

# A Computational Algorithm to Obtain Positive Solutions for Classes of Competitive Systems

G. A. Afrouzi +, S. Mahdavi, Z. Naghizadeh

Department of Mathematics, Faculty of Basic Sciences, Mazandaran University, Babolsar, Iran

(Received July 31, 2006, Accepted October 5, 2006)

**Abstract.** Using a numerical method based on sub-super solution, we will obtain positive solution to the coupled-system of boundary value problems of the form

$$-\Delta u(x) = \lambda f(x, u, v) \qquad x \in \Omega$$
$$-\Delta v(x) = \lambda g(x, u, v) \qquad x \in \Omega$$
$$u(x) = v(x) = 0 \qquad x \in \partial \Omega$$

where f,g are  $C^1$  functions with at least one of  $f(x_{0,},0,0)$  or  $g(x_{0,},0,0)$  being negative for some  $x_0 \in \Omega$  (semipositone).

Keywords: positive solutions; sub and super-solutions

AMS Subject Classification: 35J60, 35B30

#### 1. Introduction

Consider positive solutions to the coupled-system of boundary value problems

$$-\Delta u(x) = \lambda f(x, u, v) \qquad x \in \Omega$$
  

$$-\Delta v(x) = \lambda g(x, u, v) \qquad x \in \Omega$$
  

$$u(x) = v(x) = 0 \qquad x \in \partial \Omega$$
(1)

Where  $\lambda>0$  is a parameter,  $\Delta$  is the Laplacian operator,  $\Omega$  is a bounded region in  $R^N$ ,  $N\geq 1$  with a smooth boundary  $\partial\Omega$ , and f,g are  $C^1$  functions with at least one of  $f(x_{0,},0,0)$  or  $g(x_{0,},0,0)$  being negative for some  $x_0\in\Omega$  (semipositone).

In this paper, we want to investigate numerically positive solution of (1) by using the method of subsuper solutions. A super solution to (1) is defined as an ordered pair of smooth functions  $(\overline{u}, \overline{v})$  on  $\Omega$  satisfying

$$-\Delta \overline{u}(x) \ge \lambda f(x, \overline{u}, \overline{v}) \qquad x \in \Omega$$

$$-\Delta \overline{v}(x) \ge \lambda g(x, \overline{u}, \overline{v}) \qquad x \in \Omega$$

$$\overline{u}(x) \ge 0; \overline{v}(x) \ge 0; \qquad x \in \partial \Omega.$$
(2)

Sub solutions are similarly defined with inequalities reversed. Let  $D = [\underline{\rho}_1, \overline{\rho}_1] \times [\underline{\rho}_2, \overline{\rho}_2]$ , where

$$\underline{\rho}_1 = \inf\{\underline{u}(x) : x \in \overline{\Omega}\}, \overline{\rho}_1 = \sup\{\overline{u}(x) : x \in \overline{\Omega}\}, \underline{\rho}_2 = \inf\{\underline{v}(x) : x \in \overline{\Omega}\}, \overline{\rho}_2 = \sup\{\overline{v}(x) : x \in \overline{\Omega}\}.$$

**Theorem 1.** Let  $(\overline{u}, \overline{v})$ , (u, v) be ordered pairs of smooth functions such that  $(\overline{u}, v)$  satisfies

<sup>+</sup> e-mail: afrouzi@umz.ac.ir

$$-\Delta \overline{u}(x) \ge \lambda f(x, \overline{u}, \underline{v}) \qquad x \in \Omega$$
$$-\Delta \underline{v}(x) \le \lambda g(x, \overline{u}, \underline{v}) \qquad x \in \Omega$$
$$\overline{u}(x) \ge 0; v(x) \le 0; \qquad x \in \partial \Omega.$$

And  $(\underline{u}, \overline{v})$  satisfies the corresponding reserved inequalities. Suppose that

$$\frac{\partial f}{\partial v}, \frac{\partial g}{\partial u} \le 0$$
 on  $\overline{\Omega} \times D$  (cooperative system).

If  $\underline{u} \le \overline{u}$  and  $\underline{v} \le \overline{v}$  on  $\overline{\Omega}$ , then there is a solution (u,v) of (1) such that  $\underline{u} \le u \le \overline{u}$  and  $\underline{v} \le v \le \overline{v}$  on  $\Omega$ .

