
 ISSN 1746-7659, England, UK

Journal of Information and Computing Science
Vol. 2, No. 1, 2007, pp. 48-54

An Algorithm for Evaluating Impact of Requirement Change

He-Biao Yang +, Zhi-Hong Liu, Zheng-Hua Ma

School of Computer Science and Telecommunication Engineering, Jiangsu University,
Zhenjiang, 212013, China

(Received June 1, 2006, Accepted August 2, 2006)

Abstract. In software development, it is difficult to evaluate the impact brought by the requirement changes
because of the complexities and dependencies among the changed and unchanged requirements. In this paper,
the relations of these dependencies are analyzed and established. The scope of the impact caused by
requirement changes is identified by a back-tracing algorithm, and impact was quantified. An algorithm
developed to quantitatively evaluate the effect of requirement changes is presented. Lastly, the feasibility of
this evaluation algorithm is shown through a case-study.

Key Word: Requirement Change, Dependency, Evaluation Algorithm

1. Introduction
With the rapid development and broad applications of computer technology, both the scale and

complexity of the software project increase at an unprecedented rate. It is well known that the requirement
changes have an enormous influence on all aspects of software projects including progress control, cost
analysis, life cycle and etc. The Chaos Report, released by Standing Group showed that among many factors,
which cause the failure of the software project, the requirements change account for 11.8%[1]. IBM’s Santa
Teresa Laboratory reported that for a typical project, on an average, about 25% of the requirements for a
typical project would go through changes before completion of the project [2]. It is inevitable that the
requirements change occurs in the life cycle of software development [3]. Therefore, the evaluation of the
impact attributable to requirements change has become an important part of requirements change control,
and it can result in a positive impact on software project management and control risk reduction. The
requirements changes, discussed in this paper, are modifications to existing requirements or new
requirements that may or may not affect existing requirements.

The evaluation of requirements change impact includes determination of the scope of requirements
change and analysis of the potential influence brought by it[4]. The major methods used to evaluate the
impact of requirement change is to determine the impact caused by requirements change on software work
products, such as design and coding, by using requirements traceability link or traceability matrix[5,6,7]. While
complicated dependency exists objectively among the requirements, the impact brought by dependency
factor is rarely considered in the existing evaluating methods. As a result, it introduces uncertainty to
evaluation results. Therefore, how to identify and define the scope of dependencies become very important.

To solve the aforementioned problems, in this paper, the relations of these dependencies are analyzed
and established. The scope of the impact caused by requirement changes is identified by a back-tracing
algorithm, and impact was quantified. An algorithm developed to quantitatively evaluate the effect of
requirement changes is presented. Lastly, the feasibility of this evaluation algorithm is shown through a case-
study.

2. Requirements dependency
Due to the dependencies between requirements, the change of some requirements would have an impact

on correlated requirements, which leads easily to the diffusion of impact. This phenomenon makes the
evaluation of impact both uncertain and difficult, therefore, the key to resolving this issue is to correctly
determine the scope of impact of changing requirements.

+ Email address: yhbjj@ujs.edu.cn (He-Biao Yang), broad-axe@263.net (Zhi-Hong Liu), Zheng-Hua Ma (ma031124@126.com)

Published by World Academic Press, World Academic Union

Journal of Information and Computing Science, Vol. 2 (2007) No. 1, pp 48-54 49

2.1. Definition of requirements dependency
Dependencies are common among the requirements of a real software system [8,9,10].

Definition 1. A requirement dependency is a relationship that signifies that the change of a single or a set
of requirement elements requires the change(s) of other requirement elements for their specification or
implementation. This means that the complete semantics of the depending elements is either semantically or
structurally dependent on the definition of the supplier element(s)[11].

That a requirement tR depends on the other requirement sR . is denoted as (,)s tdep R R , and the

requirement tR does not depend on the requirement sR . is denoted as (),s tdep R R¬ , where Rs is the source
of requirements dependency, and Rt is the target of requirements dependency.

The requirements dependency is practically regarded as a description of relations among requirements at
the coupling aspect, which can be divided into implicit dependency and explicit dependencies. The explicit
dependency is usually identified at the phase of modeling requirements, on contrast, the recognization of the
implicit dependency is often postponed to later phases, such as design or coding, it can be confirmed with the
traceability of requirements.

2.2. Type and property of requirements dependencies
The forms of dependencies vary, and their relations are comparatively complicated. By the analysis and

induction on them, we categorize the dependencies into Sub Dependency, Full Dependency, Super
Dependency and Loop dependency:

Definition 2. The Sub Dependency means that bR is partially dependent on aR , symbolized as

, (),a bsubDep R R ()(),a b a bR R dep R R∀ ∀ ， () ()(),c c a a c bR R R dep R R R∃ ⊆ ∧¬ − .

