7659, England, UK
Journal of Information and Computing Science
Vol. 2, No. 3, 2007, pp. 163-171

. AcCADEMIC
e

World Academic Union

Analyzing Authentication in Kerberos-5 Using Distributed
Temporal Protocol Logic

Shahabuddin Muhammad *, Zeeshan Furqan and Ratan K. Guha

School of Electrical Engineering and Computer Science, University of Central Florida, USA

(Received 3 January 2007, accepted 1 March 2007)

Abstract. Recently a Distributed Temporal Protocol Logic has been devised to capture reasoning in the
distributed environment of security protocols. Elsewhere we have constructed a proof-based verification
framework using distributed temporal protocol logic to verify the authentication property of security
protocols. In this paper, we apply our verification framework to a well-known protocol. In particular, we
analyze the authentication property of the public-key extension of Kerberos-5 protocol. We demonstrate how
we are able to identify a subtle design flaw in the protocol. This results into showing the applicability of our
framework as well as demonstrating the ease with which distributed temporal protocol logic can be used to
analyze authentication protocols.

Keywords: Kerberos, distributed temporal protocol logic, formal verification, authentication.

1. Introduction

Before running critical applications, such as e-commerce, in a distributed environment, one needs to be
assured of the identities of the parties involved in the communication. Security protocols are designed to
achieve this task. A security protocol is a sequence of messages between two or more parties in which
encryption is used to provide authentication or to distribute cryptographic keys for new conversation [1].
However, the mere existence of security protocols in a distributed application is not enough to guarantee the
security of the data. Designing security protocols is itself an error-prone process. History has shown that
many carefully designed security protocols were later found out to have subtle flaws [2]. This situation led
the researchers to formalize the verification of security protocols. Some of the considerable contributions in
the formal verification of security protocols include logic-based techniques [3], [4], [5], [6], process-algebra
[7], [8], theorem prover [9], graph-theoretic approach [10], and model-checkers [11], [12], [13], [14], [15],
[16], [17]. A good survey on the formal verification of security protocols can be found in [18]. Once a
protocol is designed, it is rigorously analyzed using any of the formal techniques to ensure that the protocol
achieves what it is intended to achieve.

Recently a Distributed Temporal Protocol Logic (henceforth referred to as DTPL) has been devised to
model reasoning in the distributed environment of security protocols in [19]. DTPL is an extension of the
distributed temporal logic DTL of [20]. The distinguishing characteristic of DTPL is its capability to be used
as a meta-level tool for comparative analysis of security protocol models and properties [21]. Benefiting
from this property of DTPL, we have constructed a framework in [22] which can be used to verify
authentication property of security protocols in a proof-based setting.

In this paper, we use our proposed framework of [22] to analyze the authentication property in public-
key extension of the well-known authentication protocol, Kerberos-5 [23], [24]. Kerberos-5 is a widely
deployed protocol designed to authenticate clients to multiple networked services using a single login.
PKINIT [25] is an extension of Kerberos-5 in which public-key is used in the first pass of the protocol. We
analyze authentication property in the recent version of PKINIT, PKINIT-26. This amounts towards showing
the applicability of our framework. Moreover, we point out some sources of errors when we try to prove the
authentication property of the protocol. Generally a proof-based method generates a proof only if a protocol
is correct. However, we demonstrate how a proof-based framework can be used as a guide to discover design
flaws even in case of the absence of a proof.

* Corresponding author. Tel.: +1-407-823 3364, fax: +1-407-823 5914.
E-mail address: muhammad@cs.ucf.edu.

Published by World Academic Press, World Academic Union

164 S. Muhammad, et al: Analyzing Authentication in Kerberos-5 Using Distributed Temporal Protocol Logic

This paper is organized as follows. In Section 2 we briefly describe the framework of [22]. In particular,
we introduce the distributed temporal protocol logic and list all the axioms of the framework in that section.
After describing the well-known authentication protocol PKINIT, Section 3 applies the framework to
analyze the authentication property of the protocol. We conclude in Section 4.