In [1] for the first time in the literature, the authors consider a class of semipositone systems. In particular they extend many of the results discussed for the positive solutions of single equation in [2] to semipositone systems. It was shown positive solutions to (1) for either  $\lambda$  near the first eigenvalue  $\lambda_1$  of the operator  $-\Delta$  subject to Dirichlet boundary conditions, or for  $\lambda$  large exists. We consider following assumptions:

f,g are  $C^1$  functions satisfying:

either 
$$f(x_{0}, 0, 0) < 0$$
 or  $g(x_{0}, 0, 0) < 0$  for some  $x_{0} \in \Omega$  (3)

$$\lim_{u \to \infty} \frac{f(x, u, v)}{u} = 0 \quad \text{uniformly in } x, v \tag{4}$$

and

$$\lim_{v \to \infty} \frac{g(x, u, v)}{v} = 0 \quad \text{uniformly in } x, u$$
 (5).

To introduce additional hypotheses to prove existence results near  $\lambda_1$ , first we recall the anti-maximum principal by Clement Pletier(see [4]), namely, if  $z_{\lambda}$  is the unique solution of

$$-\Delta z - \lambda z = -1 \qquad x \in \Omega$$

$$z = 0 \qquad x \in \partial \Omega$$
(6)

for  $(\lambda_1, \lambda_1 + \delta)$ , where  $\lambda_1$  is the smallest eigenvalue of the problem

$$-\Delta\phi(x) = \lambda\phi(x) \qquad x \in \Omega$$

$$\phi(x) = 0 \qquad x \in \partial\Omega.$$
(7)

Let  $I = [\alpha, \gamma]$  where  $\alpha > \lambda_1$  and  $\gamma < \lambda_1 + \delta$ , and let

$$\sigma := \max_{\lambda \in I} || z_{\lambda} ||$$

Where  $\|.\|$  denotes the supremum norm. Now assuming that there exists a  $m_1 > 0$  such that

$$f(x,u,v) \ge u - m_1$$
  $\forall x \in \overline{\Omega}, u \in [0, m_1 \gamma \sigma], v \ge 0$  (8)

and exists a  $m_2 > 0$  such that

$$g(x,u,v) \geq v - m_2 \qquad \forall x \in \overline{\Omega}, v \in [0,m_2\gamma\sigma], \quad u \geq 0 \ . \tag{9}$$

Finally to prove existence results for  $\lambda$  large, in addition to (3)-(5), we assume  $\exists f_1(u) \leq f(x,u,v)$   $\forall x \in \overline{\Omega}, u \geq 0, v \geq 0$  such that  $f_1(r_1) = 0, f_1'(r_1) < 0$ ,

$$\int_{0}^{r_{1}} f_{1}(s)ds > 0 \quad \text{for some } r_{1} > 0$$
 (10)

And  $\exists g_2(v) \le g(x, u, v)$   $\forall x \in \overline{\Omega}, u \ge 0, v \ge 0$  such that  $g_2(r_2) = 0, g_2'(r_2) < 0$ ,

$$\int_0^{r_2} g_2(s) ds > 0 \quad \text{for some } r_2 > 0$$
 (11)

### 2. Existence results

**Theorem 2.** Let  $\lambda_1 \in I$  and assume (3)-(5), and (8)-(9) hold, Then (1) has a positive solution.

It was shown in [1]  $(\underline{u},\underline{v})$  is a subsolution of (1) where  $\underline{u}(x) = \gamma m_1 z_{\lambda}$  and  $\underline{v}(x) = \gamma m_2 z_{\lambda}$ .

Now let w(x) to be the unique positive solution of

$$-\Delta w(x) = 1 \qquad x \in \Omega$$
  
 
$$w(x) \le 0 \qquad x \in \partial \Omega.$$
 (12)

 $(\overline{u},\overline{v})$  is a supersolution that  $\overline{u}=Jw(x)$  and  $\overline{v}=\widetilde{J}w(x)$  where  $J,\widetilde{J}>0$ , are sufficiently large, such that

$$\frac{1}{\lambda \parallel w \parallel} \ge \frac{f(x, J \parallel w \parallel, v)}{J \parallel w \parallel}, \frac{g(x, u, \widetilde{J} \parallel w \parallel)}{\widetilde{J} \parallel w \parallel}$$

$$(13)$$

and

$$\overline{u}(x) \ge \underline{u}(x)$$
 on  $\Omega$  and  $\overline{v}(x) \ge \underline{v}(x)$  on  $\Omega$  (13)'

**Theorem 3.** Assume (3)-(5) and (10)-(11) hold. Then there exists a  $\lambda^* > 0$  such that for every  $\lambda > \lambda^*$ , (1) has a positive solution.

