
 ISSN 1746-7659, England, UK 

                                                          

Journal of Information and Computing Science
Vol. 2, No. 1, 2007, pp. 41-47

Basic Theory in the New Real Line-scale Rough Function 
Model 

  Yun Wang 1,2 +, Yanyong Guan 2 and Kaiquan Shi 1  
1 School of Mathematics and Systems Science, Shandong University,Jinan,250100,China; 

2 School of Science, Jinan University,Jinan,250022,China 

(Received June 9, 2006, accepted August 4, 2006) 

Abstract. The basic concepts of Pawlak rough function model are improved. The concepts of double 
approximation operators that are scale upper (lower) approximation and real line upper (lower) 
approximation are defined and their properties and antithesis characteristics are analyzed. Scale bijection 
theorem as well as relative propositions and conclusions are proposed furthermore. Based on the 
indiscernibility relation, the new real line-scale rough function model is established by generalizing the 
double approximation operators into two-dimensional space. That deepens and generalizes rough function 
model based on rough set theory, and makes the scheme of rough function theory more distinct and 
completed. The transformation of real function analysis from real line to scale is achieved therefore, which 
provides necessary theoretical foundation and technical support for further discussion of properties and 
practical application of rough function model. 
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1. Introduction  
[1]The theory of rough sets , proposed by Polish mathematician Zdzislaw Pawlak in 1982, is a kind of 

data analysis theory. As an effective mathematical tool and technical means transacting indefinite and 
incomplete knowledge, rough set theory has been found to have quite successful applications in the fields of 
artificial intelligence such as machine learning, pattern recognition, decision analysis, process control and 
knowledge discovery, etc [2-4].  

With more than twenty years development, deepness, perfection and generalization, rough set theory has 
become more and more mature and complete gradually. However, although many theoretical and practical 
problems relating to data analysis have been solved successfully in the scheme of rough set theory, due to the 
limitation of rough set theory being based on set theory, a large number of theoretical and applicable 
problems relating to function theory such as the synthesis and analysis of rough controllers, the generation 
and optimization of discrete dynamic system [5-6], etc., could not be described and solved only by the lower 
and upper approximate sets in rough set theory. Therefore, Pawlak generalize the concepts of rough sets to 
real numbers domain, and provide the rough function description in real numbers domain [7-10].  

Taking the indiscernibility relation defined on real numbers set as the basic starting point, the concepts of 
lower rough (discrete) and upper rough (discrete) representations are defined in rough function model which 
is based on rough set theory. A series of discrete properties of the lower and upper representations 
corresponding to real functions are discussed to investigate the relationship between real and discrete 
functions, especially how does the discretization of real line influence basic properties of real functions, etc. 
There are some similarities between rough function model and numerical method as well as approximate 
method, e.g. approximation of one function by another one, but differences in nature between them exist, that 
is, rough function model is based on function theory in which functions are defined and valued in the set of 
integers, while numerical and approximate method are still based on real function theory, and are not related 
directly to discrete mathematics needed in fields such as computer simulation, etc. The applications of real 
functions are achieved by the establishment of rough function . Furthermore, on the basis of fault allowed 
theory and rough sets theory, if the rough functions of some real function is gained in advance, then the 
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changing states of this real function can be depicted by analyzing the properties of rough functions[11]. 

Pawlak rough function model did not proposed the discrete forms in two metrics of real line and scale. 
The definition of rough function in it can not reflect the obvious characteristics of rough functions which are 
defining and valuing in integral sets. This kind of definition is not strict from mathematical point of view; 
while from applied point of view, rough functions in this kind of definition are not applicable for computer 
and rough control, etc. In this paper, the concepts of double approximation operators that are scale upper 
(lower) approximation and real line upper (lower) approximation are defined. Their properties and antithesis 
characteristics are analyzed. Scale bijection theorem as well as relative propositions and conclusions are 
proposed furthermore. Based on the indiscernibility relation, the new real line-scale rough function model is 
established by generalizing the double approximation operators into two-dimensional space. That deepens 
and generalizes rough function model based on rough set theory, and makes the scheme of rough function 
theory more distinct and completed. The transformation of real function analysis from real line to scale is 
achieved therefore, which provides necessary theoretical foundation and technical support for further 
discussion of properties and practical application of rough function model in such fields as the analysis of 
discrete dynamic system, the synthesis and analysis of rough controller, computer simulation, etc. 

