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Abstract. Using a numerical method based on sub-super solution, we will obtain positive solutions for the 
problem ),( ugu λ=Δ  for  with Dirichlet boundary condition. In particular, we establish 

multiplicity results for classes of nondecreasing, sublinear functions 

Ω∈x
),( ug λ  belongs to  )).,0([1 ∞C
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1. Introduction 
In this paper, we consider boundary value problems of the form 
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WhereΔ  denotes the laplacian operator, λ  is a positive parameter and Ω  is a bounded Domain in NR  
with smooth boundary. 

In order to state the results we recall an anti-maximum principle by Clement and Peletier (see [3]), from 
which we obtain the existence of  a 0)( >Ω= δδ and a solution , positive  in αz Ω , of 
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for ),( 11 δλλλ +∈ ,  where 1λ  is the first eigenvalue of the Δ−   with Dirichlet boundary condition. 
Throughout this paper we let α  be a fixed number in ),( 11 δλλ +  and  this corresponding 
solution. 

αz

We use the method of sub-super solutions to obtain positive solutions. By a super solution ϕ  of  (1)  we 
mean a )(1 ΩC   function such that 0=ϕ  on Ω∂  and 

,),(. ∫∫
ΩΩ

≥∇∇ wgw ϕλϕ        Ww∈∀  

and by a sub solution  ψ  of  (1)  we mean a )(1 ΩC   function such that 0=ψ  on  and Ω∂

,),(. ∫∫
ΩΩ

≤∇∇ wgw ψλψ        Ww∈∀  

where . Then by the weak comparison principal (see [5]), if there exist sub and 

super solutions 

}0|{ 0 Ω≥∈= ∞ invCvW
ψ  and ϕ  respectively such that ϕψ ≤  in Ω  then (1)  has a )(1 ΩC  solution  such 

that 
u

ϕψ ≤≤ u . In the case where 0),( >ug λ ,clearly 0≡ψ  in Ω    is a  sub solution and if ,.)(λg  
is sublinear, Me=ϕ  where )(1 Ω∈Ce is a solution of 1=Δ− e   in Ω , e = 0 0n  , is a super Ω∂
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solution for M large enough. Thus we have a positive )(1 ΩC  solution for every  0>λ . 
As noted earlier, since the existence of a positive solution is trivial, we study the question  Of  

multiplicity. In particular, we consider the case )(),( ufug λλ =   and  satisfies: f

(i)   is a nondecreasing function such that f (0) = 0,  )),0([1 ∞∈Cf 0)( >vf 0>∀v  and 

0)(lim =∞→ v
vf

v  (sublinear), 

(ii) there exists m > 0 such that mvvf −>)( , ],||||,0[ ∞∈∀ αα zmv  and 

 (iii) μλα ==< −
∞→

1
1 )0)((lim

v
vf

v  (say). 

Then we have: 
Theorem 1. Consider the boundary value problem 
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  Let (i)-(iii) hold.  Then problem (3) has at least two positive  )(1 ΩC  solutions ; i = 1, 2  for all iu
).,[ μαλ ∈  

The proof of Theorem 1 discusses in [7]. 
We shall construct supersolution 1ϕ  and  2ϕ and subsolutions 1ψ  and 2ψ  as follow: 

Clearly, 01 ≡ψ is a sub solution since f (0) =0 and ααψ zm=2  is a strict sub solution  for .αλ ≥  Also 
.12 ψψ >  Now consider vεϕ =1 where 0>ε is to be chosen sufficiently small so that 12 ϕψ ≠≤  and  

v )(1 Ω∈C   is a positive solution of the eigenvalue problem 
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Finally let Me=2ϕ  where )(λMM = is to be choosen. Applying lemma 1.1 in [2], we obtain three 

positive )(1 ΩC  solutions for ),[ μαλ ∈  that one of them is trivial solution. 
Here we give a simple example that satisfies assumption of Theorem 1. Consider 
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Clearly  and 0)0( =f 0)(lim =∞→ v
vf

v , that is, (i) is satisfied . Also 0)(lim =∞→ v
vf

v   satisfying 

condition (iii). Now let  be the unique solution of 0v )()( vSvf =  where mvvS −=)( . Then for m  large 

enough 2
3

0 16mv >  hence for  sufficiently large m ∞> ||||0 αα zmv  and   satisfies (ii). Thus for  in 
this class of nonlinearities,  the equation 

)(vf f
)()( ufxu λ=Δ−  has at least two positive solutions for ),[ ∞∈ αλ . 