Here we give a simple example that satisfies the hypotheses of theorem 2 and 3. Consider

$$h(x, u, v) = m\sqrt{u+1} - \frac{3m}{2} + e^{-v}$$
  $\forall u \ge 0, v \ge 0$  (14)

where m > 0 is a constant. Let

$$f(x,u,v) = h(x,u,v)$$
$$g(x,u,v) = h(x,u,v)$$

Here  $f(x,0,0) = 1 - \frac{m}{2} < 0$  for m > 2, f is increasing in u,v, and  $\lim_{u \to \infty} \frac{f(x,u,v)}{u} = 0$  uniformly in v. Also  $g(x,0,0) = 1 - \frac{m}{2} < 0$  for m > 2, g is increasing in u,v, and  $\lim_{v \to \infty} \frac{g(x,u,v)}{v} = 0$  uniformly in u.

Now, to show that (8) and (9) are satisfied, it suffices to show that  $h_1(u) = m\sqrt{u+1} - \frac{3m}{2}$  satisfies (8) since  $h(x,u,v) \ge h_1(u) \forall u \ge 0, v \ge 0$ . Let p > 0 be such that  $h_1(p) = p - m$ . That is,

$$m\sqrt{p+1} - \frac{3m}{2} = p - m,$$

$$m^{2}(p+1) = \left\{p + \frac{m}{2}\right\}^{2},$$

$$p^{2} + (m - m^{2})p - \frac{3m^{2}}{4} = 0,$$

and

$$p = \frac{(m^2 - m) + \sqrt{m^4 - 2m^3 + 4m^2}}{2}$$
$$= \frac{(m^2 - m) + m\sqrt{(m - 1)^2 + 3}}{2}.$$

Hence in order that (8) be satisfied, we must have

$$\frac{m^2-m+m\sqrt{(m-1)^2+3}}{2}\geq m(\sigma\alpha),$$

that is,

$$(m-1) + \sqrt{(m-1)^2 + 3} \ge 2(\sigma\alpha)$$
 (15)

Since  $\sigma$  and  $\alpha$  are quantities that depend only on  $\Omega$ , clearly for a given  $\sigma$  and  $\alpha$ , there exists and  $m_0$  sufficiently large such that if  $m > m_0$ , then (15) is satisfied and equivalently (8) will be satisfied. Thus, (9) is also satisfied for  $m > m_0$ .

Note that this example satisfies the hypotheses of theorem 3 also since  $h(x,u,v) \ge h_1(u) \forall u \ge 0, v \ge 0$  and one can construct a function  $f_1(u) \le h_1(u)$  satisfying (10).

#### 3. Numerical Results

We see in section 2 that there must always exists a solution for problems such as (1) between a subsolution  $(\underline{u},\underline{v})$  and a super-solution  $(\overline{u},\overline{v})$  when  $\frac{\partial f}{\partial v},\frac{\partial g}{\partial u}\leq 0$ 

Consider the coupled-system boundary value problems

$$-\Delta u(x) = \lambda f(x, u, v) \qquad x \in \Omega$$

$$-\Delta v(x) = \lambda g(x, u, v) \qquad x \in \Omega$$

$$u(x) = v(x) = 0 \qquad x \in \partial \Omega$$
(16)

Since f,g are  $C^1$  functions, there exists positive constants  $k_1,k_2$  such that  $\frac{\partial f}{\partial u} \ge -k_1$ , and  $\frac{\partial g}{\partial v} \ge -k_2$  on

 $\overline{\Omega} \times D$ . Thus we can study the equivalent system

$$-\Delta u(x) + \lambda k_1 u(x) = \lambda f(x, u, v) + \lambda k_1 u(x) = \lambda \hat{f}(x, u, v) \qquad x \in \Omega$$

$$-\Delta v(x) + \lambda k_2 v(x) = \lambda g(x, u, v) + \lambda k_2 v(x) = \lambda \hat{g}(x, u, v) \qquad x \in \Omega$$

$$u(x) = v(x) = 0 \qquad x \in \partial \Omega$$
(17)

The mapping  $T: (u_1, v_1) \to (u_2, v_2), (u_2, v_2) = T(u_1, v_1)$ 

$$(u_1, v_1) \in [\underline{u}, \overline{u}] \times [\underline{v}, \overline{v}] \quad \forall x \in \overline{\Omega}$$

