & , bo , b*1 , bl , Q.

6C°k’b, +3Cka,b, =0 (3.3.6.1)
2Ckwa, +2Cka,b, +12BCk’b, + 2Cka,b, +3Bka,b, = 0 (3.3.6.2)
Ckawa, +2Bkwa, +Cka,b_, +Ckab, +2Bka,b, + 7B*Ck’b, + (33.63)
8ACK’D, +Cka,b, +2Bka,b, +3Aka,b, =0
Bkwa, +2Akwa, + Bka,b_, + Bka,b, + 2 Aka,b, +
B’k’b, + SABCk’b, + Bka,b, + 2Aka,b, =0 (3364
—Ckwa_, + Akwa, —B’Ck’b  —2AC?k’b , —Cka,b , + Aka,b , —Cka b, + (33.6.5)

Aka,b, + AB’k’b, +2A’Ck’b, —Cka_,b, + Aka,b, =0

(iii) Solving the algebraic equation(3.3.6), we have the following solutions of % , a, , a, , al, %, , bo,
b, b o

Casel: when A=0, we have
a, =0,a_, =0,a =-2BCk’,a, =0,a, =-2C’k’,

b, =b,,b , =0,b, =+2Ck,w=+Bk —b, (3.3.7)

Case2: when B=0, we have
a,=0,a,=0,a =0,a, =-2A%k?,a, =-2C’k*,b, =h,,b , =+Ak,b =+2Ck,@=-D,; (3.3.8)
a,=—-2ACk’,a,=0,a =0,a, =-2A’k*,a, =-2C’k’>,b, =h,,b, =FAk,b =+2Ck,w=-b,;  (3.3.9)
a, =—2ACk’,a, =0,a =0,a, =0,a, =—2C’k>,b, =h,,b, =0,b, =+2Ck,0=-h,; (3.3.10)

case3: when A=B =0, we have
a, =0,a,=0,a =0,a,=0,a =-2C’k* b, =b,,b, =0,b =+2Ck,® =-b, (3.3.11)

Substituting these solutions into (3.3.4) and (3.3.5),from Appendix,we can obtain many soliton-like
solutions, trigonometric function solutions and rational solutions of Eq.(3.3.1)(where we left the same type
solutions out):

1 1 1
() when A=0, B=1, C=-1; from Appendix, then F(&) F(&)= 5+§tanh(g§) . By casel, we
have soliton-like solutions of Eq.(3.3.1)
u :%kz sechz[%k(x+(k —b)t)]s v, =b, —k—ktanh[%k(x+(k—b0)t)];
u, =%k2 sechz[%k(x—(k +b))]s v, = b, +k+ktanh[%k(x—(k+b0)t)]-

11 1
(I1) when A=0, B=-1, C=1; from Appendix, then F(&) = E_ECOth(E &) . By casel, we have

soliton-like solutions of Eq.(3.3.1)
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u, = —%kz cschz[%k(x—(k +b)D]s v, = b, +k - kcoth[%k(x—(k +b)0]:
u, = —%kz cschz[%k(x+(k -b)t)]> v, =b, -k + kCOth[%k(X-f-(k —b,)t)]-

(1IT) when A = % ,B=0,C= —%; from Appendix, then F (f) =coth& £csché or tanh & +iseché .

By case2 ,we have soliton-like solutions of Eq.(3.3.1)
U, =—k*(1+2csch’[k(x—ht)]), Vs =b, = 2k csch[k(x—b,t)];

(e4kX + e4kb0t _ 6e2k()(+b0t))k2

(ezkx + ezkbot)z . Vo =D, F2iksech[k(x—Dbyt)];

U, =—

u, = -2k csch’[k(X—b)]. v, =b, + k(coth[%k(x b+ tanh[%k(x _b):

u, =—2k> csch’[k(x—h,t)], Vg =D, £ 2k coth[k(x—b,t)];

8kze2k(x+b0t)

9 :W, Vg :bO i2ktanh[k(x—b0t)],
u, = i V,, =h +kc0th[lk(x—bt)]'
" cosh[k(x—bt)]-1" 1" 7 2 o
0 - k* v, =b, £k tanh[ = k(x—b,t)]:
" cosh[k(x—Db,t)]+1 2
—ik? .
= , Vv, =b +k h[k(x—b,t)]+ tanh[K(Xx—b,t)]);
U, SRk b T (isech[k(x —byt)]+ tanh[k(x —byt)])
ik* vy, =h, % k(tanh[K(x—bgt)]—isech[k(x—b,t)]) -

U =— 22
sinh[K(x—Db,t)]+1
(IV) when A=1, B=0, C =—1; from Appendix, then F(&) F(£)=tanh & or coth& . By

case2 ,we have soliton-like solutions of Eq.(3.3.1)
u,, =—2k’(coth’[k(x —byt)]+ tanh’[k(x—b,t)]) , v,, =b, = 4k csch[2k(x—b,t)];

U, = —8K? csch’[2K(x —byt)], Vis = b, + 2K (coth[K(X—bt)] + tanh[k (X~ b,t)]) ;
u,, = 2k>sech’[k(x—b,t)], V,, =B, £ 2k tanh[k(x—b;t)];

u,, =—2k* csch’[k(x—byt)], V;, =B, =2k coth[k(x —b,t)].