Definition 3. The Full Dependency means that bR is fully dependent on aR , symbolized as fulldep

(),a bR R , () ()(), ,a b a b a bR R dep R R subDep R R∀ ∀ ∧¬ .

Definition 4. The Super Dependency means that partial bR is fully dependent on aR , symbolized as

, (),a bsuperDep R R () () ()(), ,a b c a b c b a b cR R R dep R R R R dep R R R∀ ∀ ∃ ∧ ⊆ ∧¬ − .

In the process of software development, it is widely acknowledged that the Sub Dependency and Super
Dependency are derived from the large granularity of modeling requirements. The non-atomic requirements
model may possibly cover partial exact dependencies, which increases the inaccuracy of estimating impact
caused by requirements change to some extent. Subsequently, the dependencies of Sub Dependency and
Super Dependency should be eliminated as soon as possible in the real software development. To simplify
the discussion, the dependencies mentioned below are all Full Dependency.

Two lemmas of Dependencies:
Lemma 1: Transitivity

() ()() (), ,a b c a b b c a c,R R R fullDep R R fullDep R R fullDep R R∀ ∀ ∀ ∧ ⇒ .

If the requirement bR fully depends on requirement aR , and the cR fully depends on bR also, we can
obtain a conclusion that the cR fully depends on aR .

Lemma 2: Inreversibility

() (), ,a b a b a b b aR R Dep R R R R Dep R R∀ ∀ ≠ ∀ ∀

The dependency and the dependency (,a bdep R R) (),b adep R R are two different dependencies.

Definition 5. The Loop Dependency means that the relation among R1,R2…Ri is loop, denoted as:
loopDep(R1,R2,…,Ri),

() () () (()1 2 1 2 1 2 1 1, , ... , ,n i i i)R R R fullDep R R fullDep R R fullDep R R fullDep R R−∀ ∀ ∀ ∧ ∧ ∧ ∧

where . 2i ≥
The loop dependency is universally considered as a kind of strong coupling relation structurally, which

JIC email for subscription: info@jic.org.uk

He-Biao Yang, et al: An Algorithm for Evaluating Impact of Requirement Change 50

)

lowers the adaptability of model to changes and the reusability of model. Hence, loop dependency should be
eliminated as soon as possible in the development of system. The evaluation algorithm presented in this
paper detects existing loop dependencies, to remind analyzer and designer of system to improve their work
products.

3. Identifying dependency set
This paper uses the backtracing algorithm to solve the dependencies among requirements.

3.1. The composing of solution space
The solution space of the question is presented as directed graph in the algorithm. For the directed graph

, where (,G GG N E= { }1...GN Ri i n= = , Ri is requirement I labeled as Vertex I, G GE N N⊆ × G

)
. For

any arc , there is a , where v is called tail and u is head. The InDegree of a vertex v
is the number of arcs directed towards the vertex v. The OutDegree of a vertex u is the number of arcs
directed outwards from the vertex u. A directed graph can be represented by an adjacency matrix, which is
defined as:

, Gu v E< >∈ (,dep u v

{ Gji
Gji

ER,R1,
ER,R0,],A[ji >∈<

>∈<=

3.2. The structure of solution space
The structure of solution space can be represented as a full n-tree which height is . i layer 1n + ()i n≤

of the solution space, every node has n children, and every child represents one of possible dependencies in
. The No. n+1 level is the leaf node. Figure 1 shows a spanning tree of the solution space structure,

which has 3 elements in its dependencies set.
GN

Figure 1. A spanning tree of the solution space

When , all nodes are requirement nodes except root node. 1n >

3.3. Description of algorithm
This algorithm adopts depth-priority search method, which traverses solution space to find the result(s).

In the recursive algorithm Backtrack, it traverses to leaf nodes and outputs a set of dependencies when .
In case that the initial node is i

i n>
0, where i n≤ , the current extending node (assumption for Z), where is in

solution space, which has n child nodes, check its availability here and traverse those valid sub trees
recursively using the depth-first search method or trim the invalid ones.

It is indispensable to detect and record loop-dependencies in this process. To achieve this, we need to
check whether the arc connecting vertex i-1 to i, and the arc connecting the vertex i to i0 exists. The existence
of all of these arcs means a Loop Dependency is detected.

Before the beginning of the Algorithm backtrack, delete these nodes whose out-degree and in-degree are
both zero in the graph G. As a result we can get a set of vertices and arcs, which is stored in an array x[].

