
 ISSN 1746-7659, England, UK
Journal of Information and Computing Science

Vol. 2, No. 4, 2007, pp. 252-260

Secure Information Flow Based on Data Flow Analysis

Jianbo Yao

Center of Information and computer, Zunyi Normal College, Zunyi, Guizhou, 563002, China

(Received December 21, 2006, accepted 9 April 2007)

Abstract. The static analysis of secure information flow has been studied for many years. The existing
methods tend to be overly conservative or to be overly attention to location information leak. This paper uses
data flow analysis to deal with secure information flow. Two variables of dynamic update security levels
were introduced. The program is secure without any variable of downgrade security level at exit of a program.
The analysis can deal with more secure programs. The soundness of the analysis is proved.

Keywords: secure information flow, data flow analysis, static analysis, formal semantics

1. Introduction
The static analysis of secure information flow has been studied for many years[1]. The analysis of secure

information flow is that check whether the information flow of a given program is secure. Secure
information flow ensures the noninterference, that is, observations of the initial and final values of low-
security variables do not provide any information about the initial value of high-security variables.

Consider a program whose variables are partitioned into two disjoint tuples H (secret) and L (public).
The program is secure if examinations of the initial and final values of any L variable do not give any
information about the initial values of any H variable.

For example, the program
:H L=

is secure since the value of L is independent of initial value of H .
Similarly, the program

: 8L =
is secure, because the final value of L is always 8, regardless of the initial value of H .

However, the program
:L H=

is not insecure since the value of H can be observed as the final value of L . the flow of information from
H to L is called explicit. We call this explicit leak from H to L .

The program
if H then : 0L = else : 1L =

is insecure, despite each branch of the conditional is secure, H is indirectly copied into L . the flow of
information from H to L is called implicit. We call this implicit leak from H to L .

A secure program may have some location information leak. For example, in each of four programs
:L H= ; : 8L = ①
:H L= ; :L H= ②

:L H= ; :L L H= − ③
if false then :L H= end ④

although existing location information leak :L H= , the four program are all secure.
The existing methods tend to be overly conservative, giving “insecure” answers to many “secure”

programs, or to be overly attention to location information leak, existing location information leak does not

Published by World Academic Press, World Academic Union

Journal of Information and Computing Science, 2 (2007) 4, pp 252-260

253

imply there is information leak in a program.
In this paper, the data flow analysis is used to deal with secure information flow. The analysis proposed

in this paper is more precise than the existing syntactic approaches. However, since the analysis is syntactic
in nature, it cannot be as precise as the Joshi-Leino’s and Sabelfeld-Sands’ semantic approaches [6,7] or

 theorem proving approach. [8] ,Darvas-Hahnle-Sands��
The rest of the paper is organized as follows: Section 2 informally describes the problem of secure

information flow using some simple examples. Section 3 presents the syntax and semantics of While
language. Section 4 explains how to construct the flow graph and then shows data flow equations for
detecting information leaks. Section 5 proves the soundness of the analysis. Section 6 concludes.

The Denning-Denning’s original method[9], the Mizuno-Schmidt’s data flow analysis[2] and the
Volpano-Smith’s type-system all assert that above four programs are insecure. Doh-Shin’s data flow analysis
claim that it can solve the problem of program① and program②, but in fact, it only can solve the secure
problem of program②. Our analysis in the paper certifies that above four programs are all secure[6].

2. Syntax and Semantics
In this paper, we shall consider an imperative language core[10], While. In order to identify statements

and tests in a While program, we give a unique label to each of the assignments, skip statements, and tests.
Syntax Domain:

a∈AExp arithmetic expressions
b∈BExp Boolean expressions
S∈Stmt statements
x∈Var variables
l∈Lab labels
Abstract Syntax:

S∷= [x:=a]l │[skip]l │S1;S2 │if [b]l then S1 else S2│while [b]l do S
Configurations and Transitions:
A state is defined as a mapping from variables to integers:

State Var Zσ ∈ = →

A configuration of the semantics is either a pair ,S σ or σ , where S∈Stmt and σ ∈State. A terminal
configuration consists only of a state. The transition of the semantics shows how the configuration is
changed by one step of computation and is represented as one of the followings:

',S σ σ→ and ' ', ,S Sσ σ→

For arithmetic and Boolean expressions, a and b, we assume that the semantic functions are defined as
follows:

 ():A AExp State Z→ →

():B BExp State T→ →

where Z is the set of integers and T is the set of truth values.
Structural Operational Semantics:

[]ass [] []: ,lx a x A aσ σ σ= → 6 a b

[]skip [] ,lskip σ σ→

[]1seq
' '

1 1

' '
1 2 1 2

, ,

; , ; ,

S S

S S S S

σ σ

σ σ

→

→

JIC email for subscription: publishing@WAU.org.uk

J. Yao: Secure Information Flow Based on Data Flow Analysis 254

[]2seq
'

1
'

1 2 2

,
; , ,

S
S S S

σ σ
σ σ

→

→

[]1if 〈 if [b]l then S1 else S2, σ 〉→〈S1, σ 〉, if B b trueσ =a b

[]2if 〈 if [b]l then S1 else S2, σ 〉→〈S2, σ 〉, if B b falseσ =a b

[]1wh 〈 while [b]l do S, σ 〉→〈S; while [b]l do S ,σ 〉, if B b trueσ =a b

[]2wh 〈 while [b]l do S, σ 〉→σ , if B b falseσ =a b

3. Secure Information Flow Analysis
In this section, we use the data flow analysis to deal with secure information flow[3,11]. We first define

the suitable flow graph of While programs, and then formulate data flow equations for the analysis.

3.1. The Flow Graph
The flow graph is defined in the style of Nielson-Nielson-Hankin’s book[8]. In order to analysis the

secure information flow, we need explicitly add to the flow graph an implicit flow from a test block to each
statement block in the conditional branch or in the while-loop body, in addition to the normal control flow.

A flow graph consists of the set of elementary blocks and the set of (control and implicit)flows between
blocks. More formally, the flow graph for a While statement S is defined to be a quintuple:

flowgraph(S) = (block(S), flow(S), flow I (S), init(S), final(S))
where each of the functions are defined below.

Let Blocks be the set of elementary blocks of form []: lx a= ,[]lskip or []lb where . Then the
function blocks finds the set of elementary blocks in a given statement:

l Lab∈

: (blocks Stmt P Blocks→)

[]() []{ }: :l lblocks x a x a= = =

[]() []{ }l lblocks skip skip=

() () ()1 2 1 2,blocks S S blocks S blocks S= ∪

blocks (if [then S]lb 1 else S2) = []{ } () ()1 2
lb blocks S blocks S∪ ∪

blocks (while []lb do S) = []{ } ()lb blocks S∪

A flow graph always has a single entry, but it may have multiple exits due to conditional statements.
Thus the function init returns the initial label of a give statement:

:init Stmt Lab→

[](): linit x a l= =

[]()linit skip l=

1 2 1(;) ()init S S init S=

init (if []lb then S1 else S2) = l

init (while []lb do S) = l

The function final returns the set of final labels of a given statement:
: ()final Stmt P Lab→

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 2 (2007) 4, pp 252-260

255

[]() { }: lfinal x a l= =

[]() { }lfinal skip l=

()1 2 2; (final S S final S=)

final (if [then S]lb 1 else S2) = ()1 2()final S final S∪

final (while []lb do S) = { }l

The function flow returns control flows between blocks in a given statement:
: ()flow Stmt P Lab Lab→ ×

[](): lflow x a φ= =

[]()lflow skip φ=

() ()() (){ }1 2 1 2 2 1; () () ,flow S S flow S flow S l init S l final S= ∈∪ ∪

flow (if [then S]lb 1 else S2) = ()() ()(){ }1 2 1() () , , ,flow S flow S l init S l init S∪ ∪ 2

flow (while [do S) =]lb ()(){ } () (){ }' '() , ,flow S l init S l l l final S∈∪ ∪

The function flowI defines the implicit flows in a given statement:
: (I)flow Stmt P Lab Lab→ ×