2. The Logic-based Verification Framework

We briefly introduce the framework of [22] which is based on the distributed temporal protocol logic of
[19]. A security protocol is a sequence of messages sent and received between two or more principals. Each
principal is equipped with some actions and propositions. Table 1 lists the set of actions and propositions
associated with a principal.

Table 1: The set of actions and propositions associated with a principal of a protocol.

Actions send(M,A) It represents sending a message M to a principal A.
rec(M) A principal receives a message M.
nonce(N) A principal generates a random number N.
key(K) A principal generates a key K.

Propositions | knows(M) It represents a principal’s knowledge of a message M.
fresh(M) It states that a message M is fresh.
controls(p) | It represents a principal’s authority over any formula ¢.
A< K 5B It represents that principals A and B share a secret-key K.
A=K It represents that K is the public-key of principal A.

In addition to the actions and propositions, DTPL defines a rich set of operators to capture various
temporal activities of a principal in the distributed environment. These operators precisely capture the
timings of the actions of a principal at various configurations. A configuration at time i represented as &; is
defined by a set of all the events of a principal up to time i. A principal’s initial configuration is defined to be
an empty set &={ ® }. Each action a (e.g, send, rec, nonce, key) of a principal changes its configuration from
& to & such that &= & U {a}. Temporal operators can be applied on a principal’s actions and propositions
at a configuration. For instance, if a principal A sends a key right after generating it, then the action key(K) at
configuration §; temporally precedes the action send(M, B) at & such that we can specify the sequence of

A’s actions at & as key(K), X send(K, B) where X is a temporal operator representing ‘next’. Similarly, other
temporal operators are also defined that capture various past time and future activities. We list these temporal
operators in Table 2.

Table 2: The temporal operators in the DTPL.

Operator | Meaning Operator | Meaning

X o next T in the end

Yo previous * in the beginning

Fo sometime in the future | g 0 now or sometime in the future
Po sometime in the past Po ¢ now or sometime in the past
Go always in the future Go now and always in the future
Ho always in the past Ho o now and always in the past

2.1. Axioms of the framework

The framework of [22] comprises of a set of axioms capturing the capabilities of principals of the
network. In particular, these axioms capture how a principal acquires knowledge through communication
events and by applying encryption and decryption operations, the notion of freshness of a message, a
principal’s authority over generating good session keys, finding the originator of a received message, and so
on. In the following, @[¢ | represents that a formula ¢ is true at principal A. We represent the

communication and knowledge axioms of the framework as follows.

(CD) @ [rec(X,...X,)=rec(X,)] fori=1,...n.

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 2 (2007) 3, pp 163-171 165

(C2) @ a[rec({M},) A knows(A<«—£—5S) = rec(M)]

(C3) @ plrec({M},) A knows(A+ k) = rec(M)]

(C4) @ alrec({M},) A knows(B - k) = rec(M)]

(C5) @ [rec(M) = knows(M)]

(K1) @ ,[knows(X,) A ... Aknows(X) = knows(F(X,,..., X,))]
(K2) @ ,[knows(M) = G, knows(M)]

(K3) @ ,[nonce(N) = knows(N)]

(K4) @ \[key(K) = knows(K)]

The first axiom C1 states that concatenates of a received message is also deemed as a received message.
C2 through C4 state that given the proper key, the contents of an encrypted received message are also
considered to be received. C5 simply states that a principal knows its received message. K1 states that a
principal knows any computable function F (e.g., encryption/signing by a known key, concatenation) of its
known messages. K2 simply states that a principal does not forget its known messages. K3 and K4 state that
a principal knows its generated messages (through actions nonce and key).

The following axioms capture the freshness of a message.

(F1) @ [nonce(N) = fresh(N)]
(F2) @ [fresh(X) = Xfresh(X)]
(F3) @ [fresh(X) = fresh(M)]

The above axioms state that the action nonce generates a fresh nonce (F1), a fresh message remains fresh for
the current run of a protocol (F2) and any message containing a fresh term is also fresh (F3). My in F3
represents either a message of the form ...X... or {...X...}x. That is, My is the result of applying some
operations (such as encryption, signing, concatenation) on X.

