

Uniqueness of positive solutions for a class of p-Laplacion problems

G. A. Afrouzi + and H. Ghorbani

Department of Mathematics, Faculty of Basic Sciences, Mazandaran University, Babolsar, Iran

(Received May 20, 2007, accepted April 22, 2008)

Abstract: We consider uniqueness of positive radial solutions to the system.

$$\begin{cases} -\Delta_p u = \lambda \, f(v) & \text{in } \Omega \\ -\Delta_q v = \mu \, g(u) & \text{in } \Omega \\ u = v = 0 & \text{on } \partial \Omega \end{cases} \tag{1}$$
 Where $\Delta_p u = \operatorname{div} \left(\! \left| \nabla u \right|^{p-2} \nabla u \right), \, \Delta_q v = \operatorname{div} \left(\! \left| \nabla v \right|^{q-2} \nabla v \right), \, p \,, q > 1 \,, \Omega \quad \text{is the open unit ball in}$

 R^N , $N \ge 2$ and $\partial \Omega$ is its boundary.

Keywords: uniqueness, laplacion problems, positive solutions.

1. Introduction

We consider the boundary value problem

$$\begin{cases}
-\Delta_{p}u = \lambda f(v) & \text{in } \Omega \\
-\Delta_{q}v = \mu g(u) & \text{in } \Omega \\
u = v = 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

Where Ω is the open unit ball in \mathbb{R}^N , $N \geq 2$, with a smooth boundary $\partial\Omega$, λ , μ are positive parameters and f, g are smooth functions. We shall establish existence and nonexistence of positive radial solutions for (1). Dalmasso [2] investigated the existence and uniqueness of positive radial solutions of the boundary value problem

$$\begin{cases}
-\Delta u = \lambda f(v) & \text{in } B \\
-\Delta v = \mu g(u) & \text{in } B \\
u = v = 0 & \text{on } \partial B
\end{cases} \tag{2}$$

Where B is the open unit ball in R^N , $N \ge 2$, f, $g:[0,\infty) \to [0,\infty)$. He obtained some results in the sublinear case when f, g are nondecreasing and there exist positive numbers p, q with pq < 1 such that

$$\frac{f(x)}{x^p}$$
 and $\frac{g(x)}{x^q}$ are nonincreasing on R^+ . (H)

D.D. Hai [3] considered system (2) and extended (H) to hold only for large x. According to a result of Troy [6], positive solutions of the boundary value problem

⁺ e-mail: afruzi@umz.ac.ir

$$\begin{cases}
-\Delta u = \lambda a(|x|) f(v) & \text{in } \Omega \\
-\Delta v = \mu b(|x|) g(u) & \text{in } \Omega \\
u = v = 0 & \text{on } \partial \Omega
\end{cases}$$
(3)

are radially symmetric, where Ω is the open unit ball in $R^N(N \ge 2)$, f, $g: R^+ \times R^+ \to R^+$ and $a,b: R^+ \to (0,\infty)$ are continuous function, $R^+ = [0,\infty)$. Yulian An [6] investigated uniqueness of positive solutions of the system

$$\begin{cases}
\left(r^{(N-1)}u'\right)' = -a(r)r^{(N-1)}f(u(r),v(r)) & r \in (0,1) \\
\left(r^{(N-1)}v'\right)' = -b(r)r^{(N-1)}g(u(r),v(r)) & r \in (0,1) \\
u'(0) = v'(0) = u(1) = v(1) = 0.
\end{cases}$$
(4)

M. Chhetri and P. Girg [5] investigated nonexistence of nonnegative solutions to the BVP:

$$\begin{cases} -\Delta_p u = \lambda f(u) & in B \\ u = 0 & on \partial B \end{cases}$$
 (5)

Where $p > 1, \lambda > 0$ and B is the open unite ball in \mathbb{R}^N . We consider the system (1) and make the following assumptions:

1.1. (H.1)
$$f, g: R^+ -> R^+$$
 are continuous, nondecreasing and C^1 on $(0, +\infty)$ and $\limsup_{x \to 0^+} x f'(x) < \infty$, $\limsup_{x \to 0^+} x g'(x) < \infty$

- **1.2. (H.2)** There exist $m \in (p-1, p^*)$ such that $\lim_{x \to \infty} \frac{f(x)}{x^m} > 0$ and $\lim_{x \to x^+} \frac{f(x)}{x^m} > 0$ where $p^* = \frac{Np}{N-p}$ for p < N and $p^* = +\infty$ for $p \ge N$ is the critical exponent.
- **1.3. (H.3)** There exist $n \in (q-1,q^*)$ such that $\lim_{x\to\infty} \frac{g(x)}{x^n} > 0$ and $\liminf_{x\to 0^+} \frac{g(x)}{x^n} > 0$ where $q^* = \frac{Nq}{N-q}$ for q < N and $q^* = +\infty$ for $q \ge N$ is the critical exponent and for $m_1 > m, n_1 > n, \frac{f(x)}{x^{m_1}}$ and $\frac{g(x)}{x^{n_1}}$ are nonincreasing for x large.