Where  $(u_2, v_2)$  is the unique solution of the coupled-system

$$-\Delta u_{2}(x) + \lambda k_{1} u_{2}(x) = \lambda f(x, u_{1}, v_{1}) + \lambda k_{1} u_{1}(x) \qquad x \in \Omega$$

$$-\Delta v_{2}(x) + \lambda k_{2} v_{2}(x) = \lambda g(x, u_{1}, v_{1}) + \lambda k_{2} v_{1}(x) \qquad x \in \Omega$$

$$u_{2}(x) = v_{2}(x) = 0 \qquad x \in \partial \Omega$$
(18)

satisfied the hypotheses of Schauder fixed point theorem, and then we can conclude that

$$\exists (u, v) \in D$$
  $T(u, v) = (u, v)$ 

so (u, v) is a solution of (1) (see [3]).

By letting  $\hat{f}(x,u,v) = \lambda f(x,u,v) + \lambda k_1 u(x)$  and  $\hat{g}(x,u,v) = \lambda g(x,u,v) + \lambda k_2 v(x)$ , we use the following iteration to obtain solution:

$$\begin{split} u_{0}(x) &= \underline{u}, v_{0}(x) = \overline{v} & n = 0,1,2,... \\ (\Delta - \lambda k_{1}) u_{n+1} &= -\hat{f}(x, u_{n}, v_{n}) & x \in \Omega \\ (\Delta - \lambda k_{2}) v_{n+1} &= -\hat{g}(x, u_{n+1}, v_{n}) & x \in \Omega \\ u_{n+1} &= 0 = v_{n+1} & x \in \partial \Omega. \end{split} \tag{19}$$

We can also use  $u_0(x) = \overline{u}$ ,  $v_0(x) = \underline{v}$  as initial guesses. we use following algorithm

#### sub- and super-solution algorithm

- 1. Find  $u_0(x) = \underline{u}, v_0(x) = \overline{v}$ . Choose numbers  $k_1, k_2 > 0$ ;
- 2. Solve the boundary value system (19);
- 3. If  $||u_{n+1}-u_n||<\varepsilon$  and  $||v_{n+1}-v_n||<\varepsilon$ , output and stop. Else go to step 2.

Now we want to apply the algorithm for:

$$-\Delta u(x) = \lambda (m\sqrt{u+1} - \frac{3m}{2} + e^{-v})$$

$$-\Delta v(x) = \lambda (m\sqrt{v+1} - \frac{3m}{2} + e^{-u}) \qquad x \in \Omega$$

$$u(x) = v(x) = 0 \qquad x \in \partial\Omega$$
(20)

For doing step 1, we solve the problem

$$-\Delta z - \lambda z = -1 \qquad x \in \Omega$$

$$z = 0 \qquad x \in \partial \Omega$$
(21)

to obtain  $\underline{u}$ . We know from section 2 that problem (21) has a positive solution for  $(\lambda_1, \lambda_1 + \delta)$ . The obtained results show there is an array of positive solution for  $\lambda \in (17,35)$  so  $\lambda_1$  is around 17.

For brevity we express just some of those numerical results:

Approximation of  $z_{\lambda}$  for  $\lambda = 15$ 

| x/y | 0.2    | 0.4    | 0.6    | 0.8    |
|-----|--------|--------|--------|--------|
| 0.2 | -0.268 | 0.423  | -0.431 | -0.283 |
| 0.4 | -0.447 | -0.701 | -0.718 | -0.493 |
| 0.6 | -0.513 | -0.753 | -0.778 | -0.636 |
| 0.8 | -0.505 | -0.528 | -0.497 | -0.345 |

Approximation of  $z_{\lambda}$  for  $\lambda = 17$ 

| x / y | 0.2   | 0.4   | 0.6   | 0.8   |
|-------|-------|-------|-------|-------|
| 0.2   | 1.895 | 3.067 | 3.130 | 2.022 |
| 0.4   | 3.266 | 5.199 | 5.341 | 3.625 |
| 0.6   | 3.789 | 5.626 | 5.818 | 4.172 |
| 0.8   | 3.727 | 3.912 | 3.676 | 2.514 |

