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Abstract. Using a numerical method based on sub-super solution, we will obtain positive solutions for the
problem AU = g(4,u) for X e with Dirichlet boundary condition. In particular, we establish

multiplicity results for classes of nondecreasing, sublinear functions g(4,u) belongs to C*([0,0)).
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1. Introduction
In this paper, we consider boundary value problems of the form
—Au(x) = g(4,u(x)) XxeQ
u(x)=0 X € 0Q

Where A denotes the laplacian operator, A is a positive parameter and Q is a bounded Domain in R"
with smooth boundary.

In order to state the results we recall an anti-maximum principle by Clement and Peletier (see [3]), from
which we obtain the existence of a 0 = §(€2) > 0and a solution z_, positive in Q, of

(1)

-Az, -0z, =-1 XeQ

z,=0 X € 0Q
for A€ (4,4, +0), where 4, is the first eigenvalue of the —A with Dirichlet boundary condition.
Throughout this paper we let « be a fixed number in (4,4, +0) and z, this corresponding

solution.
We use the method of sub-super solutions to obtain positive solutions. By a super solution ¢ of (1) we

mean a C'(Q) function such that ¢ =0 on 6Q and
IV¢.VW2 .fg(/l,go)w, vweW
Q Q

(2)

and by a sub solution  of (1) we meana C'(Q) function such that i =0 on 6Q and
IVW.VWSJg(i,W)W, vweW
Q Q

where W ={v e C; | v >0inQ}. Then by the weak comparison principal (see [5]), if there exist sub and
super solutions  and ¢ respectively such that y < ¢ in Q then (1) has a C'(Q) solution u such
that w <u < ¢. In the case where g(4,u) >0 ,clearly w =0 in Q isa sub solution and if g(4,.)
is sublinear, @ = Me where e e C'(Q) is a solution of —Ae=1 in Q, e =00n 4Q, is a super
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solution for M large enough. Thus we have a positive C*(Q) solution for every 1>0.

As noted earlier, since the existence of a positive solution is trivial, we study the question Of
multiplicity. In particular, we consider the case g(A,u) = Af (u) and f satisfies:

(i) f €C*([0,0)) isa nondecreasing function such that f (0) =0, f (v) >0 Vv >0 and

lim, m_ 0 (sublinear),
v
(i) there exists m > 0 such that f(v) >v—-m, Ywe[O,me]| z, ||..], and
(iii) a < /11(|imvwm =0)" = u (say).
v

Then we have:
Theorem 1. Consider the boundary value problem
—Au = Af (u) XeQ
u=0 X € 0Q
Let (i)-(iii) hold. Then problem (3) has at least two positive Cl(ﬁ) solutions u;; i = 1, 2 for all
Aela, p).
The proof of Theorem 1 discusses in [7].

3)

We shall construct supersolution ¢, and ¢, and subsolutions i, and y, as follow:
Clearly, w, = 0is a sub solution since f (0) =0 and y, = maz,, is a strict sub solution for 4 > a. Also
v, >y,. Now consider ¢, = &v where ¢ >0is to be chosen sufficiently small so that v, #< ¢, and
v e C*(Q) is a positive solution of the eigenvalue problem
—Av=4V XeQ
v=0 X € 0Q
Finally let ¢, = Me where M = M (A) is to be choosen. Applying lemma 1.1 in [2], we obtain three

(4).

positive C*(Q) solutions for A € [a, 1) that one of them is trivial solution.

Here we give a simple example that satisfies assumption of Theorem 1. Consider
3

f (u) =m2u? u<i
21 3
=4m2u? —3m? u>1 (5)
Clearly f(0)=0 and Iimv_mmzo, that is, (i) is satisfied . Also |imv%m=0 satisfying
v v

condition (iii). Now let v, be the unique solution of f(v)=S(v) where S(v) =v—m. Then for m large
3
enough v, >16m? hence for m sufficiently large v, > ma ||z, ||, and f(v) satisfies (ii). Thus for f in

this class of nonlinearities, the equation — Au(x) = Af (u) has at least two positive solutions for 4 € [a, ) .
We investigate numerically positive solutions. Our numerical method is based on monotone iteration.