Due to [3], studying nonnegative solution of (1) is equivalent to studying positive solution of

$$\begin{cases}
-\left(r^{N-1}\phi_{p}\left(u'\right)\right)' = \lambda r^{N-1} f\left(v(r)\right) & r \in (0,1) \\
-\left(r^{N-1}\phi_{p}\left(v'\right)\right)' = \mu r^{N-1} g\left(u(r)\right) & r \in (0,1) \\
u'(0) = v'(0) = u(1) = v(1) = 0
\end{cases}$$
(6)

where $\phi_p(s)=\left|s\right|^{p-2}s$, $\phi_q(s)=\left|s\right|^{q-2}s$ for $s\neq 0$ and $\phi_p(0)=\phi_q(0)=0$. Our main result is:

1.4. Theorem 1. Let (H.1)-(H.3) hold.

Then there exist a positive number η , such that the system (6) has at most one positive solution for $\min\left(\lambda\mu^{m(q'-1)},\mu\lambda^{n(p'-1)}\right)\geq\eta$.

- **1.5.** Remark 2. For reader's convenience we list some of the properties of the function $\phi_p: R \to R$, defined above, that are relevant in this paper. Namely,
 - (i) ϕ_{p} is an odd increasing homeomorphism of R onto itself;
 - (ii) the inverse mapping of φ_p , denoted by $\left(\varphi_p\right)_{\!\!-1}$, is given by $\left(\varphi_p\right)_{\!\!-1}=\varphi_{p'}$

where
$$\frac{1}{p} + \frac{1}{p'} = 1$$
.

1.6. Lemma 3. Let h be continuous on R^+ and C^1 on $(0,+\infty)$ such that $\limsup_{x\to 0^+} xh < \infty$.

Let M, ε, r be positive numbers with $\varepsilon < 1$. Then there exists a positive number C such that $|h(\gamma x) - \gamma^T h(x)| \le C(1-\gamma)$ for $\varepsilon \le \gamma < 1$ and $0 \le x \le M$.

Poof. Let $0 \le x \le M$. Define $H(\gamma) = h(\gamma x) - \gamma^r h(x)$, $\varepsilon \le \gamma < 1$. By the mean value theorem, there exists $c \in (\gamma, 1)$ such that

$$|H(\gamma)| = |H(\gamma) - H(1)| = (1 - \gamma)|xh'(cx) - rc^{r-1}h(x)|$$

$$\leq C(1 - \gamma),$$

where

$$C = \frac{\sup\{yh'(y) \mid : 0 < y \le M\}}{\epsilon} + r \max\{\epsilon^{r-1}, 1\}\sup\{h(y) \mid : y \le M\}.$$

Lemma 4. Let (u, v) be a positive solution of the system (6). Then there exist positive constants M_i , i = 1, 2, 3, 4 and M independent of u, v such that

$$M_{1}(\lambda \mu^{m(q'-1)})^{\frac{(p'-1)}{|1-mn(q'-1)(p'-1)}}(1-r) \leq u(r) \leq M_{2}(\lambda \mu^{m(q'-1)})^{\frac{(p'-1)}{|1-mn(q'-1)(p'-1)}}(1-r)$$

$$M_{3}(\mu \lambda^{n(p'-1)})^{\frac{q'-1}{|1-mn(q'-1)(p'-1)}}(1-r) \leq v(r) \leq M_{4}(\mu \lambda^{n(p'-1)})^{\frac{q'-1}{|1-mn(q'-1)(p'-1)}}(1-r)$$

for min $\left(\lambda \mu^{m(q'-1)}, \mu \lambda^{n(p'-1)}\right) \ge M$ and 0 < r < 1.