The following axiom captures the authority of a principal for generating keys.
an @s[controls(p,) A send (M, AY=> V oy, ine @ [F kNOWS (91,)]

That is, if a principal S is known to control a formula for generating keys ¢, and he sends a message

containing the key K then the receiver knows ¢, to be true. Generally S represents a server that generates
keys to be used between two principals.

The following axioms capture the notion of source association in which a principal investigates the
source of a received message. First, we define the notion of origination of a message.

(01) @ ,[send(M,B) AH(=send(M' ,C) A—=rec(M',)) < Orig(M)]
The above axiom states that if a principal sends a term in a message such that he never communicated that
term in any message in the past then he originates the term in its sending message.

The following axiom finds the originator of a received message in symmetric-key cryptography. Since in
symmetric-key cryptography, a key is assumed to be a principal's safe secret, encrypting a message under
symmetric-key ensures the possession of the key, and hence the origination of the message by a principal
having that key.

(02) @ a[knows(P «——Q) Arec({X },)] = V peyp.q, @g [P Orig({X},)]

Similarly, in asymmetric-key cryptography, a signed message originates from a principal who has access
to the private-key with which the message was signed. That is,

(03) @ alknows(B — k) Arec({X}, 1)]= @ [P Orig({X},)]
Since public-key of a principal is either assumed to be publicly available or it can be easily obtained,
reception of a message encrypted by the public-key of a principal does not provide any useful information

about the originator of the message. Therefore, the security protocols adopt a challenge-response method in
order to determine the originator of a received message. In this method, a principal originates a secret

JIC email for subscription: publishing@WAU.org.uk

166 S. Muhammad, et al: Analyzing Authentication in Kerberos-5 Using Distributed Temporal Protocol Logic

challenge message and waits for the response. The secret challenge message is constructed such that only the
intended principal could decrypt that challenge and generate the proper reply to the challenge. Reception of
the reply message guarantees that the responder must have received the challenge message.

(04) @l(—send(M' ,C)S(Orig({M y },) A fresh(N))) Arec(M'") A knows(B - k)]
= @ [P (Orig(M™'y) AP knows({M },))]

where, N must exist in M"' in a form other than {M }, . Moreover, N also exists in M'"" in a form other
than {M }, . In the above, the intuition is that since only B has the decryption key to discover N from
{M }, and N is originated uniquely (so that no other principal knows N except the one who originated it),

reception of any message in which N occurs in any form other than {M }, confirms that {M }, has been
decrypted and the information (N) has been released by B.

In addition to the above axioms, the framework uses the modus ponens as its inference rule given below.
This rule permits the derivation of from the truth of ¢ and ¢ = v .

(MP) prp=>yw)=>y

So far, we have presented the framework of [22] that can be used to analyze authentication protocols in a
proof-based environment. Next, we present how to apply the framework in order to analyze authentication in
a well-known protocol.

3. Verifying Authentication in the Public-Key Kerberos PKINIT

PKINIT is the public-key extension of Kerberos 5 authentication protocol. First we briefly overview
Kerberos 5 and give motivation behind PKINIT.

3.1. The Protocol Description

Kerberos [23], [24] is a widely deployed protocol designed to authenticate clients to multiple networked
services using a single login. Messages in the Kerberos contain various encrypted tickets that are used to
authenticate a user to the desired service. The recent version of Kerberos, Kerberos 5, is available for all
major operating systems. A standard run of Kerberos 5 consists of three phases. A client C first obtains a
ticket granting ticket (Ti) from kerberos authentication server (KAS) K. C then presents TGT to ticket
granting server (TGS) T and obtains a service ticket (Ty). Finally C uses the service ticket to authenticate
itself to an application server S. Kerberos message exchanges are depicted in Fig. 1. For simplicity, we omit
some of the message ingredients from the protocol that essentially do not affect the analysis at hand.