2. Numerical Results

It is well-known that there must always exists a solution for problems such as (1) between a sub-solution
v and a super-solution u such that v <u forall X €€ (see [1]).

Consider the boundary value problem
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Au(x)+ f(x,u(x))=0 on Q
u(x)=0 on 0Q.
Let u, ve C2(Q) satisfy U >V as well as
AT(X)+ f(x,U(x))<0 onQQ T>0
Av(xX)+ f(x,v(x))>00nQ2 v<O0.

Choose a number ¢ >0 such that ¢ +2%% >0 v(x,u) e Qx[v,u] and such that the operator (A —c)

with Dirichlet boundary condition has its spectrum strictly contained in the open left-half complex plane.
Then the mapping

T:¢g>w, w=Tg, #cC2(Q), #(X)e[v,u], VxeQ (5.1)
where w(Xx) is the unique solution of the BVP
AW(X) —cw(X) = —[ca(X) + (X, #(X))] on Q
{ w(x)=0 on 0Q,
is monotone, i.e. for any %4, satisfying (3.1) and h<9, , we have 74,74, satisfies (5.1), and T, <T4,
on Q.
Consequently, by letting f.(x,u)=cu+ f(x,u), the iterations

Uy (X) = u(x)
(A-c)u,,,(x) =—"f.(x,u,(x)) on Q,
n=0,12,...
u,,(x)=0 on 0Q,
and
Vo (X) = V(X)
(A=C)V,, () = - T (xV,(x))  on Q,
n=012,..
V... (x)=0 on 0Q,

yield iteration u, and v, satisfying
V=V, <V, <o <V <eeeSU << SUp = U,

n

so that the limits
u,(x)=Ilim__ u. (x), v, (x)=1lim v, (x)
exists in C*(Q2). We have
0) V.. (X) <u,(x) on O

(i) Uz and Ve are, respectively, stable from above and below;

(i) if U, # V., and both Y= and V= are asymptotically stable, then there exists an unstable solution
# e C2(Q)) such that V= = g=<u,

We use following algorithm.

sub- and super-solution algorithm:

1. Find a subsolution Vv, and a supersolution u,. Choose a number ¢ >0;
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2. Solve the boundary value problem

- AWn+1 (X) - CWn+1(X) == fc (X1 W, (X))

w,(x) =0
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XxeQ
X € 0Q

for w, =v_ and w, =u_, respectively;
If || w,,, —W, |I< &, output and stop. Else go to step 2.

We will use the notation u to represent an array of real numbers agreeing with u on a grid
Qc Q. We will take the grid to be regular.

We consider the problem — Au(x) = Af (x,u(x)) with Q =[0,1]x[0,1] and f (u) is defined by
(5).

For doing step 1, we solve problem (2) to obtain subsolution.

We know from Introduction that problem (2) has a positive solution for (4,,4, +9).

The obtained results shows there is an array of positive solution for 4 € (17,35) so 4, is around
17.

Let y, =0 and y, =ma z, where z, , and m obtained from section 1 as subsolutions in our
algorithm for A > o and to obtain supersolution for A < x we solve
-Ae(X)=1 xeQ
e(x)=0 X € 0Q
by finite difference (see [4,6]). We execute algorithm for A4 €[17.1,00) for w, and ¢, as sub and super
solutions to obtain u, and for y, and ¢, as sub and super solutions to obtain second solution u, .

(6)

For brevity we express just some of those numerical results.

