

Computational Algorithm to Obtain Multiple Positive Solutions for Sublinear Semipositone Problems

G.A.Afrouzi +, S.Mahdavi, Z.Naghizadeh

Department of Mathematics, Faculty of Basic Sciences, Mazandaran University, Babolsar, Iran

(Received 16 August 2006, accepted 5 October 2006)

Abstract. Using a numerical method based on sub-super solution, we will obtain positive solutions for the problem $\Delta u = g(\lambda, u)$ for $x \in \Omega$ with Dirichlet boundary condition. In particular, we establish multiplicity results for classes of nondecreasing, sublinear functions $g(\lambda, u)$ belongs to $C^1([0, \infty))$.

Keywords: multiple solutions; positive solutions; sub and super-solutions

1. Introduction

In this paper, we consider boundary value problems of the form

$$-\Delta u(x) = g(\lambda, u(x)) \qquad x \in \Omega$$

$$u(x) = 0 \qquad x \in \partial\Omega$$
(1)

Where Δ denotes the laplacian operator, λ is a positive parameter and Ω is a bounded Domain in R^N with smooth boundary.

In order to state the results we recall an anti-maximum principle by Clement and Peletier (see [3]), from which we obtain the existence of a $\delta = \delta(\Omega) > 0$ and a solution z_{α} , positive in Ω , of

$$-\Delta z_{\alpha} - \alpha z_{\alpha} = -1 \qquad x \in \Omega$$

$$z_{\alpha} = 0 \qquad x \in \partial \Omega$$
(2)

for $\lambda \in (\lambda_1, \lambda_1 + \delta)$, where λ_1 is the first eigenvalue of the $-\Delta$ with Dirichlet boundary condition. Throughout this paper we let α be a fixed number in $(\lambda_1, \lambda_1 + \delta)$ and z_{α} this corresponding solution.

We use the method of sub-super solutions to obtain positive solutions. By a super solution φ of (1) we mean a $C^1(\overline{\Omega})$ function such that $\varphi = 0$ on $\partial \Omega$ and

$$\int_{\Omega} \nabla \varphi \cdot \nabla w \ge \int_{\Omega} g(\lambda, \varphi) w, \qquad \forall w \in W$$

and by a sub solution ψ of (1) we mean a $C^1(\overline{\Omega})$ function such that $\psi = 0$ on $\partial \Omega$ and

$$\int_{\Omega} \nabla \psi . \nabla w \le \int_{\Omega} g(\lambda, \psi) w, \qquad \forall w \in W$$

where $W = \{v \in C_0^{\infty} \mid v \ge 0 in \Omega\}$. Then by the weak comparison principal (see [5]), if there exist sub and super solutions ψ and φ respectively such that $\psi \le \varphi$ in Ω then (1) has a $C^1(\overline{\Omega})$ solution u such that $\psi \le u \le \varphi$. In the case where $g(\lambda, u) > 0$, clearly $\psi = 0$ in $\overline{\Omega}$ is a sub solution and if $g(\lambda, u)$ is sublinear, $\varphi = Me$ where $e \in C^1(\overline{\Omega})$ is a solution of $-\Delta e = 1$ in Ω , e = 0 on $\partial \Omega$, is a super

⁺ E-mail address: afrouzi@umz.ac.ir

solution for M large enough. Thus we have a positive $C^1(\overline{\Omega})$ solution for every $\lambda > 0$.

As noted earlier, since the existence of a positive solution is trivial, we study the question Of multiplicity. In particular, we consider the case $g(\lambda, u) = \lambda f(u)$ and f satisfies:

(i) $f \in C^1([0,\infty))$ is a nondecreasing function such that $f(0) = 0, f(v) > 0 \quad \forall v > 0$ and

$$\lim_{v\to\infty} \frac{f(v)}{v} = 0$$
 (sublinear),

(ii) there exists m > 0 such that f(v) > v - m, $\forall v \in [0, m\alpha \parallel z_{\alpha} \parallel_{\infty}]$, and

(iii)
$$\alpha < \lambda_1 (\lim_{v \to \infty} \frac{f(v)}{v} = 0)^{-1} = \mu$$
 (say).

Then we have:

Theorem 1. Consider the boundary value problem

$$-\Delta u = \lambda f(u) \qquad x \in \Omega$$

$$u = 0 \qquad x \in \partial \Omega$$
(3)

Let (i)-(iii) hold. Then problem (3) has at least two positive $C^1(\overline{\Omega})$ solutions u_i ; i = 1, 2 for all $\lambda \in [\alpha, \mu)$.

The proof of Theorem 1 discusses in [7].