Backtrack (i) {
if (i>n) {
 //Output dependencies set and dependencies path
}
else {
 if(A[x[i-1],x[i]]=1&&A[x[i],x[i-1]]=1){
 //Output dependencies path

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, Vol. 2 (2007) No. 1, pp 48-54 51

 }
}
if (i>=3)
 if(A[x[i-1],x[i]]=1&&A[x[i],x[1]]=1){
 //Output loop-dependency ;
 }
else {
 for(j:=1;j<=n;j++) {
 x[i]:=j;
 if(A[x[i-1],x[j]]=1) //select next search vertex;
 backtrack(i+1);
 else
 //Output dependencies set and dependencies path
 }
}
}//End Backtrack

4. An Algorithm of evaluating the Impact of Requirements Change

4.1. Impact factor
The whole scope of impact affected by requirements change is obtained using the Backtrack algorithm

above. To measure the degree of impact between requirements, this paper introduces the impact factor
(abbreviated to FI), and quantifies the impact factor between two requirements using the following formula.

() () (), / , ,FI Rs Rt workload Rt workload Rs dep Rs Rt change Rs= ∧ （1）

When a requirement Rs is changed, the workload|Rs denotes the added workload of Rs. As the changes
of Rs influences requirement Rt, workload|Rt is the added workload of Rt. At the different stage of system
development, the FI (Rs,Rt) is likely to be different.

In the course of an application system development, the impact factor is not always the simple ratio as
above, and it is likely the exponential or discrete values. To discuss conveniently, we measure the impact
factor between requirements using the ratio of workload.

In the process of quantifying FI(Rs,Rt), a lot of reasons such as the capability of software developer,
rationality of project schedule, complexity of function structure, etc are possible to affect the accuracy of
FI(Rs,Rt).Therefore according to actual situation, the FI(Rs,Rt) is able to be adjusted on the basis of analysis
and statistic of empirical or previously recorded data.

4.2. Measure of impact degree
According to the method of quantifying the impact factor, the quantitative formula, which measures the

degree of impact caused by requirements change, is as follows:

(),DI Ws FI Rs Rt= ∗∑ （2）

where Ws is added workload of Rs.
 Figure 2 shows the dependencies between requirements

R1 R2

R3

R4

Figure 2. The dependencies between requirements

JIC email for subscription: info@jic.org.uk

He-Biao Yang, et al: An Algorithm for Evaluating Impact of Requirement Change 52

FI R R = ()2 3, 1FI R R =Assume , , ()1 2, 0.5 .4 ()2 4, 0.8FI R R = .

If W1 equals 2. By the formula (2), the results is as follows:

()2 1 1 2, 4 0.5W W FI R R= × = × = 2 ;

()3 2 2 3, 2 1.4 2W W FI R R= × = × = .8 ;

()4 2 2 4, 2 0.8 1W W FI R R= × = × = .6 ;

The total increased workload . 2.8 1.6 2 6.4DI = + + =

4.3. Implementation of evaluating algorithm
We can obtain the whole set of impact at the initial state of dependencies. This set is expressed as .

While some requirements changes take place, we need to evaluate the propagation of impact and impact on
software development.

aC

The detailed approaches are as follows:
1) To extract the impact set of changed requirements required to evaluate from . aC
2) To eliminate redundant dependencies of change impact set using the cascade method, which is to get

minimal subset of dependencies by eliminating repetitive nodes and branch of path.
3) To quantify impact factor (FI) using the formula (1).
4) To evaluate the impact of changed requirements use the formula (2).
The design of evaluation algorithm is as follows:
Store the impact set of changing requirements with an adjacency matrix a, at the beginning

[], 0; , 1, 2,...,a i j i j n= = ;

The source of requirements change is represented as , SETcs { }SETcs Ri Ri N= ⊆ .

The impact set of requirements Rs change is represented as () { }aImpactSet Rs Ri Ri C= ⊆ .

The workload of requirements stored in the InitSet set. { },IniSet Ri Wi Ri SETcs= < > ∈ , where Wi is

workload.
The workload of requirements stored in the EvaSet set after the occurrence of requirements change,

{ }, ImEvaSet Ri Wi Ri pactSet= < > ∈ ,where Wi is workload.

Algorithm 1 EliminateRedundance: to eliminate redundant dependencies of change impact set and
quantify them.

EliminateRedundance (a,ImpactSet) {
for (each ,Rs Rt ImpactSet< >∈) {

[] (), ,a Rs Rt FI Rs Rt= ;

 }
}
Algorithm 2 Evaluation of Impact
Evaluation()
{ for (each Ri SETcs∈)

{ (a)ImpactSet C Ri= ; // obtain the impact set of Ri change

 EliminateRredundance (a,ImpactSet); // eliminate redundant dependencies
 }
 for (each Ri SETcs∈)
{ get Ri and corresponding Wi;

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, Vol. 2 (2007) No. 1, pp 48-54 53

Rs Ri= ; Wsi ; Wi=

{ },EvaSet Evaset Rs Wsi= ∪ < > ；

 for (() ()()& & ,Rt ImpactSet Ri Rs Rt E ImpactSet Ri∀ ∈ < >∈){

[],WtI Wsi a Rs Rt= × ;