  We investigate numerically positive solutions. Our numerical method is based on monotone iteration. 

2. Numerical Results 
It is well-known that there must always exists a solution for problems such as (1) between a sub-solution 

v  and a  super-solution u  such that v u≤  for all x∈Ω (see [1]). 

Consider the boundary value problem  
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Let u , )(2 Ω∈Cv  satisfy vu ≥  as well as  

( ) ( ( )) 0 0u x f x u x on uΔ + , ≤ Ω ≥  
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Choose a number  such that 0c > ( ) 0 ( ) [f x u
uc x u∂ ,
∂+ > ∀ , ∈Ω× , ]v u  and such that the operator ( )cΔ −  

with Dirichlet boundary condition has its spectrum strictly contained in the open left-half complex plane. 
Then the mapping  

2 ( ) ( ) [ ]T w w T C x v u xφ φ φ φ: → , = , ∈ Ω , ∈ , , ∀ ∈Ω                          (5.1) 

where  is the unique solution of the BVP  ( )w x
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is monotone, i.e. for any 1 2φ φ,  satisfying (3.1) and 1 2φ φ≤ , we have 1T T 2φ φ,  satisfies (5.1), and 1 2T Tφ φ≤  
on   Ω.

Consequently, by letting ( ) ( )cf x u cu f x u, = + , ,  the iterations  
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yield iteration  and  satisfying   nu nv

0 1 1 0n nv v v v u u u u= ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ = ,  

so that the limits  
( ) lim ( ) ( ) lim ( )n n n nu x u x v x v x∞ →∞ ∞ →∞= , =  

exists in 2 ( )C Ω .  We have  

 (i)  on ( ) ( )v x u x∞ ∞≤ Ω   

 (ii) u  and  are, respectively, stable from above and below;  ∞ v∞

 (iii) if u  and both u  and  are asymptotically stable, then there exists an unstable solution  
v∞ ≡/ ∞ ∞ v∞

2 ( )Cφ ∈ Ω  such that v uφ∞ ∞≤ ≤ . 

We use following algorithm.  
sub- and super-solution algorithm:   
1. Find a subsolution  and a supersolution . Choose a number ;  0v 0u 0c >
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2. Solve the boundary value problem  
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for  and , respectively;  nw v= n nnw u=

If ε<−+ |||| 1 nn ww , output and stop. Else go to step 2.  

We will use the notation u  to represent an array of real numbers agreeing with u  on a grid 
Ω⊂Ω . We will  take the grid to be regular.  

We consider the problem ))(,()( xuxfxu λ=Δ−  with [0 1] [0 1]Ω = , × ,  and  is defined by 
(5).                          

)(uf

For doing step 1, we solve problem (2)  to obtain subsolution.                             
We know from Introduction that problem (2) has a positive solution for  ),( 11 δλλ + .  

The obtained results shows there is an array of positive solution for )35,17(∈λ so 1λ  is around 
17. 

Let 01 ≡ψ  and ααψ zm
\2 =  where  ,αz α and obtained from section 1 as subsolutions in our 

algorithm for 
m

αλ ≥  and to obtain supersolution  for  μλ <  we solve 
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by finite difference (see [4,6]). We execute algorithm for ),1.17[ ∞∈λ  for  1ψ  and 1ϕ  as sub and super 
solutions to obtain  and  for  1u 2ψ  and 2ϕ  as sub and super solutions to  obtain second solution . 
For brevity we express just some of those numerical results.  