We shall construct supersolution φ_1 and φ_2 and subsolutions ψ_1 and ψ_2 as follow:

Clearly, $\psi_1 \equiv 0$ is a sub solution since f(0) = 0 and $\psi_2 = m\alpha z_\alpha$ is a strict sub solution for $\lambda \geq \alpha$. Also $\psi_2 > \psi_1$. Now consider $\varphi_1 = \varepsilon v$ where $\varepsilon > 0$ is to be chosen sufficiently small so that $\psi_2 \neq \leq \varphi_1$ and $v \in C^1(\overline{\Omega})$ is a positive solution of the eigenvalue problem

$$-\Delta v = \lambda_1 v \qquad x \in \Omega$$

$$v = 0 \qquad x \in \partial \Omega$$
 (4).

Finally let $\varphi_2 = Me$ where $M = M(\lambda)$ is to be choosen. Applying lemma 1.1 in [2], we obtain three positive $C^1(\overline{\Omega})$ solutions for $\lambda \in [\alpha, \mu)$ that one of them is trivial solution.

Here we give a simple example that satisfies assumption of Theorem 1. Consider

$$f(u) = m^{\frac{3}{2}}u^{2} \qquad u \le 1$$

$$= 4m^{\frac{3}{2}}u^{\frac{1}{2}} - 3m^{\frac{3}{2}} \qquad u > 1$$
(5)

Clearly f(0)=0 and $\lim_{v\to\infty}\frac{f(v)}{v}=0$, that is, (i) is satisfied . Also $\lim_{v\to\infty}\frac{f(v)}{v}=0$ satisfying condition (iii). Now let v_0 be the unique solution of f(v)=S(v) where S(v)=v-m. Then for m large enough $v_0>16m^{\frac{3}{2}}$ hence for m sufficiently large $v_0>m\alpha\parallel z_\alpha\parallel_\infty$ and f(v) satisfies (ii). Thus for f in this class of nonlinearities, the equation $-\Delta u(x)=\lambda f(u)$ has at least two positive solutions for $\lambda\in[\alpha,\infty)$.

We investigate numerically positive solutions. Our numerical method is based on monotone iteration.

2. Numerical Results

It is well-known that there must always exists a solution for problems such as (1) between a sub-solution \underline{v} and a super-solution \underline{u} such that $\underline{v} \le \underline{u}$ for all $x \in \Omega$ (see [1]).

Consider the boundary value problem

$$\begin{cases} \Delta u(x) + f(x, u(x)) = 0 & on \ \Omega \\ u(x) = 0 & on \ \partial \Omega. \end{cases}$$

Let \overline{u} , $v \in C^2(\overline{\Omega})$ satisfy $\overline{u} \ge v$ as well a

$$\Delta \overline{u}(x) + f(x, \overline{u}(x)) \le 0 \quad on\Omega \quad \overline{u} \ge 0$$

$$\Delta \underline{v}(x) + f(x,\underline{v}(x)) \ge 0 on \Omega \qquad \underline{v} \le 0.$$

Choose a number c > 0 such that $c + \frac{\partial f(x,u)}{\partial u} > 0$ $\forall (x,u) \in \overline{\Omega} \times [\underline{v},\overline{u}]$ and such that the operator $(\Delta - c)$ with Dirichlet boundary condition has its spectrum strictly contained in the open left-half complex plane. Then the mapping

$$T: \phi \to w, \quad w = T\phi, \quad \phi \in C^2(\overline{\Omega}), \quad \phi(x) \in [\underline{v}, \overline{u}], \quad \forall x \in \overline{\Omega}$$
 (5.1)

where w(x) is the unique solution of the BVP

$$\begin{cases} \Delta w(x) - cw(x) = -[c\phi(x) + f(x, \phi(x))] & on \ \Omega \\ w(x) = 0 & on \ \partial \Omega \end{cases}$$

 $\begin{cases} \Delta w(x) - cw(x) = -[c\phi(x) + f(x,\phi(x))] & \text{on } \Omega \\ w(x) = 0 & \text{on } \partial\Omega, \end{cases}$ is monotone, i.e. for any ϕ_1,ϕ_2 satisfying (3.1) and $\phi_1 \leq \phi_2$, we have $T\phi_1,T\phi_2$ satisfies (5.1), and $T\phi_1 \leq T\phi_2$