2. Real line-scale rough function model and its properties 

2.1. Concepts and properties of rough sets on the real line 
Physical phenomena are usually described by differential equations. Solutions of these equations are real 

valued functions, i.e., functions which are defined and valued on continuous points. However, due to limited 
accuracy of measurements and computations, we are unable to observe (measure) or compute (simulate) 
exactly the abstract solutions. Consequently, we deal with approximate rather than exact solutions, i.e., we 
are using discrete and not continuous variables and functions[7-10]. In order to investigate the relationship in 
nature between the above two approaches, document [10] proposed the concept of scale based on rough set 
theory. 

Definition 1[10] Let [ ] { }0,1, 2,...,n = Rn  be a finite set of integers, R be the set of real numbers. If the 

strictly monotonic function [ ]:d n R→ [ ]: , ,i j n i j∀ ∈ < satisfies , implies , then d  is 
referred to as a scale. 

( ) ( )d i d j<

In practical applications, the finite integers set [ ]n   in definition 1 can be used as a set of measurement 
values with respect to a certain measurement unit such as kg, km, hr, etc. The scale d  is a mapping of 
measurement values into the set of real numbers. Elements in the inverse image of the scale, i.e., 
measurement values can be understood as approximations of real numbers, in accessible due to our lack of 
infinite precision of measurement of computation. The concept of the scale is similar to that of the 
landmark[12-13] in qualitative reasoning methods, but both concepts are used differently. 

[ ]:d n R→Assume any scale  determine a finite sequence of reals 

{ }0 1 2 0 1, , ,... , . ., ...n nS x x x x s t x x x= < < < ( ) [ ],ix d i i n= ∈, where . It is easy to prove that the scale 
satisfied the theorem as follows: 

Theorem 1. (Scale bijection theorem) The scale d  is a bijection of [ ]n nR to  , where 

( ) [ ] [ ]0 , ,n nd i R x x i n∈ ∈ ∈ ; The scale d  is a bijection of [ ] ( ) [ ],id i x S i n= ∈ ∈n  to , where S . 

There is a one-to-one correspondence between any scale d and a finite increasing sequence  S according 
to theorem 1.  can be viewed as a discretization of the closed interval ( ) ( ) [ ]00 , 0 ,n nR d d x x= =⎡ ⎤⎣ ⎦d . 

The following two approximate operators are defined corresponding to a given scale d. They map any 
real number in R  into integers set and give two forms of mapping from reals to integers. 

[ ]: , nd n R x R→ ∀ ∈ ( )xd xg, the d -scale lower approximation of Definition 2. Given a scale  and the 

d-scale upper approximation of ( )*xd x  are defined as follows:  

( ) [ ]{ }max , id x i i n x x= ∈ ≤g  
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( ) [ ]{ }min , id x i i n x x= ∈ ≥g  

( ) ( ) ( )d x d x d xδ ∗= − ∗  is referred to as d -scale approximate error of x . 

Both of  and  are denoted by *  for convenience. *d *d d
The relationship between the scale d and the operator *d can be obtained according to definition 1 and 2. 

[ ] ( ) ( ) ( ), 1 *i n d i x d i i d x i∀ ∈ ≤ ≤ + ⇔ ≤ ≤ +1Proposition 1.  