Proof. Let (u, v) be a positive solution of the system (6). By integrating two equations in (6) we obtain respectively,

$$\phi_{p}\left(u'(r)\right) = -\frac{1}{r^{N-1}} \int_{0}^{r} \lambda \, \tau^{(N-1)} f\left(v\right) d\tau ds \tag{7}$$

$$\phi_{q}(v'(r)) = -\frac{1}{r^{N-1}} \int_{0}^{r} \mu \tau^{(N-1)} g(u) d\tau ds$$
 (8)

It is clear that

$$u(r) = \int_{r}^{1} \left(\frac{1}{s^{(N-1)}}\right)^{p'-1} \left(\int_{0}^{s} \lambda \tau^{(N-1)} f(v) d\tau\right)^{p'-1} ds.$$
 (9)

$$v(r) = \int_{r}^{1} \left(\frac{1}{s^{(N-1)}}\right)^{q'-1} \left(\int_{0}^{s} \mu \tau^{(N-1)} g(u) d\tau\right)^{q'-1} ds.$$
 (10)

From now on, we shall denote by $C_{_i}$, i=1,2,..., positive constants independent of u, v, λ , μ .

$$u\left(\frac{1}{2}\right) \ge \int_{\frac{1}{2}}^{1} \left(\frac{1}{s^{N-1}}\right)^{p'-1} \left(\int_{0}^{\frac{1}{2}} \lambda \tau^{(N-1)} f(v) d\tau\right)^{(p'-1)} ds$$

$$\ge \left(\frac{\lambda}{2} f\left(v\left(\frac{1}{2}\right)\right)\right)^{(p'-1)} \left(\int_{0}^{\frac{1}{2}} \tau^{(N-1)} d\tau\right)^{(p'-1)}$$

$$= \left(\frac{\lambda f\left(v\left(\frac{1}{2}\right)\right)}{N2^{(N+1)}}\right)^{p'-1}.$$
(11)

Similary,

$$v\left(\frac{1}{2}\right) \ge \left(\frac{\mu g\left(u\left(\frac{1}{2}\right)\right)}{N2^{(N+1)}}\right)^{q'-1}.$$
(12)

By (H.2) and (H.3), we have

$$f(v) \ge K_1 v^m \tag{13}$$

$$g(u) \ge K_2 u^n. \tag{14}$$

Both (13), (14) together with (11), (12) give us

$$u\left(\frac{1}{2}\right) \ge \left(\frac{K_1}{N2^{(N+1)}}\right)^{p'-1} \lambda^{p'-1} \left(v\left(\frac{1}{2}\right)\right)^{m(p'-1)},\tag{15}$$

$$v\left(\frac{1}{2}\right) \ge \left(\frac{K_2}{N2^{(N+1)}}\right)^{q'-1} \mu^{q'-1} \left(u\left(\frac{1}{2}\right)\right)^{n(q'-1)}. \tag{16}$$

It is clear that

$$u\left(\frac{1}{2}\right) \ge C_1 \left(\lambda \mu^{m(q'-1)}\right)^{\frac{p'-1}{1-mn(q'-1)(p'-1)}},\tag{17}$$

$$v\left(\frac{1}{2}\right) \ge C_2 \left(\mu \lambda^{n(p'-1)}\right)^{\frac{q'-1}{1-mn(q'-1)(p'-1)}}.$$
(18)

It follows from (13), (14), (17), (18) that for $r \ge \frac{1}{2}$,

$$\begin{split} -\,u'\!\!\left(r\right) &=\! \left(\frac{\lambda}{r^{(N-1)}}\right)^{p'-1}\!\!\left(\int_{0}^{r} s^{(N-1)}\!f\!\left(v\!\left(s\right)\right)\!\!ds\right)^{\!\!\left(p'-1\right)} \\ &\geq \lambda^{p'-1}\!\!\left(\int_{0}^{\frac{1}{2}} s^{(N-1)}\!f\!\left(v\!\left(s\right)\right)\!\!ds\right)^{p'-1} \\ &\geq \!\left(\frac{\lambda f\!\left(v\!\left(\frac{1}{2}\right)\right)}{N2^{N}}\right)^{p'-1} \geq \!\left(\frac{K_{1}}{N2^{N}}\right)^{p'-1} \!\lambda^{p'-1}\!\!\left(v\!\left(\frac{1}{2}\right)\right)^{m(p'-1)} \\ &= \!C_{3}\!\!\left(\!\lambda^{p'-1}\!\mu^{m(q'-1)(p'-1)}\right)^{\!\!\frac{1}{1-mn(q'-1)(p'-1)}}, \end{split}$$

and after integrating,

$$u(r) \ge C_3 \left(\lambda \mu^{m(q'-1)}\right)^{\frac{p'-1}{1-mn(q'-1)(p'-1)}} (1-r), \qquad r \ge \frac{1}{2}. \tag{19}$$

In a similar manner,

$$v(r) \ge C_4 \left(\mu \lambda^{n(p'-1)}\right)^{\frac{q'-1}{1-mn(q'-1)(p'-1)}} (1-r), \qquad r \ge \frac{1}{2}. \tag{20}$$

