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Abstract. In this paper, we propose iterative regularization for image denoising problems, based on the total 
variation minimizing models proposed by Rudin, Osher, and Fatemi(ROF). Besides, considering the staircase 
occuring in the process of denoising, we combine the higher order derivatives, and use iterative scheme. The 
fourth order dual method is used to solve the minimization problems. The numerical experiments show the 
iterative procedure preserves more details and reduces staircasing. Besides, it can be claimed that the fourth 
order dual method is more faster and stable than time marching algorithms.
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1. Introduction
Image denoising is a very important problem in image processing that has seen many recent 

developments. One of the most popular model is proposed by Rudin, Osher, and Fatemi(ROF)[1]：

                   
 
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                                                  (1)

Here f is the observed image, u  is the restored image, 2R is an open domain ( usually a rectangle 

in 2R ),and )(BV is the space of functions of bounded variation. BV||   denotes the seminorm, formally 

given by

  dxuu BV ||||

The ROF model is well known for its ability to remove noise while preserving sharp edges. However, the 
ROF model (1) has certain limitations. The ideal result of the minimization procedure (1) would be to 
decompose f into the true signalu and the additive noise ufv : . In practice, we often find some 
signals in v . In [2], Meyer did some interesting analysis on the ROF model. According his analysis and the 

numerical examples, 2L space is not appropriate for modeling oscillatory patterns. He suggested the use of 
the dual to the space )(BV  to capture oscillatory functions. Considering the feasibility of numerical 

implementation, Meyer [2] suggested to approximate ))'(( BV by the following slightly larger space:

Definition. Let G  denotes the Banach space consisting of all generalized functionnals )(xf which can 
be written as
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Given a function f defined on  , Meyer’s decomposition model then follows as:
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However, in practice, model (2) is difficult to implement due to the intrinsic nature of the * norm. Vese and 
Osher[3] used the space pG to replace G, which is defined as the following:
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Then, they proposed the following minimization problem:
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The model (OSV) by Osher et al.[4], as a continuation of the model in [5],can be seen a modification of the 
particular case 2p from (3):
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It is shown numerically, by the authors in [4,5],that model(4) is indeed a good approximation to Meyer’s 
model(2).

To overcome the staircasing in reconstruction from TV regularization, Chambolle and Lions(CL)[6] 

introduced higher derivatives into the energy. A variant of the CL model, combined the 1H norm, is 
introduced by Chan, Esedoglu, and Park (CEP)[7,8] for fast staicasing reduction. Their model, which is 

called 12  HCEP , has the following formulation:

               2

2121 11

21

minarg



HLBVuuu

uufuuu                                    (5)

Numerical examples have shown 12  HCEP model (5) can effectively reduces staircasing.

2. Iterative Regularization on ROF Model, OSV Model and 12  HCEP Model
In ROF model, in practice, v not only consists of noise, but also contains many details, e.g. “texture”.

However, in the process of removing noise, the details of the image are also lost. Naturally, we proposed the 
following iterative ROF model:
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which is also derived from the Bregman distance(see[9,10]) and the multiscale representation(see[11]).

As the same reason as discussed in[9], the parameter should decrease in order to access small scale 
features that have been eliminated in the previous steps. Then we derived the following modified iterative 
process:
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Likewise, we proposed the iterative OSV model:
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The iterative 12  HCEP model has the following formulation:
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3. The Fourth Order Method for the Iterative 12  HCEP Model
In this section, we only present the fourth order method (which is introduced by Tony F.Chan et al. in

[7,8]) for the iterative 12  HCEP model, which is similar as used on other models.

To derive 1ku from (9) at step k , we minimize the coupled problems:

for 2,ku fixed, solve for 1,1ku :
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for 1,1ku fixed, solve for 2,1ku :
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For simplicity, we will drop the 1k  from 1,1ku , 2,1ku in the following.

