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Abstract. The Preconditioned Conjugate Gradient (PCG) method has proven to be extremely powerful for 
solving symmetric positive definite linear systems. This method can also be applied to nonsymmetric linear 
systems when combined with the NR/NE techniques. It has been shown in [1] that the CGNR algorithm, 
which is a nonsymmetric variant of the Conjugate Gradient (CG) method, is error-reducing with respect to 
the Euclidean norm. However, in practice the simple CGNR algorithm is seldom used because of the squared 
condition number of the iteration matrix. Preconditioning is frequently needed to overcome this difficulty. In 
the present paper we give a much richer result concerning the error-reducing property of the CG procedure. 
Assume that the preconditioner M is also symmetric positive definite. It is shown that the PCG method is 
error-reducing with respect to the M-norm. 
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1. Introduction 
The Preconditioned Conjugate Gradient method is designed to solve symmetric positive definite linear 

systems of the form 
nnn RbxRAbAx ∈∈= × ,;, .                                                        (1.1) 

Assume that the preconditioner M  is also symmetric positive definite. There are three commonly seen 
versions of the PCG method: 

i. Left-Preconditioned CG: CG applied to the linear system 

bMAxM 11 −− = , 
in which the standard Euclidean inner product is replaced by the M-inner product 

),(),(),( MyxyMxyx M =≡ ; 

ii. Split-Preconditioned CG: In the case where M  is a Cholesky product TLLM = , CG applied to 
the linear system 

uLxbLuALL TT −−−− == ,11 ,                                                        (1.2) 

which involves a symmetric positive definite matrix; 
iii. Right-Preconditioned CG: CG applied to the linear system 

uMxbuAM 11 , −− == , 

in which the standard Euclidean inner product is replaced by the 1−M -inner product. 

Interestingly, these algorithms are mathematically equivalent; see [3, Section 9.2]. Let , 
 and , where  is the jth PCG iterate and 

TALLA −−= 1ˆ

j
T

j xLu = jj rLr 1ˆ −= jx jj Axbr −=  is the associated residual. For 
any symmetric positive definite matrix K , we denote by  the K-norm of v , defined as Kv ||||

),(|||| vKvv K = . The three algorithms can be cast in the same form: 

Algorithm 1.1. Preconditioned Conjugate Gradient 
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Compute ; ; and 00 Axbr −= 0
1

0̂ rLr −= 00 r̂p = . 

For , until convergence Do: Λ,1,0=j
2
ˆ

2
2 ||||||ˆ||

Ajjj pr=α  

jjjj puu α+=+1  

jjjj pArr ˆˆˆ 1 α−=+  
2
2

2
21 ||ˆ||||ˆ|| jjj rr +=β  

jjjj prp β+= ++ 11 ˆ  

End Do. 
Although a little complicated, this formulation of the PCG method is quite comprehensible to ordinary 

minds. It is precisely the Conjugate Gradient method applied to the preconditioned system , whose 
solution  is related to the solution of the original system (1.1) by . 

bLuA 1ˆ −=

*u ** xLu T=

In order to solve nonsymmetric linear systems bAx = , we can apply the PCG method directly to the 
equivalent systems 

bAAxA TT = ,                                                                     (1.3) 
or 

uAxbuAA TT == , .                                                               (1.4) 

The resulted algorithms are known as the Preconditioned CGNR and CGNE, see [2]. 
It is the purpose of this paper to show that PCG is an error-reducing method with respect to the M-norm, 

i.e., the M-norm of the error  monotonically decreases during its iteration. The proof of our 
theorem follows closely the lines of a proof given in [1], where the simple CGNR algorithm is considered. 

kk xxe −≡ *

2. Main results 
We begin with some known facts. Recall that Algorithm 1.1 is precisely the CG method applied to (1.2) 

with respect to the u -variable. There are two characterizing properties of the CG procedure: 
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,                                                    (2.2) 

where  is the exact solution of the system (1.2) and  is the associated Krylov 
subspace. Observe that  
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(2.2) can be equivalently shown as 

A
AMrMKxx

Aj xxxx
j

||||min|||| *
),(

* 1
0

1
0

−=−
−−+∈

.                                              (2.3) 

We will prove a theorem to show that the PCG method is M-error-reducing. The following lemmas are 
needed first. 