[](): l
Iflow x a φ= =

[]()l
Iflow skip φ=

()1 2 1 2; ()I Iflow S S flow S flow S= ∪ ()I

Iflow (if []lb then S1 else S2) =

(){ } (){ }' '' '
1 2 1() () , () , ()l l

I I 2flow S flow S l l B blocks S l l B blocks S∈ ∈∪ ∪ ∪

Iflow (while [do S) =]lb (){ }''() , ()l
Iflow S l l B blocks S∈∪

For example, consider the Power program:

[] [] [] []()1 2 3: 1 ; 0 : ; : 1z while x do z z y x x= > = ∗ = 4−

we have

() ()(), (), (), (), ()Iflowgraph Power blocks S flow S flow S init S final S=

= ([] [] [] []{ }1 2 3 4 ,: 1 , 0 , : , : 1z x z z y x x= > = ∗ = − () () () (){ }1, 2 , 2,3 , 3, 4 , 4, 2 ,

 () (){ }2,3 , 2, 4 , 1,{ }2) { }2)

3.2. The Analysis
Assume information only have two security levels H and L . Each variable x in a program is initially

bound to a security level, which is denoted by underline, x. x ↑ denotes a L variable x which security level
is upgrade after coping s H variable to a L variable x; denotes a x ↓ H variable x which security level is

JIC email for subscription: publishing@WAU.org.uk

J. Yao: Secure Information Flow Based on Data Flow Analysis 256

downgrade after coping L variable to a H variable x. Ix denotes a implicit H variable when x is a H
variable in test blocks.

The analysis is defined as follow:

{ } { } { }(): ,IL Igen ,ocks P x x x→ ↑ ↓Bl :

[]() { } { }(): ,l
ILgen x a x x ,φ= = ↑ ↓

where

{ } { }{ }(), ,x x y FV a y x x y↑ = ↑ { }{ }(), : , ,x z FV a z x x yy z∈ ∉ ↓ < ↑ ∈ = ∈ ↑ <∪

 { }{ }, : ,Ix y x x y x y↑ ∈ = <∪

{ } { }{ }; (), ,x x x H y FV a y L y x↓ = ↓ = ∀ ∈ = ∉ ↑

[]() () []: , , if never execute : l l
ILgen x a x aφ φ φ= = =

[]() (), ,l
ILgen skip φ φ φ=

[]() { }(), ,l
IL Igen b xφ φ=

where

{ } { }{ }(), ,I Ix x x FV b x H x x= ∈ = ∉ ↓ { }(), : ,Ix y FV a y x x H∪ ∈ = =

{ } { } { }(): ,IL Ikill Blocks P x x x→ ↑ ↓ , :

[]() { } { }(): ,l
ILkill x a x x ,φ= = ↑ ↓

where

{ } (){ }(),x x y FV a y L y H↑ = ↑ ∀ ∈ = ↑ −∪

{ } { }{ }(),x x y FV a y H y x↓ = ↓ ∀ ∈ = ∈ ↑∪

[]() () []: , , if never execute : l l
ILkill x a x aφ φ φ= = =

[]() (), ,l
ILkill skip φ φ φ=

[]() (), ,l
ILkill b φ φ φ=

Information Low Equations: IL= :

()
() (

{ }() { }() { }()()
() () ()

' ' '

'

, , if

, ,

 , otherwise

entry I

I

l init S

IL l x l x l x l

l l flow S flow S

φ φ φ⎧ =
⎪⎪= ↑ ↓⎨
⎪

∈ ∪⎪⎩

∪ ∪ ∪

() {

)

} { }() { } { } { }() { }(
{ } { }() { })

\ , \ ,

 \

exit kill gen kill gen

I I Ikill gen

IL l x x x x x x

x x x

= ↑ ↑ ↑ ↓ ↓ ↓∪ ∪

∪

Example 1.Consider the following program:

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 2 (2007) 4, pp 252-260

257

 [] []1 2: ; : , where and x=z=L.x y x z y H= = =

() ()1 , ,entryIL φ φ φ=

() { }()1 ,exitIL x ,φ φ= ↑

() { }()2 ,entryIL x ,φ φ= ↑

() ()2 , ,exitIL φ φ φ=

x ↑ is killed at the exit of block 2, at the termination of the program, x=z=L is not relation with .y H=
Thus the program is secure.