Since u, v are decreasing, this implies that there exist positive constants M_1 , M_2 independent of u, v such that the left-side inequalities for u, v in theorem 1 hold. From (9), (10), we have

$$|u|_{0} \le (\lambda f(|v|_{0}))^{p'-1}, |v|_{0} \le (\mu g(|u|_{0}))^{q'-1}$$
 (21)

where $\left| \cdot \right|_0$ denotes the sup-norm. By the conditions (H.2), (H.3) we have from (21) that

$$\begin{aligned} \left| \mathbf{u} \right|_{0} &\leq \left(\lambda \mathbf{f} \left(\left| \mathbf{v} \right|_{0} \right) \right)^{p'-1} \leq C_{5} \lambda^{p'-1} \left(\left| \mathbf{v} \right|_{0} \right)^{m(p'-1)}, \\ \left| \mathbf{v} \right|_{0} &\leq \left(\mu \mathbf{g} \left(\left| \mathbf{u} \right|_{0} \right) \right)^{q'-1} \leq C_{6} \mu^{q'-1} \left(\left| \mathbf{u} \right|_{0} \right)^{n(q'-1)}. \end{aligned}$$

It is clear that

$$\left|u\right|_{0} \leq C_{7} \left(\! \lambda \mu^{m\left(q'-1\right)} \right)^{\!\! \frac{\left(p'-1\right)}{\!\! 1 - mn\left(q'-1\right)\left(p'-1\right)}},$$

similarly,

$$|v|_0 \le C_8 \left(\mu \lambda^{n(p'-1)}\right)^{\frac{(q'-1)}{1-\min(q'-1)(p'-1)}}$$
.

Using this in the equation for u' gives

$$-u'(r) \le \left(\lambda f(|v|_0)\right)^{(p'-1)} \le C_9\left(\lambda \mu^{m(q'-1)}\right)^{\frac{(p'-1)}{1-mn(q'-1)(p'-1)}},$$

In a similar manner, we have the upper estimate for v(r). This complete the proof of Lemma 4.

Proof of Theorm 1. Let (u,v) and (u_1,v_1) be positive solution of (6) and let min $(\lambda \mu^{m(q^{-1})}, \mu \lambda^{p^{-1}})$ be large enough so that Lemma 4 applies . By Lemma 4,

$$\frac{M_1}{M_2}u_1 \le u \le \frac{M_2}{M_1}u_1$$
 on $(0,1)$.

Let $\alpha = \sup\{c > 0 : u \ge cu_1 in(0,1)$. Then clearly $\alpha_0 < \alpha < \infty$ and $u \ge \alpha u_1$ in (0,1), where $\alpha_0 = \frac{M_1}{M_2}$. We claim that $\alpha \ge 1$. Suppose to the contrary that $\alpha < 1$. Since

$$\begin{split} \left(r^{N-l}\varphi_{p}(u')\right)' &= -\lambda r^{N-l}f\Bigg(\int_{r}^{l} \left(\frac{1}{s^{(N-l)}}\right)\Bigg)^{q'-l} \bigg(\int_{0}^{s} \mu \tau^{(N-l)}g(u)d\tau \bigg)^{q'-l}ds \\ \left(r^{N-l}\varphi_{p}(\alpha u'_{1})\right)' &= -\lambda r^{N-l}\alpha f\Bigg(\int_{r}^{l} \left(\frac{1}{s^{(N-l)}}\right)^{q'-l} \bigg(\int_{0}^{s} \mu \tau^{(N-l)}g(u)d\tau \bigg)^{q'-l}ds \bigg), \end{split}$$

it follows that

$$\left[r^{N-1}\left(\phi_{p}\left(u'\right)-\phi_{p}\left(\alpha u'_{1}\right)\right)\right]' \leq -\lambda r^{N-1}\left[f\left(\int_{r}^{1}\left(\frac{1}{s^{(N-1)}}\right)^{q'-1}\left(\int_{0}^{s}\mu\tau^{(N-1)}g\left(\alpha u_{1}\right)d\tau\right)^{q'-1}ds\right) -\alpha f\left(\int_{r}^{1}\left(\frac{1}{s^{(N-1)}}\right)^{q'-1}\left(\int_{0}^{s}\mu\tau^{(N-1)}g\left(u_{1}\right)d\tau\right)^{q'-1}ds\right)\right] \tag{22}$$

Let $n_1 > n_2 > n$, $m_1 > m_2 > m$. We claim that

$$\left(\int_{0}^{s} \tau^{(N-1)} g\left(\alpha u_{1}\right) d\tau\right)^{q'-1} > \alpha^{n_{1}(q'-1)} \left(\int_{0}^{s} \tau^{(N-1)} g\left(u_{1}\right) d\tau\right)^{q'-1}, s \ge 0.$$
(23)

Since $\alpha \ge \alpha_0$ and $\frac{g(x)}{x^{n_2}}$ is nonincreasing for x >> 1,

$$g(\alpha x) \ge \alpha^{n_2} g(x)$$
 for $x >> 1$.