To solve the 1u component, we consider the following primal-dual formulation for (10):
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The above equation (12) is convex in 1u and concave in ξ, so swapping the min and max yields:
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Then, for each fixed w ,
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yieds a minimizer wuvfu k
k   1

21 2 . Substituting this expression for 1u back into (13), yields 

the following full dual minimization problem with respect to w :
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Since we only concern with )(divv  , minus “-” can be removed. Besides, in the discrete setting, equation
(15) can be set as a constrained minimization problem with inequality constrains:
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Optimality conditions of (16) read:
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where ji, are the Lagrange Multipiers. Using the observation and essential contribution in [12],
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This equation can be solved by the semi-implicit gradient decent (fixed point) iteration introduced in
[12,13]:
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The above scheme can simplify to the explicit iteration schemes:
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n  for   small enough, with 1u  a solution to (10) (see [8] for the proof).

A solution 2u  of (11) can be obtained by solving a dual formulation in the same way as (12). Indeed, the 
primal-dual formulation of (11) follows as:
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By using the same method as above,(19) is equivalent to solving the following full dual problem:
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whose solution can be obtained from the semi-implicit gradient descent (fixed point iteration):
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Based the above analysis, we present the algorithm:

Initialize ;00 v

For :2,1,0 k

       ;0; 2,11,1   kkk uvfu

       compute 1,1ku and 2,1ku  respectively as minimizers of (10) and (11), then
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4. Numerical Results and Comparisons
In this section, we present numerical results of image denoising, obtained with the proposed iterative 

model. SNR (noise-to-signal ratio) is formulated as following:
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Figure 1. 1-d signal. Top left and right: clean and noisy signals, SNR=5.2623. Middle left and right: 
recovered signals from ROF model and iterative ROF model at step 3. Here, λ =0.009, SNR=9.5569, 29.6689. 
Bottom left and right, recovered signals from ROF model and iterative ROF model at step 7,λ = 
0.09,SNR=0.0003,28.1183.
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In the first experiment, we deal with a 1-d signal. In Figure 1, top left and right, clean and noisy signals 
are respectively observed. Middle left and right, recovered signals obtained from the ROF model and the 
iterative ROF model respectively. Staircasing appears comparable in the two signals, but parameters are less 
sensitive in the iterative ROF model. Signals bottom left and right better illustrate the flexility of parameters 
selection with the iterative regulation. In table 1, we tabulate the different SNR as k  increases when λ = 
0.009.From the table, we can see that selecting a proper “ k ” is critical.

In the following example, we process an intensity image with 256 × 256 pixels and range [0,255].The 
noisy image is obtained by adding a gaussian white noise with variance 01.0 to the original image. In 
Figure 3, left and right, the original and observed image are presented, SNR=2.5662. Figure 4 shows restored 

images and removed noises at different steps k obtained with iterative 12  HCEP model. At earlier stage,

ku is over-smoothed, and kv contains many “texture”. As k increases, ku is getting closer to the exact image.

But as k continues to increase, noises again “come back”. In table 2, we tabulate the different values of SNR 
in the iterative process.

Figure 3. Clean and noisy image. Left: clean image; right: noisy image. SNR=2.5662.

Figure 4. Images obtained with iterative 12  HCEP  model. Top, from left to right: recovered images obtained at 
step 1,5,10 respectively, and its corresponding SNR = 16.5485,20.6155,17.6302. Bottom, from left to right, removed 

noises 21 uufv  corresponding to the top one respectively. Apparently, images are clearer as k increases at the 

early steps, but noises return again after five steps.
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Table1  Different SNR as k increases in the first experiment

k 1 2 3 4 5 6

SNR 9.5569 15.2664 29.6689 22.8270 19.1732 13.6038

Table2  Different SNR as k increases in the second experiment

k 1 2 5 7 8 10

SNR 16.5485 17.9523 20.6155 19.2053 18.8985 17.6302

5. Conclusion and future works

In this paper, we introduced iterative regularization in ROF, OSV and 12  HCEP model, and used the 
fourth dual method for numerical solution. Numerical examples using iterative procedures represent better 
results than previous models. Some future works include some appropriate stop criteria and some discussions 
about selection of parameters.
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