Consequently, by letting $f_c(x,u) = cu + f(x,u)$, the iterations

$$\begin{cases} u_0(x) = u(x) \\ (\Delta - c)u_{n+1}(x) = -f_c(x, u_n(x)) & on \ \Omega, \\ n = 0, 1, 2, \dots \\ u_{n+1}(x) = 0 & on \ \partial\Omega, \end{cases}$$

and

$$\begin{cases} v_0(x) = \underline{v}(x) \\ (\Delta - c)v_{n+1}(x) = -f_c(x, v_n(x)) & on \ \Omega, \\ n = 0, 1, 2, \dots \\ v_{n+1}(x) = 0 & on \ \partial\Omega, \end{cases}$$

yield iteration u_n and v_n satisfying

$$\underline{v} = v_0 \le v_1 \le \dots \le v_n \le \dots \le u_n \le \dots \le u_1 \le u_0 = \overline{u},$$

so that the limits

$$u_{\infty}(x) = \lim_{n \to \infty} u_n(x), \qquad v_{\infty}(x) = \lim_{n \to \infty} v_n(x)$$

exists in $C^2(\overline{\Omega})$. We have

(i)
$$v_{\infty}(x) \le u_{\infty}(x)$$
 on $\bar{\Omega}$

- (ii) u_{∞} and v_{∞} are, respectively, stable from above and below;
- (iii) if $u_{\infty} \neq v_{\infty}$ and both u_{∞} and v_{∞} are asymptotically stable, then there exists an unstable solution $\phi \in C^2(\overline{\Omega})$ such that $v_{\infty} \leq \phi \leq u_{\infty}$.

We use following algorithm.

sub- and super-solution algorithm:

1. Find a subsolution v_0 and a supersolution u_0 . Choose a number c > 0;

2. Solve the boundary value problem

$$-\Delta w_{n+1}(x) - cw_{n+1}(x) = -f_c(x, w_n(x)) \qquad x \in \Omega$$

$$w_n(x) = 0 \qquad x \in \partial \Omega$$

for $w_n = v_n$ and $w_n = u_n$, respectively;

If $||w_{n+1} - w_n|| < \varepsilon$, output and stop. Else go to step 2.

We will use the notation **u** to represent an array of real numbers agreeing with u on a grid $\Omega \subset \overline{\Omega}$. We will take the grid to be regular.

We consider the problem $-\Delta u(x) = \lambda f(x, u(x))$ with $\Omega = [0,1] \times [0,1]$ and f(u) is defined by (5).

For doing step 1, we solve problem (2) to obtain subsolution.

We know from Introduction that problem (2) has a positive solution for $(\lambda_1, \lambda_1 + \delta)$.

The obtained results shows there is an array of positive solution for $\lambda \in (17,35)$ so λ_1 is around 17.

Let $\psi_1 \equiv 0$ and $\psi_2 = m\alpha z_\alpha$ where z_α , α and m obtained from section 1 as subsolutions in our algorithm for $\lambda \geq \alpha$ and to obtain supersolution for $\lambda < \mu$ we solve

$$-\Delta e(x) = 1 x \in \Omega$$

$$e(x) = 0 x \in \partial \Omega$$
(6)

by finite difference (see [4,6]). We execute algorithm for $\lambda \in [17.1, \infty)$ for ψ_1 and φ_1 as sub and super solutions to obtain u_1 and for ψ_2 and φ_2 as sub and super solutions to obtain second solution u_2 . For brevity we express just some of those numerical results.

Approximation of u_2 and u_1 for $\lambda = 17.1$ respectively

x/y	0.2	0.4	0.6	0.8
0.2	1.539×10^3	2.304×10^{3}	2.304×10^{3}	1.539×10^3
0.4	2.304×10^{3}	3.475×10^3	3.475×10^3	2.304×10^{3}
0.6	2.304×10^{3}	3.475×10^3	3.475×10^3	2.304×10^{3}
0.8	1.539×10^3	2.304×10^{3}	2.304×10^{3}	1.539×10^3

x/y	0.2	0.4	0.6	0.8
0.2	0.018×10^{-4}	0.093×10^{-4}	0.093×10^{-4}	0.018×10^{-4}
0.4	0.093×10^{-4}	0.211×10^{-4}	0.211×10^{-4}	0.093×10^{-4}
0.6	0.093×10^{-4}	0.211×10^{-4}	0.211×10^{-4}	0.093×10^{-4}
0.8	0.018×10^{-4}	0.093×10^{-4}	0.093×10^{-4}	0.018×10^{-4}