2u

Approximation of  and  for 2u 1u 1.17=λ  respectively 

  yx / 0.2 0.4 0.6 0.8 
0.2 310539.1 ×  310304.2 × 310304.2 × 310539.1 ×  
0.4 310304.2 ×  310475.3 × 310475.3 × 310304.2 ×  
0.6 310304.2 ×  310475.3 × 310475.3 × 310304.2 ×  
0.8 310539.1 ×  310304.2 × 310304.2 × 310539.1 ×  

                                
yx /  0.2 0.4 0.6 0.8 

0.2 410018.0 −×  410093.0 −× 410093.0 −× 410018.0 −×  
0.4 410093.0 −×  410211.0 −× 410211.0 −× 410093.0 −×  
0.6 410093.0 −×  410211.0 −× 410211.0 −× 410093.0 −×  
0.8 410018.0 −×  410093.0 −× 410093.0 −× 410018.0 −×  

Approximation of  and  for 2u 1u 30=λ  respectively 

yx /  0.2 0.4 0.6 0.8 
0.2 410480.0 ×  410718.0 × 410718.0 × 410480.0 ×  
0.4 410718.0 ×  410083.1 × 410083.1 × 410718.0 ×  
0.6 410718.0 ×  410083.1 × 410083.1 × 410718.0 ×  
0.8 410480.0 ×  410718.0 × 410718.0 × 410480.0 ×  
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 0.2 0.4 0.6 0.8 
0.2 410030.0 −×  410068.0 −× 410068.0 −× 410030.0 −×  
0.4 410068. −×0

 
 

Approximation of  and  for 2u 1u 100=λ  respectively 

yx /  0.2 

 410106.0 −× 410106.0 −× 410068.0 −×  
0.6 410068.0 −×  410106.0 −× 410106.0 −× 410068.0 −×  
0.8 410030.0 −×  410068.0 −× 410068.0 −× 410030.0 −×  

0.4 0.6 0.8 
0.2 510540.0 ×  510808.0 × 510808.0 × 510540.0 ×  
0.4 510808.0 ×  510217.1 × 510217.1 × 510808.0 ×  
0.6 510808.0 ×  510217.1 × 510217.1 × 510808.0 ×  
0.8 510540.0 ×  510808.0 × 510808.0 × 510540.0 ×  

 
yx /  0.2 0.4 0.6 0.8 

0.2 310105.0 −×  310196.0 −× 310196.0 −× 310105.0 −×  
0.4 310196.0 −×  310362.0 −× 310362.0 −× 310196.0 −×  
0.6 310196.0 −×  310362.0 −× 310362.0 −× 310196.0 −×  
0.8 310105.0 −×  310196.0 −× 310196.0 −× 310105.0 −×  

Approximation of  and  for 1u 1000=λ  respectively 

yx /  0.2 0.4 0.6 0.8 
0.2 710542.0 ×  710811.0 × 710811.0 × 710542.0 ×  
0.4 710811.0 ×  710223.1 × 710223.1 × 710811.0 ×  
0.6 710811.0 ×  710223.1 × 710223.1 × 710811.0 ×  
0.8 710542.0 ×  710811.0 × 710811.0 × 710542.0 ×  

                                
yx /  0.2 0.4 0.6 0.8 

0.2 310340.0 ×  310631.0 × 310631.0 × 310340.0 ×  
0.4 310631.0 ×  310192.1 × 310192.1 × 310631.0 ×  
0.6 310631.0 ×  310192.1 × 310192.1 × 310631.0 ×  
0.8 310340.0 ×  310631.0 × 310631.0 × 310340.0 ×  

Approximation of  and  for 2u 1u 10000=λ  respectively 

yx /  0.2 0.4 0.6 0.8 
0.2 910543.0 ×  910812.0 × 910812.0 × 910543.0 ×  
0.4 910812.0 ×  910223.1 × 910223.1 × 910812.0 ×  
0.6 910812.0 ×  910223.1 × 910223.1 × 910812.0 ×  
0.8 910543.0 ×  910812.0 × 910812.0 × 910543.0 ×  
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yx /       0.2 0.4 0.6 0.8 

0.2 610497.0 ×  610769.0 × 610769.0 × 610497.0 ×  
0.4 610769.0 ×  610196.1 × 610196.1 × 610769.0 ×  
0.6 610769.0 ×  610196.1 × 610196.1 × 610769.0 ×  
0.8 610497.0 ×  610769.0 × 610769.0 × 610497.0 ×  
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