Example 2.Consider the following program:

[] []1 2: ; : , where and x=L.y x x y y H= = =

() ()1 , ,entryIL φ φ φ=

() { }()1 , ,exitIL xφ φ= ↓

() { }()2 , ,entryIL xφ φ= ↓

() { }()2 , ,exitIL xφ φ= ↓

at the termination of the program, x=L is not relation with .y H= Thus the program is secure.

Example 3.Consider the following program:

[] []1 2: ; : , x and : .x y x x y where L y H= = − = =

() ()1 , ,entryIL φ φ φ=

() { }()1 ,exitIL x ,φ φ= ↑

() { }()2 ,entryIL x ,φ φ= ↑

() ()2 , ,exitIL φ φ φ=

at the termination of the program, x=L is not relation with .y H= Thus the program is secure.

Example 4.Consider the following program:

[] []1 2if then : end, where x=L and false x y y H= =

() ()1 , ,entryIL φ φ φ=

() ()1 , ,exitIL φ φ φ=

() ()2 , ,entryIL φ φ φ=

() ()2 , ,exitIL φ φ φ=

at the termination of the program, x=L is not relation with .y H= Thus the program is secure.

4. The Soundness as Noninterference
In this section, we prove that the analysis is sound by proving our analysis’ noninterference property[11].

Theorem 1. Given a While program S, for each block ()lB blocks S∈ , we let

JIC email for subscription: publishing@WAU.org.uk

J. Yao: Secure Information Flow Based on Data Flow Analysis 258

() { } { } { }(), ,entry I entryentry entry
IL l x x x= ↑ ↓

() { } { } { }(), ,exit I exitexit exit
IL l x x x= ↑ ↓

()N l is the set of all variables having L values at the entry of block lB , ()X l is the set of all variables

having L values at the entry of block lB .

() { } { } { } { }, \ \ IN l x x Var x L x x x= ∈ = ↑ ↓∪

() { } { } { }, \X l x x Var x L x x= ∈ = ↑ ↓∪

()1 ()()
' '

1 1 1 2if S, , and then there existsN init SSσ σ σ σ→ ∼

 ()()
' ' ' '
2 2 2 1 such that S, , and , andN init SSσ σ σ σ σ→ ∼ '

2

()2 ()()
'

1 1 1 2if S, and then there existsN init Sσ σ σ σ→ ∼

 ()()
' ' '
2 2 2 1 such that S, and N init S

'
2σ σ σ σ→ ∼ σ

Proof: The proof is by induction on the shape of the inference tree used to establish ' '
1 1S, ,Sσ σ→

and '
1S, 1σ σ→ , respectively.

The case []ass . Then [] a b1 1: ,lx a x A a 1σ σ σ⎡ ⎤= → ⎣ ⎦6 , and we have

{ } { } { } { }\
exit entry kill gen

x x x x↑ = ↑ ↑ ↑∪

{ } { }\
entry kill

x x= ↑ ↑ { }{ }(), ,x y FV a y x x y↑ ∈ ∉ ↓∪ <

{ }{ }(), : , ,x z FV a z y z x x y↑ ∈ = ∈ ↑ <∪ { }{ }, : ,Ix y x x y x y↑ ∈ = <∪

{ } { } { } { }\
exit entry kill gen

x x x x↓ = ↓ ↓ ↓∪

{ } { }\
entry kill

x x= ↓ ↓ { }{ }; (), ,x x H y FV a y L y x↓ = ∀ ∈ = ∉ ↑∪

Since information flow is secure, this is { }
exit

x φ↑ = , then { }
gen

x φ↑ = . Thus we get

() { },y FV a y x y L∀ ∈ ∈ ↓ ∨ =

() { },z FV a y x y L∀ ∈ ∉ ↑ ∨ =

{ }I entry
x φ=

Therefore, we have

() () { }
gen

X l N l x= ↓∪

and thus

() a b a b1 2 1 implies N l A a A a 2σ σ σ =∼ σ

because the value of a is only affected by the L variables occurring in it. Taking

a b'
2 2 2x A aσ σ σ⎡ ⎤= ⎣ ⎦6

we have that () ()' '
1 2x xσ σ= and thus () () ()'

1 X l
'
2x xσ σ∼ as required.

JIC email for contribution: editor@jic.org.uk

Journal of Information and Computing Science, 2 (2007) 4, pp 252-260

259

The case []skip . Then [] 1,lskip 1σ σ→ , we have

() ()X l N l=

and we take '
2σ to be 2σ .