Approximation of u_2 and u_1 for $\lambda = 30$ respectively

x/y	0.2	0.4	0.6	0.8
0.2	0.480×10^4	0.718×10^4	0.718×10^4	0.480×10^4
0.4	0.718×10^4	1.083×10^4	1.083×10^4	0.718×10^4
0.6	0.718×10^4	1.083×10^4	1.083×10^4	0.718×10^{4}
0.8	0.480×10^4	0.718×10^4	0.718×10^4	0.480×10^4

x/y	0.2	0.4	0.6	0.8
0.2	0.030×10^{-4}	0.068×10^{-4}	0.068×10^{-4}	0.030×10^{-4}
0.4	0.068×10^{-4}	0.106×10^{-4}	0.106×10^{-4}	0.068×10^{-4}
0.6	0.068×10^{-4}	0.106×10^{-4}	0.106×10^{-4}	0.068×10^{-4}
0.8	0.030×10^{-4}	0.068×10^{-4}	0.068×10^{-4}	0.030×10^{-4}

Approximation of u_2 and u_1 for $\lambda=100$ respectively

x/y	0.2	0.4	0.6	0.8
0.2	0.540×10^{5}	0.808×10^{5}	0.808×10^{5}	0.540×10^{5}
0.4	0.808×10^{5}	1.217×10^{5}	1.217×10^{5}	0.808×10^{5}
0.6	0.808×10^{5}	1.217×10^{5}	1.217×10^{5}	0.808×10^{5}
0.8	0.540×10^{5}	0.808×10^{5}	0.808×10^{5}	0.540×10^5

x/y	0.2	0.4	0.6	0.8
0.2	0.105×10^{-3}	0.196×10^{-3}	0.196×10^{-3}	0.105×10^{-3}
0.4	0.196×10^{-3}	0.362×10^{-3}	0.362×10^{-3}	0.196×10^{-3}
0.6	0.196×10^{-3}	0.362×10^{-3}	0.362×10^{-3}	0.196×10^{-3}
0.8	0.105×10^{-3}	0.196×10^{-3}	0.196×10^{-3}	0.105×10^{-3}

Approximation of and u_1 for $\lambda = 1000$ respectively

x/y	0.2	0.4	0.6	0.8
0.2	0.542×10^7	0.811×10^7	0.811×10^7	0.542×10^7
0.4	0.811×10^{7}	1.223×10^7	1.223×10^7	0.811×10^{7}
0.6	0.811×10^{7}	1.223×10^7	1.223×10^7	0.811×10^{7}
0.8	0.542×10^7	0.811×10^7	0.811×10^7	0.542×10^7

x/y	0.2	0.4	0.6	0.8
0.2	0.340×10^3	0.631×10^3	0.631×10^3	0.340×10^3
0.4	0.631×10^3	1.192×10^3	1.192×10^3	0.631×10^3
0.6	0.631×10^{3}	1.192×10^3	1.192×10^3	0.631×10^{3}
0.8	0.340×10^3	0.631×10^{3}	0.631×10^3	0.340×10^{3}

Approximation of u_2 and u_1 for $\lambda=10000$ respectively

x/y	0.2	0.4	0.6	0.8
0.2	0.543×10^9	0.812×10^9	0.812×10^9	0.543×10^9
0.4	0.812×10^9	1.223×10 ⁹	1.223×10 ⁹	0.812×10^9
0.6	0.812×10^9	1.223×10^9	1.223×10^9	0.812×10^9
0.8	0.543×10^9	0.812×10^9	0.812×10^9	0.543×10^9

x/y	0.2	0.4	0.6	0.8
0.2	0.497×10^6	0.769×10^6	0.769×10^6	0.497×10^6
0.4	0.769×10^6	1.196×10^6	1.196×10^6	0.769×10^6
0.6	0.769×10^6	1.196×10^6	1.196×10^6	0.769×10^6
0.8	0.497×10^6	0.769×10^6	0.769×10^6	0.497×10^6

3. References

- [1] G. Chen, J. Zhou and Wei-Ming Ni, Algorithms and visualization for solutions of nonlinear equations, *International Journal of bifuracation and chaos*. 2000, **10**: 1565-1612.
- [2] M. Chhetri, S. Oruganti and R. Shiva ji. Positive solutions for classes of p-Laplacian equations. *Di.erential and Integral Equations*. 2003, **16**: p757-768.
- [3] P. Clement and L. A. Peletier. An anti-maximum principle for second order elliptic operators, *Di.erential Equations*. 1979, **34**: 218-229.
- [4] M. Dehghan. Numerical procedures for a boundary value problem with a non-linear bounary condition. *Applied mathematics and computation*. 2004, **147**: 291-306.
- [5] P. Drabek, P. Krejci and P. Takac. Nonlinear Di.erential Equations. Chapman Hall/CRC. 1999.
- [6] I. G. Petrovsky. Lectures on partial di.erential equations. Dover publications, Inc. 1991.
- [7] R. Shiva ji. A remark on the existence of three solutions via sub-super solution. *Non-linear Analysis and Applications, Lecture notes in pure and applied mathematics*. 1987, **109**: 561-566.