Approximation of  $z_{\lambda}$  for  $\lambda = 30$ 

| x / y | 0.2   | 0.4   | 0.6   | 0.8   |
|-------|-------|-------|-------|-------|
| 0.2   | 0.002 | 0.017 | 0.021 | 0.008 |
| 0.4   | 0.028 | 0.062 | 0.068 | 0.041 |
| 0.6   | 0.050 | 0.087 | 0.093 | 0.070 |
| 0.8   | 0.054 | 0.060 | 0.056 | 0.033 |

Approximation of  $z_{\lambda}$  for  $\lambda = 36$ 

| <i>x</i> / <i>y</i> | 0.2    | 0.4   | 0.6   | 0.8   |
|---------------------|--------|-------|-------|-------|
| 0.2                 | -0.001 | 0.012 | 0.016 | 0.005 |
| 0.4                 | 0.024  | 0.056 | 0.063 | 0.038 |

| 0.6 | 0.048 | 0.084 | 0.091 | 0.068 |
|-----|-------|-------|-------|-------|
| 0.8 | 0.053 | 0.060 | 0.056 | 0.033 |

Let  $\underline{u} = \gamma m_{1} z_{\lambda}(x)$  where  $\gamma$  and m obtained from section 1, 2 and to obtain  $\overline{v}$  for  $\lambda \in I$  ( $I = [\alpha, \gamma]$  where  $\alpha > \lambda_1$  and  $\gamma < \lambda_1 + \delta$ ) we solve

$$-\Delta v(x) = 1 x \in \Omega$$
  
 
$$v(x) = 0 x \in \partial \Omega$$
 (22)

by finite difference (see [5,6]). We choose J such that (13), (13) ' are satisfied.

We execute algorithm for  $\lambda \in [17.1,34.9]$ . It is easy to see that u = v for problem (20).

For brevity we express just some of those numerical results:

Approximation of u for  $\lambda = 17.1$ 

| x/y | 0.2                 | 0.4                   | 0.6                   | 0.8                 |
|-----|---------------------|-----------------------|-----------------------|---------------------|
| 0.2 | $1.009 \times 10^4$ | 1.510×10 <sup>4</sup> | 1.510×10 <sup>4</sup> | $1.009 \times 10^4$ |
| 0.4 | $1.510 \times 10^4$ | $2.777 \times 10^4$   | $2.777 \times 10^4$   | $1.510 \times 10^4$ |
| 0.6 | $1.510 \times 10^4$ | $2.777 \times 10^4$   | $2.777 \times 10^4$   | $1.510 \times 10^4$ |
| 0.8 | $1.009 \times 10^4$ | $1.510 \times 10^4$   | $1.510 \times 10^4$   | $1.009 \times 10^4$ |

Approximation of u for  $\lambda = 25$ 

| x/y | 0.2                   | 0.4                   | 0.6                   | 0.8                   |
|-----|-----------------------|-----------------------|-----------------------|-----------------------|
| 0.2 | 2.173×10 <sup>4</sup> | 3.253×10 <sup>4</sup> | 3.253×10 <sup>4</sup> | 2.173×10 <sup>4</sup> |
| 0.4 | $3.253 \times 10^4$   | $4.902 \times 10^4$   | $4.902 \times 10^4$   | $3.253 \times 10^4$   |
| 0.6 | $3.253 \times 10^4$   | $4.902 \times 10^4$   | $4.902 \times 10^4$   | $3.253 \times 10^4$   |
| 0.8 | $2.173 \times 10^4$   | $3.253 \times 10^4$   | $3.253 \times 10^4$   | 2.173×10 <sup>4</sup> |

Approximation of u for  $\lambda = 30$ 

| x/y | 0.2                   | 0.4                 | 0.6                 | 0.8                 |
|-----|-----------------------|---------------------|---------------------|---------------------|
| 0.2 | $3.139 \times 10^4$   | $4.697 \times 10^4$ | $4.697 \times 10^4$ | $3.139 \times 10^4$ |
| 0.4 | $4.697 \times 10^4$   | $7.078 \times 10^4$ | $7.078 \times 10^4$ | $4.697 \times 10^4$ |
| 0.6 | $4.697 \times 10^{4}$ | $7.078 \times 10^4$ | $7.078 \times 10^4$ | $4.697 \times 10^4$ |
| 0.8 | $3.139 \times 10^4$   | $4.697 \times 10^4$ | $4.697 \times 10^4$ | $3.139 \times 10^4$ |