Application) Kerberos Authentication
Server 6. {t. Sreq b Client 1.CTn, Server
S > C > K
< <
5. {Kservc}kS {th Sreq } Ksery 2. C { Kauthc}kT <{Kauth an } ke
4.C { Kseer} Ks {Kservnzs} Kauth 3. {Kauthc}kT {C} Kauth CSn2

Ticket Granting Server

Figure 1: Message exchanges between the client C and the servers K, T, and S in the Kerberos protocol.

In Figure 1, {KunClk = ticket granting ticket Ty (in message 2) and {KnC}ks = service ticket Ty (in
message 4) Moreover, Kc, k1, Ks are the secret keys of C, T, and S respectively. ny, n, are two distinct nonces
and Ky and K, are the authentication-key to be shared between C and T and the service-key to be shared
between C and S respectively.

Notice that upon receiving each message, the client C creates an authenticator to be used for the next
message exchange. The client uses {C}Kan and {ClcSreq}Ken as authenticators in the third and fifth message
exchanges. The last message exchange {tcSreq}Ken is an acknowledgment message from the server and is

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 2 (2007) 3, pp 163-171 167

optional. PKINIT [25] is an extension to the basic protocol in which public-key authentication is used in the
first pass of the protocol. The next two passes in PKINIT remain the same as that in Kerberos 5. In Kerberos
5, KAS derives the long-term shared secret Kc from the user's password. This leaves KAS vulnerable to
attacks where even read-only access to KAS may result in the compromised secret keys of the clients. With
the introduction of public-key cryptography, PKINIT does not need shared secret between a client and KAS,
hence avoids the possibility of compromised long-term shared secrets. Since public-key cryptography is
computationally expensive operation, PKINIT uses it only in its first pass of the protocol. However, it
complicates the overall protocol since the rest of the passes use traditional secret-key cryptography. An
abstract view of the first round of message exchanges in PKINIT can be represented as shown in Figure 2.

Client 1.C e {tch, }k ,CTn, KAS
C

C > K
<

2. { Kcert {knz } k™! }kc CTtgt {Kauth nltKT }k

Figure 2: The first round of message exchanges between C and the kerberos authentication server K in PKINIT.

In its first pass, the client forwards his certificate Cg along with a timestamp tc and a nonce N, signed by his
private-key kc'. Client's certificate provides the information about client's public-key to KAS and the signed
message affirms that it has been originated at the client. Client also concatenates its id C, the ticket granting
server’s id T and a nonce n; in the first message. KAS replies the client back with its certificate Kt and a
signed message containing a freshly generated symmetric-key K and the client's nonce Ny, all encrypted with
the public-key of the client kc. Both certificates Ceert and Keer are provided by public-key infrastructure (PKI)
that ensures binding of public-keys to the users. The reply message also contains the ticket Ty and a message
containing the authentication key Kayn, nonce ny, timestamp tx, and TGS id T, all encrypted by the fresh key k.

3.2. Analyzing the Protocol

We briefly sketch the analysis of the first pass of PKINIT that uses public-key cryptography. We apply
the aforementioned axioms of the framework in order to investigate the messages from each principal’s
perspective. In other words, the initiator C investigates its sent and received messages in order to find out the
true responder K of the protocol. Similarly, the responder tries to find out the true initiator of the protocol by
investigating its message. We assume that only principals C and K possess the secret keys ko' and kg™
respectively and the nonces are distinct (N; # Ny) and uniquely originating. That is, a nonce can not be
originated by more than one principal. Notice that n, serves as an open challenge to KAS in the first message.
Client waits for the right response before proceeding to the second round of the protocol. That is, it waits for
a signed message of the form {k n,}k*. The C’s and K’s runs of the first phase of the protocol are depicted in
terms of DTPL in Figure 3 and Figure 4 respectively.

Client

nonce(n,) send(My, K)

Channel

in(Ml, K) out(MIZ, C) I

Figure 3: First pass of the client's run in PKINIT using DTPL. The client C sends its challenge n, and expects
a message containing N, singed by the private-key of K.