Approximation of U, and u, for 4 =17.1 respectively

x/y | 0.2 0.4 0.6 0.8
0.2 ]1.539%x10° | 2.304x10° | 2.304x10° | 1.539x10°
0.4 2.304x10° | 3.475x10° | 3.475x10° | 2.304x10°
0.6 2.304x10° | 3.475x10° | 3.475x10° | 2.304x10°
0.8 |1.539%x10°% | 2.304x10° | 2.304x10° | 1.539x10°
x/y 0.2 0.4 0.6 0.8
0.2 | 0.018x10™ | 0.093x10™* | 0.093x10™ | 0.018x107*
04 | 0.093x10™* | 0.211x10™* | 0.211x10™* | 0.093x10™*
0.6 | 0.093x10™* | 0.211x10™* | 0.211x10™* | 0.093x10™*
0.8 | 0.018x10™* | 0.093x10™* | 0.093x10™* | 0.018x10™*
Approximation of U, and U, for 4 =30 respectively
x/y [ 0.2 0.4 0.6 0.8
0.2 | 0.480x10* | 0.718x10* | 0.718x10* | 0.480x10"
0.4 | 0.718x10* | 1.083x10* | 1.083x10* | 0.718x10*
0.6 | 0.718x10* | 1.083x10* | 1.083x10* | 0.718x10*
0.8 | 0.480x10* | 0.718x10* | 0.718x10* | 0.480x10*
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x/y | 0.2 0.4 0.6 0.8
0.2 | 0.030x10™* | 0.068x10™* | 0.068x10™* | 0.030x107*
0.4 |0.068x10™* | 0.106x10™* | 0.106x10™* | 0.068x10~*
0.6 | 0.068x10™* | 0.106x10™* | 0.106x10™* | 0.068x107*
0.8 | 0.030x10™* | 0.068x10™* | 0.068x10™* | 0.030x107*
Approximation of U, and U, for A =100 respectively
xly [ 0.2 0.4 0.6 0.8
0.2 | 0.540x10° | 0.808x10° | 0.808x10° | 0.540x10°
04 | 0.808x10° | 1.217x10° | 1.217x10° | 0.808x10°
0.6 | 0.808x10° | 1.217x10° | 1.217x10° | 0.808x10°
0.8 | 0.540x10° | 0.808x10° | 0.808x10° | 0.540x10°
x/y [ 0.2 0.4 0.6 0.8
0.2 | 0.105x107 | 0.196x107 | 0.196x107 | 0.105x1073
04 ] 0.196x107° | 0.362x107° | 0.362x107* | 0.196x103
0.6 | 0.196x107° | 0.362x107° | 0.362x10°° | 0.196x10*
0.8 | 0.105x107° | 0.196x10°° | 0.196x10°° | 0.105%x107*
Approximation of and U, for A =1000 respectively
xly |0.2 0.4 0.6 0.8
0.2 | 0542x10" | 0.811x10" | 0.811x10" | 0.542x10’
04 | 0.811x107 | 1.223x10" | 1.223x10" | 0.811x10’
0.6 | 0.811x10" | 1.223x10" | 1.223x10" | 0.811x10’
0.8 | 0.542x10" | 0.811x10" | 0.811x10" | 0.542x10’
x/y [ 0.2 0.4 0.6 0.8
0.2 | 0.340x10° | 0.631x10° | 0.631x10° | 0.340x10°
04 | 0.631x10° | 1.192x10° | 1.192x10% | 0.631x10°
0.6 | 0.631x10° | 1.192x10° | 1.192x10% | 0.631x10°
0.8 | 0.340x10° | 0.631x10° | 0.631x10° | 0.340x10°

Approximation of U, and U, for A =10000 respectively

xly |0.2 0.4 0.6 0.8

0.2 | 0.543x10° | 0.812x10° | 0.812x10° | 0.543x10°
04 | 0.812x10° | 1.223x10° | 1.223x10° | 0.812x10°
0.6 | 0.812x10° | 1.223x10° | 1.223x10° | 0.812x10°
0.8 | 0.543x10° | 0.812x10° | 0.812x10° | 0.543x10°
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xly 0.2 0.4 0.6 0.8
0.2 | 0.497x10° | 0.769x10° | 0.769x10° | 0.497 x10°
0.4 | 0.769x10° | 1.196x10° | 1.196x10° | 0.769x10°
0.6 | 0.769x10° | 1.196x10° | 1.196x10° | 0.769x10°
0.8 | 0.497x10° | 0.769x10° | 0.769x10° | 0.497 x10°
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