The case []1seq . Then by the induction hypothesis, because () ()() ()
11 2 N init Sx xσ ∼ σ implies

() ()() ()'
1

' '
1 2

N init S
x xσ σ∼ , Since () ()1 2 1;init S S init S= and () ()'

1 2 1;init S S init S= ' , we can immediately

conclude: () ()() ()
1 21 2; N init S Sx xσ σ∼ implies () ()() ()'

1 2

' '
1 2;

N init S S

x xσ σ∼ .

The case []2seq . Similar to The cass []1seq .

The case [. Then]1if [] 1 2 1 1if b then S else S , ,l S 1σ σ→ because

[]() { } { } { } { }
1 2 b then S and S

, \ \l Iinit if
N x x Var x L x x x= ∈ = ↑ ∪ ↓

and

() { } { } { } (){ } { }
1S , \ \ \I IinitN x x Var x L x x x b x= ∈ = ↑ ↓∪

where

(){ } { }(), : ,I Ix b x y FV b y x x H= ∈ = =

Hence, we have

() []()1 1 2if b then S else Slinit S init
N N⊆

Hence, we have

() ()() ()
11 2 N init Sx xσ σ∼

The case []2if . Similar to The cass [] . 1if

The case []wh . Similar to The cass []if .

This completes the proof.
Finally, we have an important corollary which states that noninterference is preserved throughout the

execution of the entire program.
Corollary 1: Under the same assumption as Theorem 1. then

()1 (not yet terminated programs)

 ()()
' '

1 1 1 2if S, , and then there existsN init SSσ σ σ σ∗→ ∼

 ()()
' ' ' '
2 2 2 1 such that S, , and , andN init SSσ σ σ σ σ∗→ ∼ '

2

()2 (terminated programs)

 ()()
'

1 1 1 2if S, and then there existsN init Sσ σ σ σ→∗ ∼

 () ()' ' ' '
2 2 2 1 2 such that S, and for some .N l l final Sσ σ σ σ σ→∗ ∈∼

5. Conclusion
This paper uses data flow analysis to deal with secure information flow. The analysis proposed in this

paper is more precise than the existing syntactic approaches. The analysis is proved to be sound by proving

JIC email for subscription: publishing@WAU.org.uk

J. Yao: Secure Information Flow Based on Data Flow Analysis 260

our analysis’ noninterference property.

6. References
[1] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected Areas in

Communication, 2003, 21(1).
[2] Dennis Volpano, Geoffrey Smith. A Type-Based Approach to Program Security. Proceeding of TAPSOFT’97,

colloquium on Formal Approaches in Software Engineering, Lille France, 14-18 April, 1997.
[3] Dennis Volpano, Geoffrey Smith, Cynthia Irvine. A Sound Type System for Secure Flow Analysis. Journal of

computer security. 1996, 29.
[4] M. Mizuno and D. A. Schmidt. A security flow control algorithm and its denotational semantics correctness proof.

Formal Aspects of Computing, 1992, 4: 722-754.
[5] Kyung-Goo Doh and Seung Cheol Shin. Data Flow Analysis of Secure Information-Flow. ACM SIGPLAN Notices.

2002, 37(8).
[6] R. Joshi and K. R. M. Leino. A semantic approach to secure information flow. Science of Computer Programming,

2000, 37: 113-138.
[7] A.Sabelfeld and D. Sands. A per model of secure information flow in sequential programs. Higher-Order and

Symbolic Computations, 2001, 14: 59-91.
[8] A. Darvas, R.Hahnle and D. Sands. A Theorem Proving Approach Analysis of Secure Information Flow. Technical

Report, no. 2004-01.
[9] D. Denning, P. Denning. Certification of Programs for Secure Information Flow. Communications of the ACM,

1977, 20(7): 504-513.
[10] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications a Formal Introduction. July, 1999.
[11] F. Nielson, H. R. Nielson and C. Hankin. Principles if Program Analysis. Springer.1999.

JIC email for contribution: editor@jic.org.uk