JIC email for subscription: publishing@WAU.org.uk

168 S. Muhammad, et al: Analyzing Authentication in Kerberos-5 Using Distributed Temporal Protocol Logic

g € g3 €4 g's

nonce(ny)

send(M,,C)

........ OUt(Ml,K) in(.Mz,C)

|
|
|
|
|
|
|
|
Channel }
|

Figure 4: First pass of the KAS's run in PKINIT using DTPL. The server K responds to the client’s challenge
by sending a singed message containing n, along with a session key k.

Corresponding to the above figures, the client’s and server’s sequence of messages can be represented in
terms of DTPL as follows.

1. @c[rec(M,) AP (send(M,,K) AP nonce(n,))]
2. @ [send(M,,C)AP (nonce(n,) AP (key(k) AP rec(M,)))]

Where, M1 = Ceert{tc N2}k*CTny and My = {Keert{K Na}kic keCTige{ Kaun N1 tkT k. Notice the vertical dashed
lines in the figures indicating various configurations in the run of a principal. Moreover, vertical dotted lines
represent communication points between a principal and the distributed channel. DTPL defines a distributed
channel in which a principal’s sending and receiving actions are directly linked with the channel’s in(M,A)
and out(M,A) actions respectively. Since our framework focuses solely on the actions of the principals of a
protocol, we ignore the channel in the figures. Also notice that each action (send, rec, nonce, key) of a
principal changes its configuration from &; to &,.

The initial set of assumptions of the principals is as follows:
@ [*= knows(K > k)], @ [*= knows(C = k¢)], @ [*= knows(C - k¢)]

Where, * (see Table 2) captures initial configurations &; and &'; for C and K respectively. More assumptions
can be written, such as K knows its own public-key, which we do not need in the present analysis. These
assumptions hold true as public-key certificates can be easily obtained upon request. Knowledge is treated in
DTPL as non-decreasing as formulated by K2. We apply MP and K2 and use the above assumptions to get
the following results at any configuration.

Al. @ [knows(K - k)]
A2. @ [knows(C — k¢)]
A3. @ [knows(C - k)]
The server K investigates it messages and concludes the following.
3. @ [rec({t. nz}kc,l)] by 2, C1 and MP at &',.
@y [rec(t.n,)] by 3, A2, C4 and MP at &',.
@, [rec(n,)] by 4,Cl and MP at &’,.
@, [knows(n,)] by 5, C5 and MP at &,.
cl

4
5
6
7. @ [P Orig({tcnz}kc,l)] by 3, 03, A2 and MP at &'5.

Therefore, the kerberos authentication server K knows that C initiated the session and originated the signed
component sometime before &',. Now the client C investigates it messages in the following.

8. @c[rec({Keentkny}, 1})] by 1, Cl and MP at &,
9. @c[rec(Ke tkn,},)] by 8, C3, A3 and MP at &,

10. @c[rec({kn,},)] by 9, Cl and MP at &,.

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 2 (2007) 3, pp 163-171 169

11. @[rec(kn,)] by 10, C4, Al and MP at &,.
12. @c[rec(n,)] by 11, C1 and MP at &,.

The client has received back its nonce n, which it generated as a challenge for K. Furthermore,
13. @, [P Orig({kn,}, .)] by 10, 03, Al and MP at &,.

The client concludes that K has originated the signed message sometime before &. In addition to the above,
the client carries out the following analysis based on freshness and concludes that it has been involved in the
current run of the protocol.

14. @.[fresh(n,)] by 1, F1 and MP at &,.
15. @[fresh(n,)] by 14, F2 and MP at § D &,.
16. @[fresh(M,)] by 15, F3 and MP at &,.

That is, K not only originated the signed component in M, but it did so recently. The client C provides
assurance in the origination of its fresh nonce n, by signing it with its secret key kc™'. The presence of n, in
the received signed message {k n,}kc* ensures the origination of the message and hence the reception of n, at
KAS. Other than that, the client does not provide any assurance in the rest of the message bindings with the
legitimate KAS. This results in the lack of assurance in some crucial parameters from client's view of
kerberos authentication server. Apart from the signed message in My, {kn,}k*, binding it with the KAS,
public-key encryption in {Kcert{Kn,}ke'}ke using ke and symmetric-key encryption in {KaumnitkT }« using k do
not bind the messages with its recipient - the client C. That is, simply from M; it can not be deduced that the
server K is aware of the client C for this session of the protocol. This is due to the fact that n, could be easily
obtained from M; and any principal could encrypt a message with the public-key of C in M,. Moreover, a
principal could simply forward {Kaun NitkT }« after receiving it first from KAS.