( ) ( ) 11 id i ix d i x x xProof:  According to definition 1, +≤ ≤ + ⇔ ≤ ≤ . According to definition 2, 

( ) ( )*
1 * , 1i ix x x d x i d x i+< < ⇔ = = + ( )*ix x d x ( )1 *ii= ⇔ = 1x x d x i+= ⇔ =; ; +

1

. Thus, 

. The proof of proposition 1 is completed. ( ) ( ) ( )1 *d i x d i i d x i≤ ≤ + ⇔ ≤ ≤ +

xProposition1 shows that the real value and the scale value of  are correspondent. It is impossible for 
them to jump from one interval to another. Proposition 1 illustrate the one-to-one correspondence between 
[ ]n  and  from another aspect. See Fig.1. S

0                1              2           3                 4         …… 

     R 
x         x                     x0 1 2        x3                 x4                       x5  …… 

Fig. 1. The one-to-one correspondent relationship between [ ]n  and  S

It is not difficult to obtain the following corollary in terms of proposition 1. 

( )d xδCorollary 1.  is equal to either 0 or 1, i.e.,  

( ) [ ]0         When there exists  makes 
1                              Otherwise

i
d

i n x x
xδ

⎧ ∈ =⎪= ⎨
⎪⎩

. 

[ ]0 ,nR x x=The indiscerbility relation on closed interval n  corresponding to  is defined as follows by 
. 

d
*d

nx R∀ ∈ dI nR  corresponding to d  is defined as: Definition 3. [10] , the indiscerbility relation  on closed 
* *

* *{( , ) , ( ) ( ) ( ) ( )}d nI x y x y R d x d y d x d y= ∈ ∧ = ∧ = . 

 generates equivalence classes [ ]d
xnx R∀ ∈ dI nR, the indiscerbility relation   on : 

[ ] ( ) * *
* *{ ( ) ( ) ( ) (d nd

)}x I x y R d x d y d x d y= = ∈ = ∧ =  

] ( ) ( ) ( ){ }* *d nd
x I x y R d x d y= = ∈ =It can be represented simplified as [ . 

 [ ]d
x ( )d Sπ constitutes a partition on nR , which is denoted as . Thus all equivalence classes on nR  

generated by dI  are: 

                                    }}{),,(,},{),,(},{),,(},{{)( 12211100 nnnd xxxxxxxxxxS −= Λπ

The following proposition can be drawn from above: 

[ ]i n∀ ∈ [ ] ( )1 1, ,i i i id
x x x x x x+ +< < = [ ] { },i id

x x x x= =Proposition 2. , when ; when . 

{ }0 1 2, , ,..., ,n nS x x x x x R= ∀Definition 4. Given d  and ∈ , let 

{ }*( ) max ,d i i iI x x x S x x= ∈ ≤  
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{ }*( ) min ,d i i iI x x x S x x= ∈ ≥  

*( ), *( )d dI x I x  are referred to as -real line lower and upper approximation of x  respectively. then 

( ) **( ) ( )Id d dx I x I xδ = −  is referred to as -real line approximate error of d x . 

*dI *dIBoth of   are denoted by * dIand  for convenience. 

( ) ( )* *d dI x I x≠nx R∀ ∈ xDefinition 5.  is referred to as a -rough number. Otherwise, i.e., d, if , then 

( ) ( )* *d dI x I x= x,  is referred to as a -exact number. d

Denote  and  are referred to as scale and real line approximate space 

with respect to d .  and  are two kinds of different description of the same study object in different 
metrics and backgrounds, where both approximate operators *  and 

( ) ( )1 2 1, , , ,dA R d A R I A= = 2A
1A 2A

* dId  correspond to the scale d. 
According to the theorem of scale bijection (theorem 1), it is easy to observe that the two approximate 
operators have one-to-one correspondent antithetic characteristics, which is expressed as follows in detail. 

( ) ( ) ( ) ( ), , * * * *n d d dx y R xI y d x d y I x I y∈ ⇔ = ⇔ =Property 1. For . 