Lemma 2.1. The direction vector  in Algorithm 1.1 is a linear combination of the residuals 
: 

kp
krrr ˆ,,ˆ,ˆ 10 Λ

ΛΛ ,1,0,
ˆˆˆ
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kk ξξξ
ξ  ,                                                (2.4) 

where  
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kjrjj ,,1,0,||ˆ|| 2
2 Λ==ξ . 

Proof: From lines 7 and 6 of Algorithm 1.1, we have 
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Observe that . By an inductive argument, (2.4) follows form (2.5).  00 r̂p =

Lemma 2.2. Let  be the error of the CG iterate  generated in Algorithm 1.1. Then, 
.                                                           (2.6) 

kk uue −= *ˆ ku
Λ,1,0,0)ˆ,( 1 =≥+ kep kk

Proof: We assume exact arithmetic. It is well known that the CG method gives the exact solution in at 
most  iterations. Hence,  and thenn nuu =* 0)ˆ,( 1 =− nn ep . When 1−< nk , from the update of  in 
Algorithm 1.1, we have 

ku

11111* −−+++ +++== nnkkkn ppuuu αα Λ . 

Then 
),(),(),()ˆ,( 11111*1 −−++++ ++=−= nknkkkkkkk ppppuupep αα Λ .                            (2.7) 

By (2.4) and (2.1), we have 

011ˆˆ
,

ˆˆ
),(

00

0

0

0 ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++++=

k
jk

j

j

k

k
jkjk

rrrrpp
ξξ

ξξ
ξξξξ

ξξ ΛΛΛ ,                    (2.8) 

)1,,1( −+= nkj Λ . 

(2.6) then follows from combining (2.7, 2.8) with the fact that 1,,2,1, −++= nkkjj Λα  are all 
nonnegative. 

Lemma 2.3. In Algorithm 1.1, the 2-norm of  decreases monotonically, i.e. kê
Λ,1,0,||ˆ||||ˆ|| 221 =≤+ kee kk .                                                         (2.9) 

Proof: Form lines 4 of Algorithm 1.1, we have 
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Using (2.6) we then obtain (2.9).  
We can now apply Lemma 2.3 to give the following theorem. 
Theorem 2.4. The PCG method is M-error-reducing, i.e., 

Λ,1,0,|||||||| 1 =≤+ kee MkMk . 

Proof: Observe that  
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Using (2.9) we then obtain the result.  
CGNR is nothing but the CG method applied to the normal equations (1.3). Letting IM = , the next 

corollary follows form Theorem 2.4 immediately. 
Corollary 2.5. CGNR is 2-error-reducing. 
Note that this is the main result of [1], i.e., Proposition 2.2. 
Concerning the CGNE algorithm, we have the following corollary. 
Corollary 2.5. CGNE is 2-error-reducing with respect to the u -variable. 
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3. Concluding remarks 
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The Preconditioned Conjugate Gradient method has been known as a robust method because of its 
coding simplicity and its error-minimizing property with the A-norm i.e., (2.3). In this short note we have 
shown another attractive property of this method: it is also error-reducing in the M-norm when the 
preconditioner M is symmetric positive definite. 

  The CGNR and CGNE algorithms have proven to be very effective for nonsymmetric linear systems in 
many situations. Typically, it has been observed that if the coefficient matrix of a nonsymmetric linear 
system is of high defectiveness with the related eigenvalues less that 1, the usual Krylov subspace methods 
(in restarted version) will be in great risks of breakdown or stagnation, see [4]. In this situation, the CGNR 
and CGNE algorithms may be two promising substitutes because they are based on normal equations. 
Preconditioning is needed to reduce the squared condition number of their iteration matrices. The results 
presented in this paper indicate that when the preconditioner is chosen to be symmetric positive definite [2], it 
will be potentially advantageous that both the error-minimizing property and the error-reducing property of 
the CG procedure are retained. 
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