{ },EvaSet Evaset Rt Wtr= ∪ < > ；

 Rs Rt= ; WsI ; WtI=
 }
}
//compare Evaset with IniSet to gain the results of evaluation.
}

5. Case study
In this section, we use an example to illustrate the evaluation algorithm which we have presented in the

previous sections. As a demo, we extract a set of requirements and some dependencies among them. The
impact factors(FI) are chosen from statistic data in the real development process. A diagram to depict the
dependencies is given as follows:

R1

R2 R3

R5 R6R4

R8

R9

R7

Figure 3. A demo of requirements set

Table 1. Initial workloads of requirements set

Requirement No R1 R2 R3 R4 R5 R6 R7 R8 R9

Workload 5 4 3 5 7 3 7 8 4

Table 2. The impact factors of requirements set

Rs R1 R1 R3 R3 R4 R4 R5 R7 R8 R9
Rt R2 R3 R6 R8 R2 R5 R6 R6 R3 R6

FI(Rs, Rt) 0.80 0.60 1.00 2.67 0.80 1.40 0.43 0.43 0.38 0.75

Figure 4 shows an diagram representing minimal requirements dependencies subset output from our
evaluation model, in which loop-dependencies are marked as broken line. The requirements highlighted in
dark blue are the source of requirements change.

R1

R2 R3

R5 R6R4

R8

Figure 4. The minimal requirements dependencies subset

JIC email for subscription: info@jic.org.uk

He-Biao Yang, et al: An Algorithm for Evaluating Impact of Requirement Change 54

Based on the above discussion, a set of predicted data applying evaluation model to compare a set of
actual data are listed in table 3.

Table 3. Comparison between predicted workload increment and statistics

Requirement No R1 R2 R3 R4 R5 R6 R8

Predicted 4.0 4.8 2.4 2.0 2.8 1.2 6.41

Statistics 3.5 4.0 2.9 2.0 3.3 1.1 7.1

By analyzing the table above, some conclusions are drawn:
1) The minimal requirements dependencies subset are in accordance with the scope of impact caused by

requirements change;
2) In spite of the inaccuracy of measure approach and the absence of evaluation parameters, the results

derived from 2 different approaches have a similar change trend.

6. Conclusions and Future work
This paper discusses the extent of impact on software system caused by requirements change at the

aspect of requirements dependency. An algorithm to evaluate requirements change based on the dependency
is presented. The algorithm is validated in a real-life development process. Becaused of the multi-level and
multi-phase complexities, the understanding of all dependencies among the requirements and establish a
reasonable measurement model aimed at all requirements dependencies is a long term effort; it is iterative
and constantly improving process. A series of more complex questions should be studied in the future, such
as how to analyze the requirements dependencies qualitatively and quantitatively, to identify the new
dependencies introduced by the evolution of requirements and requirements dependencies in the different
phases of software development process, to determine a measurement model with more rational and accurate
mathematical description.

7. References
[1] The CHAOS Report, 1994, Cont’d. http: http://www.standishgroup.com/sample_research/chaos_1994_2.php.
[2] B. W. Boehm. Software Engineering Economics. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.
[3] Saffena Ramzan, Naveed Ikram. Making Decision in Requirement Change Management Information and

Communication Technologies. ICIT First International Conference. 2005, 27-28: 309-312.
[4] R. S. Amold, S. A. Bohner. Impact Analysis-towards a Framework for Comparison. Proceeding of the

International Conference on Software Maintenance. 1993, 292-301.
[5] S. Lock, Dr. G. Kotonya. Requirement Level Change Management and Impact Analysis.

http://info.comp.lancs.ac.uk/publications/Publication_Documents/1998-Lock-Internal.pdf.
[6] M. R. Strens and R. C. Sugden. Change Analysis: A Step Towards Meeting the Challenge of Changing

Requirements. Proceedings of the IEEE Symposium and Workshop on Engieering of Computer Based
Systems(ECBS), 1996.

[7] L. Wen, R. G. Dromey. From Requirements Change to Design Change: A Formal Path. Software Engineering and
Formal Methods, Proceeding of the Second international Conference, 2004, 104-113.

[8] P. Carlshamre, K. Sandahl. An Industrial Survey of Requirements Interdependencies in Software Product Release
Planning. Proceedings of Fifth IEEE International Symposium on Requirements Engineering, IEEE Computer
Society, 2001, 84-91.

[9] J. Giesen, A. Volker. Requirements Interdependencies and Stakeholders Perferences. Proceedings of IEEE Joint
International Conference on Requirements Engineering, 2002, 206-209.

[10] B. Ramesh, M. Jarke. Toward Reference Models for Requirements Traceability, IEEE Transactions on Software
Engineering, 2001, 27(1): 58-93.

[11] The specification of UML 2.0. http://www.uml.org

JIC email for contribution: editor@jic.org.uk