3.3. Attack on the Protocol

The above-mentioned lack of assurance in parameter C in the message component {kn,}kcresults in the
man-in-the-middle attack. The authors in [26] were the first to mention this attack on PKINIT-26. The attack,
somewhat similar to that on the Needham-Schroeder public-key protocol in [17], exploits the above-
mentioned weakness in the protocol in which ids of the principals are not tightly bound with the messages.
Fig. 5 shows how it works.

1. Ccert {tC nz}kcfl CTnl
> 2. IDcert {tC n, }kpfl IDTnl
C P > K

4
3 {Ker 1k PT 1K t T
. n 4 n
4. {l icert {knz}KKq }kc :Ttgt{l iauthnltKT}k { cert{ 2}|<K }kp Igt{ auth’ 1-K }k

Fig. 5: Attack on PKINIT in which a penetrator P plays man-in-the-middle between C and K.

Observe that the penetrator P captures C's message and makes some changes such that it appears to KAS
as if it was generated by P. Given that P is a legitimate principal of the network, KAS follows the standard
protocol step and comes up with k, Ky, and tc. The reply from KAS is intended for P but the reply message
does not contain any binding to ensure KAS's perception of the initiator. Apart from the message component
{k n2}ki?, rest of the message can be constructed for any legitimate principal. Notice that Ty contains the id
of the initiator as perceived by KAS (P in this case) but C can not decrypt Ty, and never learns this
information. This attack in the initial phase of the protocol propagates to the remaining two phases in which
the client contacts TGS and the server. Every time the client initiates a request with one of the servers, P
intercepts the messages and forges them such that the servers believe the messages to be originated by the
penetrator P. In particular, P's possession of K, (and hence Kgr) makes it possible to replace client's
authenticators with that of the penetrator's authenticators. Client's inability to read Ty and T results in the
successful completion of the protocol run.

JIC email for subscription: publishing@WAU.org.uk

170 S. Muhammad, et al: Analyzing Authentication in Kerberos-5 Using Distributed Temporal Protocol Logic

4. Conclusion

We have applied a logic-based formal framework to analyze the authentication property in the public-
key extension of Kerberos-5 protocol. We have shown that how we were able to capture a subtle design flaw
in the protocol using distributed temporal protocol logic. The distinguishing characteristic of applying
distributed temporal protocol logic is its fine representation of different temporal activities occurring in a
distributed environment. This results into a clear understanding of a protocol run that makes it easy to apply
logical rules of the framework at various configuration points. In addition to showing the applicability of the
logical framework, we have demonstrated how a proof-based method can be used as a guide to discover
flaws in security protocols.

5. Acknowledgements

This work was partially supported by ARO under grant DAAD 9-01-1-0502. The views and conclusions
herein are those of the authors and do not represent the official policies of the funding agencies or the
University of Central Florida.

6. References
[1] R. M. Needham and M. Schroeder. Using Encryption for Authentication in Large Networks of Computers.
Communications of the ACM. 1978, 21(12): 993-999.

[2] S. Muhammad, Z. Furqan, and R. K. Guha. Understanding the Intruder through Attacks on Cryptographic
Protocols. Proceedings of the 44th ACM Southeast Conference (ACMSE2006). Mar. 2006, 667-672.

[3] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Transactions on Computer Systems.
1990, 8(1): 18-36.

[4] L. Gong, R. Needham, and R. Yahalom. Reasoning About Belief in Cryptographic Protocols. Proceedings of the
IEEE Symposium on Research in Security and Privacy. May 1990, 234-248.

[5] M. Abadi and M. Tuttle. A Semantics for a Logic of Authentication. Proceedings of the 10th Annual ACM
Symposium on Principles of Distributed Computing. 1991, 201-216.