Approximation of u for  $\lambda = 34.9$ 

| x/y | 0.2                 | 0.4                   | 0.6                   | 0.8                 |
|-----|---------------------|-----------------------|-----------------------|---------------------|
| 0.2 | $4.256 \times 10^4$ | $6.368 \times 10^4$   | $6.368 \times 10^4$   | $4.256 \times 10^4$ |
| 0.4 | $6.368 \times 10^4$ | $9.596 \times 10^4$   | $9.596 \times 10^{4}$ | $6.368 \times 10^4$ |
| 0.6 | $6.368 \times 10^4$ | $9.596 \times 10^{4}$ | $9.596 \times 10^{4}$ | $6.368 \times 10^4$ |
| 0.8 | $4.256 \times 10^4$ | $6.368 \times 10^4$   | $6.368 \times 10^4$   | $4.256 \times 10^4$ |

Our numerical results (in following tables) show that there exist  $\lambda^* > 0$  such that for every  $\lambda > \lambda^*$ , (20) has a positive solution. In this case  $\lambda^* = 166.696$  with decimal accuracy.

Approximation of u for  $\lambda = 170$ 

| x/y | 0.2                 | 0.4                 | 0.6                 | 0.8                 |
|-----|---------------------|---------------------|---------------------|---------------------|
| 0.2 | $1.019 \times 10^6$ | $1.524 \times 10^6$ | $1.524 \times 10^6$ | $1.019 \times 10^6$ |
| 0.4 | $1.524 \times 10^6$ | $2.297 \times 10^6$ | $2.297 \times 10^6$ | $1.524 \times 10^6$ |
| 0.6 | $1.524 \times 10^6$ | $2.297 \times 10^6$ | $2.297 \times 10^6$ | $1.524 \times 10^6$ |
| 0.8 | $1.019 \times 10^6$ | $1.524 \times 10^6$ | $1.524 \times 10^6$ | $1.019 \times 10^6$ |

Approximation of u for  $\lambda = 500$ 

| x/y | 0.2                   | 0.4                   | 0.6                   | 0.8                   |
|-----|-----------------------|-----------------------|-----------------------|-----------------------|
| 0.2 | $0.883 \times 10^7$   | $1.321 \times 10^7$   | $1.321 \times 10^{7}$ | $0.883 \times 10^7$   |
| 0.4 | $1.321 \times 10^7$   | $1.990 \times 10^7$   | $1.990 \times 10^7$   | $1.321 \times 10^{7}$ |
| 0.6 | $1.321 \times 10^7$   | $1.990 \times 10^7$   | $1.990 \times 10^7$   | $1.321 \times 10^7$   |
| 0.8 | $0.883 \times 10^{7}$ | $1.321 \times 10^{7}$ | $1.321 \times 10^7$   | $0.883 \times 10^{7}$ |

#### Approximation of u for $\lambda = 1000$

| x/y | 0.2                   | 0.4                   | 0.6                   | 0.8                   |
|-----|-----------------------|-----------------------|-----------------------|-----------------------|
| 0.2 | $3.534 \times 10^{7}$ | $5.286 \times 10^{7}$ | $5.286 \times 10^{7}$ | $3.534 \times 10^7$   |
| 0.4 | $5.286 \times 10^7$   | $7.963 \times 10^7$   | $7.963 \times 10^7$   | $5.286 \times 10^7$   |
| 0.6 | $5.286 \times 10^7$   | $7.963 \times 10^7$   | $7.963 \times 10^7$   | $5.286 \times 10^7$   |
| 0.8 | $3.534 \times 10^{7}$ | $5.286 \times 10^7$   | $5.286 \times 10^7$   | $3.534 \times 10^{7}$ |

## 4. References

- [1] V. Anuradha, A. Castro and R. Shivaji. Existence Results for Semipositone Systems. Dynamic Systems and Applications. 5:219-228.
- [2] V. Anuradha, S. Dikens and R. Shivaji. Existence Results for Non-autonomous el lip Boundary Value Problems. Electronic Journal of Diff. Eqns, 4:1-10.
- [3] A. Canada and J. L. Gamez. Elliptic Systems with Nonlinear Diusion in Population dynamics, Differential Equations and Dynamical Systems, 3 (1995) 189-204.
- [4] P. Clement and L. A. Peletier. An anti-maximum principle for second order elliptic operators, Di.erential Equations 34 (1979) 218-229.
- [5] M. Dehghan. Numerical procedures for a boundary value problem with a non-linear boundary condition, Applied mathematics and computation 147 (2004) 291-306.
- [6] I. G. Petrovsky. Lectures on partial di.erential equations, Dover publications, Inc. (1991).