Proof: The proof is not difficult to be obtained from definition 3 and proposition 2 , omitted. � 

( ) ( )( ) ( ) ( )( )* *
* * ,d dI x d d x I x d d x= =Property 2. . 

[ ]{ } ( ) [ ]* *( ) max , ,id x i i n x x d x n= ∈ ≤ ∈ . Taking operation dProof: By definition 2, we have  on 

, we can deduce: ( )( ) { }* max ,i i id d x x x S x x= ∈ ( ) ((* *d ))I x d d x=*( )d x ≤ . Therefore,  by definition 

4. 

( ) ( )(* *
d )I x d d x=  can be verified in the same way.  

( ) ( ) ( ) (*
* 0 1Id Idd x d x x xδ δ⇔ ≠ ⇔ ≠ ⇔ ) =xProperty 3.  is a -rough number d .   

( ) ( ) ( )( ) ( )( ) ( ) ( )* *
* * *d dd x d x d d x d d x I x I x≠ ⇔ ≠ ⇔ ≠ *Proof: It follows by property 2 that .By 

definition 4, we have ( ) ( ) ( ) ( ) ( )* *
* 0d d Id d dI x I x x I x I xδ≠ ⇔ = − * ≠ .By corollary 1, we can obtain 

( ) ( ) [ ] ( )*
* 1d d i dI x I x x x i n xδ≠ ⇔ ≠ ∀ ∈ ⇔ = . Thus, the proof of property 3 can be completed.   

( ) (3 4, , d )x y x x Sπ∈ ∈ dI y y.It is clear that x , i.e., x  and Example 1. Let  is equivalent under the 

indiscerbility relation determined by d. While ( ) ( ) ( ) ( )* * 3, 4d x d y d x y* *d= = = = . Meanwhile 

( ) ( )( ) ( ) ( )( )* * 3 * *d dI x d d x x I y d d y= = = = ,  

( ) ( )( ) ( ) ( )( )* * * *
4d dI x d d x x I y d d y= = = = ,  

i.e.,  

( ) ( ) ( ) ( )* *
* *d d d dI x I y I x I y= ≠ = ,  

or  

( ) ( ) ( ) ( )* *
* *d x d y d x d y= ≠ = ,  

or  

( ) ( ) 0Id Idx yδ δ= ≠ ,  

or  

( ) ( ) 1d dx yδ δ= = . 

yTherefore, both real number x  and  are rough numbers, and can be approximately represented by 
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measurement value 3 (lower approximate) and 4 (upper approximation) of the scale . d
Any scale determines a partition on real line uniquely, determines an equivalence relation on reals set, 

i.e., indiscernibility relation. Elements in the same equivalence class are indiscernible with respect to the 
scale; they can be represented approximately as the measurement value of the scale. Hence, real parameters 
are substituted approximately by integral with respect to the given scale. 

* dIIn term of the definitions and antithetic characteristics of approximate operators *  and d , their 
properties of theirs can be obtained as follows. 

Proposition 3.  

( ) ( )*
*d dI x x I x≤ ≤(1) ; 

( ) ( )* *d dx y I x I y≤ ⇒ ≤ ; (2) 

( ) ( ) (* * *d d )dI x y I x I y∨ = ∨ ; (3) 

( ) ( ) (* * *d d )dI x y I x I y∧ = ∧ ;  (4) 

( )( ) ( )* ** d d dI I x I x= ; (5) 

( )( ) ( )* ** d d dI I x I x= ; (6) 

[ ]i n∀ ∈ ( ) ( ) *
1 *, ,i i d d ( )x x x I x x I x+∈ < < 1i ix x +=Proof: (1) , by proposition 2, when ; when , 

( ) { }* d ( ) ( )*
*d dI x x I x≤ ≤iI x x= . Therefore,  is hold. 