[6] P. Syverson and P. V. Oorschot. On Unifying Some Cryptographic Protocol Logics. Proceedings of the IEEE
Computer Society Symposium on Research in Security and Privacy. 1994, 14-28.

[7]1 C. Bodei, P. Degano, R. Focardi, and C. Priami. Primitives for Authentication in Process Algebras. Theoretical
Computer Science. 2002, 283(2): 271-304.

[8] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and Analysis of Security Protocols.
Addison Wesley. 2000.

[9] L. C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols. Journal of Computer Security. 1998,
6: 85-128.

[10] J. D. Guttman and F. J. T. F'abrega. Authentication Tests and the Structure of Bundles. Theoretical Computer
Science. 2002, 283: 333-380.

[11] J. C. Mitchell, M. Mitchell, and U. Stern. Automated Analysis of Cryptographic Protocols Using Murphi.
Proceedings of the 1997 IEEE Symposium on Security and Privacy. May 1997, 141-151.

[12] D. Basin, S. Modersheim, and L. Vigano. OFCM: A Symbolic Model Checker for Security Protocols.
International Journal of Information Security. 2005, 4(3): 181-208.

[13] J. K. Millen and V. Shmatikov. Constraint Solving for Bounded-Process Cryptographic Protocol Analysis.
Proceedings of the 8th ACM Conference on Computer and communications security. 2001, 166-175.

[14] R. Kemmerer. Using Formal Methods to Analyze Encryption Protocols. IEEE Journal on Selected Areas in
Communications. 1989, 7(4): 448-457.

[15] D. Longley and S. Rigby. An Automatic Search for Security Flaws in Key Management Schemes. Computers and
Security. 1992, 11(1): 75-90.

[16] C. A. Meadows. Applying Formal Methods to the Analysis of a Key Management Protocol. Journal of Computer
Security. 1992, 1(1): 5-36.

[17] G. Lowe. Breaking And Fixing the Needham-Schroeder Public-Key Protocol Using FDR, Tools and Algorithms
for the Construction and Analysis of Systems. In: T. Margaria and B. Steffen (eds.). 2nd International Workshop
TACAS'96, LNCS series 1055. Springer Verlag, 1996, 147-166.

[18] C. Meadows. Formal Methods for Cryptographic Protocol Analysis: Emerging Issues and Trends. IEEE Journal
on Selected Areas in Communications. 2003, 21(1): 44-54.

[19] C. Caleiro, L. Vigano, and D. Basin. Metareasoning About Security Protocols Using Distributed Temporal Logic.

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 2 (2007) 3, pp 163-171 171

Electronic Notes in Theoretical Computer Science. 125(1): 67-89, 2005.

[20] H-D. Ehrich and C. Caleiro. Specifying Communication in Distributed Information Systems. Acta Informatica.
2000, 36(8): 591-616.

[21] C. Caleiro, L. Vigano, and D. Basin. Relating Strand Spaces and Distributed Temporal Logic for Security Protocol
Analysis. Logic Journal of IGPL. 2005, 13(6): 637-663.

[22] S. Muhammad, Z. Furqan, and R. K. Guha. A Logic-Based Framework for Verifying Authentication Protocols.
Submitted in International Journal of Internet Technology and Secured Transactions.

[23] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network Authentication Service (v5). 2005.
Available online. http://www.ietf.org/rfc/rfc4120 2005.

[24] C. Neuman and T. Ts’o, Kerberos. An Authentication Service for Computer Networks. IEEE Communications.
1994, 32(9): 33-38.

[25] IETF. Public Key Cryptography for Initial Authentication in Kerberos. 1996-2005, Sequence of Internet Drafts.
Available online. http://tools.ietf.org/wg/krb-wg/draft-ietf-cat-kerberos-pk-init/.

[26] 1. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Breaking and Fixing Public-Key Kerberos.
Sixth Workshop on Issues in the Theory of Security - WITS'06. Mar. 2006.

JIC email for subscription: publishing@WAU.org.uk