1
(V) when A=C = > B =0, from Appendix, then F({)=sec&+tané or csc& —coté . By case2,

we have trigonometric function solutions of Eq.(3.3.1)
= k?(—1-(sec[k(x—byt)]+ tan[k(x — b,t)])*) , Vi = b, £ 2k sec[k(x—byt)];
2(sec[k(x—b,t)]+ tan[k(x —b,t)])

U, =k*(1-2csc’[k(x—b,)]), v,y =b, £ 2k csc[k(x —b,t)];
_8k262ik(x+b0t)

20 — (e2ikx N ezikbot)z » Vyy =by 2k tan[k(x—b;t)];

u,, =-2k* esc’[k(x—byt)], v,, =b, =2k cot[k(x—b,t)];

b, =K v, =b, tk(sec[k(x—byt)]+ tan[k(x—b,t)]);
sin[k(x—h,t)]-1
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_k2
Ui oSk (X—b.D)]+1
0

(V) when A=C = —%, B =0 from Appendix, then F(&) =sec& —tan& or csc& +coté . By

v, =b, £k tan[%k(x—bot)].

case2, we have trigonometric function solutions of Eq.(3.3.1)
L (e4ikx 4 ptiknt _6e2ik(x+b0t))k2
24 (e21kx + e21kb0t)2

U,s =—2k*sec’[K(x—byt)], v, =D, £ 2k tan[k (X —b,t)];

, V,, =b, £ 2k sec[k(x—b,t)];

U, =2k ese’[K(X—bt)], v, =b, + k(tan[% k(x—byt)]- cot[% k(x=by))):

—k?
Uy =— ’
sin[k(x—=b,t)]+1
k2
Uy = )
cos[k(x—Db,t)]-1
(VII) when A=C =1, B=0; from Appendix, then F(&)=tan& . By case2, we have trigonometric
function solutions of Eq.(3.3.1)
Uy = ~2K2 (cot’[K(X—b,t)] + tan [k (X~ b,0)]) Vyy = b, £ 4k csc[2K(x—byt)]
U, = —8k” csc’[2k(x—byt)], vy, = b, 2k (tan[k(x —b,t)] - cot[k (x —b,t)]) -
(V) when A=C =1, B=0; from Appendix, then F(&)=cot&. By case2, we have trigonometric
function solutions of Eq.(3.3.1)

V,, =b, Tk(tan[k(x —b,t)]—sec[k(x—Db,t)]);

v, =b, K cot[% k(x=byt)].

u,, = —2k* esc’[k(x —b,t)], v,, =b, £2k cot[k(x—Db,t)].
(IX) when A=B=0,C #0; from Appendix, then F(&)=— ﬁ . By case3, we have rational
_I_

solutions of Eq.(3.3.1)
—2C2%k? 2Ck
Uy, = 7> Vv, =t ———.
(Ck(x—=bt)+4) Ck(x—bt)+ 1
Where C,K,b,, Aare arbitrary constants and C #0.

Following, we provide some figures of partial solutions for direct-viewing analysis. we choose k=1.
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Fig. 8: The solitary solutions U, , V, at be=0
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Fig. 10: The periodic solutions U, ,V, at bg=1

4. Conclusion

In this paper, using our modified F-expansion method, we have considered some illustrative equations
and derived abundant solutions for them, including soliton-like solutions, trigonometric function solutions
and rational solutions, most of which have not appeared in those known literatures. They should be
meaningful to explain some physics phenomena. We can also see that the method overcomes some
disadvantages of F-expansion method and can be applied to more nonlinear PDEs. Moreover, with the aid of
computer symbolic systems like Maple or Mathematica, the method can be conveniently operated.
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6. Appendix
Relations between values of (A, B, C) and corresponding F (&) in Riccati equation

F'(§)=A+BF(&+CF* (&)

A B C F
1 1 1
0 1 -1 — 4+ —tanh( —
St tan ( 3 <)
1 1 1
0 -1 1 — — —coth( —
R ( 25)
1 0 1 coth &+ esch &,
2 2 tanh & + isech&
1 0 -1 tanh & ,coth &
1 0 1 secé +tan &,
2 2 csc& —coté
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1 0 1 sec & —tan &,
2 2 csc & +cot &
1(-1) 0 1(-1) tan & (cot&)
1
0 0 £0 CCé o+ A

(A is arbitrary constant)
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