(2) When x=y, it is obvious that the equality is hold. 
When x≠y, various situations of x<y are discussed in details: 

(a) When 1i ix x y x +≤ < < ( ) ( )* *d i dI x x I y= = ( ) ( )* *
1d i dI x x I y+= =, , ; 

(b) When 1i ix x y x +≤ < = ( ) ( )* *, 1i ( ) ( )* *
1d i dId i dx x I y x I x x I y+= = ; += < = , 

(c) When 1 2i i ix x y x+ +≤ < ≤ < ( ) ( )* *d i dx , 1i ( ) ( )* *
1 2d i d iI x x I y x I x x I y x+= < = , + += < = ; 

( ) ( )* *d i d1i ix x x +≤ < 1j jx y x +≤ < 1j i> + jI x x I y x= < =, , (d)When , , 

( ) ( )* *
1 1d i d jI x x I y x+ += < = . 

( ) ( )* *d dI x I y≤x y≤To sum up, when , we have . 

( ) ( )*d d ( ) ( )* *d dI x I y≤*I x y I y∨ =(3) If x≤y, it is clear that . Then by (2), we have , 

hence ( ) ( ) ( )* * *d d dI x I y I y∨ = ( ) ( ) (* *d d d )*I x y I x I y∨ = ∨. Thus we can see that .When x≥y, the 
conclusion can be verified similarly. 

( ) ( ) (* *
d d d )*I x y I x I y∨ = ∨  can be proved in the same way. 

(4) It is similar to the proof of (3). 

( )( ) ( )* ** d d dI I x I x=[ ]i n∈( )*d ( )* d i iI x x=iI x x=  might as well, . By proposition 2, , so . (5) Let 

(6) It is similar to the proof of (5).   

2.2. Real line-scale Rough function model 
[ ]:d n R→ [ ]:e m R→ f : n mf R R→ and  be , where Given two scales . Let real function 

[ ]0 ,n nR x x= [ ]0 ,m mR y y=, . Generalizing approximate operators in definition 2 and definition 4 to two-

dimensional space, the concepts of approximate operators of (1 , )B R e=f  in approximate space  and 

(2 , e )B R I=  are defined respectively. 
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f* : n mf R R→Definition 6. The e-real line lower approximate  of function  is defined as: 

( )* *
( ( ))ef x fI= * : n mf R R→x f; The e-real line upper approximate  of function  is defined 

as: ( ) ( )( )* *
ef x I f x= ( ) ( )*

*( )f
Ie x f x f xδ = − f is referred to as e-real line approximate error of . . 

*f and  are denoted by *  for convenience. Both *f f

[ ] [ ]* :f n m→ fDefinition 7. The -scale lower approximate e  of function  is defined 

as: ( ) ( )( )(* * )f i e f d i= [ ] [ ]* :f n m→ f; The e-scale lower approximate  of function  is defined 

as: (i)=e**f (f(d(i))).  and  are also called lower and upper rough representations of 
f .  is referred to as e-scale approximate error of 

*f*f

( ) ( )*
*( )f

e i f i f iδ = − f . 

fBoth  and are denoted by **f  for convenience. *f
1BFor any real function, two discrete functions defined and valued in common reals set in  are 

corresponded, while two discrete functions defined and valued in integers set in 2B  are corresponded. In the 
following, two forms of definitions of rough functions in different spaces are given, and establish the new 
real line-scale rough function model. 

( ) ( )*
*f x f x≠Definition 8. For : n mf R R→ f, when ,  is referred to as a real line-rough function at 

point x, and is referred to as a rough function at point x in simplification. Otherwise, i.e., when 
( ) ( )*

*f x f x= , f  is referred to as an exact function at point x. In other words, if and only if ( ) 0f
Ie xδ ≠ , 

f fx  is an exact function at point x.  is a rough function at point ; Otherwise, 

( ) ( )*
*f i f i≠Definition 8′. For : n mf R R→ f, when ,  is referred to as a scale-rough function at 

point , and is referred to as a rough function at point  in simplification. Otherwise, i.e., when i i
( ) ( )*

*f i f i= , f  is referred to as an exact function at point i . In other words, if and only if ( ) 1f
e iδ = f,  

is a rough function at point i ; Otherwise, f  is an exact function at point i . 

(1 , )B R e= ( )2 , eB R I=f * fBoth approximate operators *  and  in approximate space  and  

correspond to the scale [ ]:e m R→ [ ]:e m R→. Assume  determines a finite increasing sequence of reals 

{ }'
0 1 2, , ,..., nS y y y y= , where , ( )jy d j= [ ]j m∈ , then the scale e is a bijection from [ ]m  to . That is 

to say the scale satisfies the theorem of scale bijection (theorem 1). Therefore, the double approximate 
operators in approximate space 

'S

1B 2B and  also nave one-to-one correspondent antithetic characteristics 
similar to property 1 to 3. Thus, definition 8 and 8′are equivalent and we have the following proposition: 

( ) ( )( )( )* *f x e e f x= ( ) ( )( )( )* *f x e e f x=Proposition 4. , . 

Proof: By the definition of the scale lower approximation of reals, we have 

( )( ) [ ] ( ){ }* max , je f x j j m y f x= ∈ ≤ ( )( ) [ ]*e f x m∈, . Taking the operation e on , we can 

induce that 

( )(*e f x )
( )( )( ) ( ){ }'

* max ,j j je e f x y y S y f x= ∈ ≤ . By the definition of the scale lower 

approximation of reals, we obtain . Therefore, ( ) ( )( )( )* **
( ( ))ef x f x e e f xI= =( )( )( )* *

( ( ))ee e f x f xI=  is 

hold by definition 6. 

( ) ( )((*
* ))f x e e f x=  can be verified in the same way.  

The real line-scale rough functions also have a series of properties similar to proposition 3, which can be 
achieved only by transforming the variable there into function value, at the same time changing the scale on 
axis of ordinates into the scale e. They will not be spreading out here. 

Definition 8 is the transition of definition 8′.It is the intermediate form of real function and the discrete 
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function under scale metric. Both of them connect each other, and represent the discrete state and form of the 
real function under different metrics meanwhile. The real line-scale rough function model composed thus 
reflects this character. In fact, the approximate representations of real function f is placed into the set of 
lattice points (i.e. points having integer coordinates) in two-dimensional space determined by the scale d and 
e. Any real function f can be represented by two discrete functions defined and valued only on lattice points. 

3. Conclusion 
The new real line-scale rough function model is established by generalizing the Pawlak rough function 

model. The double approximate operations of real line-scale rough function model that are scale upper 
(lower) approximation and real line upper (lower) approximation have one-to-one correspondent antithetic 
characteristics. Any scale determines uniquely an equivalence relation on the set of real numbers, i.e., the 
indiscernibility relation. The elements in the same equivalence class can be represented approximately by the 
measurement value of the scale. Therefore, real parameters (or functions) can be represented approximately 
by integral parameters (or functions) under the given scale. The transformation of real function analysis from 
real line to the scale is thus achieved. The theory and practice of rough functions is a completely new 
research field. It has highly important study significance for practical applications in such fields as the 
analysis of discrete dynamic system, the synthesis and analysis of rough controller, computer simulation, etc. 

Setting up the real line-scale rough function model, a series of concepts and properties such as rough 
continuous, rough derivatives, rough integrals, etc., which are similar to real functions can be given. The 
relationship between real functions and discrete functions which are viewed as measurement results can be 
studied in order to provide necessary theoretical foundation and technical support for further discussion of 
properties and practical application of rough function model. Due to the limitation of the length of the paper, 
further properties discussion and their applications of the real line-scale rough function model are arranged to 
be studied in the latter articles. 
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