Let $\frac{1}{2} < T < 1$. By Lemma 4,

$$u_{_1}\!\left(s\right)\!\geq M_{_1}\!\left(1-T\right)\!\!\left(\!\lambda\mu^{m(q'-1)}\right)^{\!\!\frac{(p''\!-1)}{\!\!1-mn(q'-1)(p'-1)}}>>1\ ,\ s\leq T\ ,$$

and therefore

$$\left(\int_0^s \tau^{(N-1)} \Big(g(\alpha u_1) - \alpha^{n_1} g(u_1) \Big) d\tau \right)^{q'-1} \geq \left(\alpha^{n_2} - \alpha^{n_1}\right)^{(q'-1)} \left(\int_0^s \tau^{(N-1)} g(u_1) d\tau \right)^{q'-1} \geq 0 \text{ , } s \leq T.$$

For s > T,

$$\begin{split} &\left(\int_{0}^{s} \tau^{(N-1)} \left(g(\alpha u_{1}) - \alpha^{n_{1}} g(u_{1})\right) d\tau\right)^{q'-1} \\ &= \left(\int_{0}^{T} \tau^{(N-1)} \left(g(\alpha u_{1}) - \alpha^{n_{1}} g(u_{1})\right) d\tau\right)^{q'-1} + \left(\int_{T}^{s} \tau^{(N-1)} \left(g(\alpha u_{1}) - \alpha^{n_{1}} g(u_{1})\right) d\tau\right)^{q'-1} \\ &\geq \left(\alpha^{n_{2}} - \alpha^{n_{1}}\right)^{q'-1} \left(\int_{0}^{T} \tau^{(N-1)} g(u_{1}) d\tau\right)^{q'-1} - \left(C(1-T)(1-\alpha)\right)^{q'-1}, \end{split}$$

where we have used Lemma 3 with h = g. Since

$$\left(\int_{0}^{T} \tau^{(N-1)} g(u_{1}) d\tau\right)^{q'-1} \geq \left(\int_{0}^{\frac{1}{2}} \tau^{(N-1)} g(u_{1}) d\tau\right)^{q'-1} \geq \left(\frac{g\left(u_{1}\left(\frac{1}{2}\right)\right)}{N2^{N}}\right)^{q'-1} \leq \left(\frac{g\left(u_{1}\left(\frac{$$

and since there exist a positive number k > 0 such that

$$\alpha^{n_2} - \alpha^{n_1} \ge k(1 - \alpha)$$
 for $\alpha_0 \le \alpha \le 1$,

It follow that

$$\left(\int_0^s \tau^{(N-1)}\!\!\left(\!g\!\left(\alpha u_{_1}\right)\!\!-\alpha^{n_{_1}}g\!\left(u_{_1}\right)\!\!\right)\!\!d\tau\right)^{\!q'-1}>0\ ,\ s>T$$

if T is sufficiently close to 1. This proves the claim.

Inserting (23) into (22) and integrating gives

$$z^{N-1}(\phi_p(u') - \phi_p(\alpha u_1'))(z) \le -\lambda \int_0^z B(\alpha, r) dr,$$

where

$$\begin{split} B\!\left(\alpha\,,r\right) &= r^{N-l} \!\!\left[f\!\left(\alpha^{n_1(q'-l)}\!\int_r^l \!\!\left(\frac{1}{s^{(N-l)}}\right)^{\!q'-l} \!\!\left(\int_0^s \mu \tau^{(N-l)} g\!\left(u_1\right) \!\!d\tau\right)^{\!q'-l} \!\!ds \right. \\ &\left. - \alpha f\!\left(\int_r^l \!\!\left(\frac{1}{s^{(N-l)}}\right)^{\!q'-l} \!\!\left(\int_0^s \mu \tau^{(N-l)} g\!\left(u_1\right) \!\!d\tau\right)^{\!q'-l} \!\!ds\right) \right] \end{split}$$

Using (13), (14) and Lemma 4, we obtain for $r \le T$,

$$\begin{split} \int_{r}^{l} & \left(\frac{1}{s^{(N-1)}}\right)^{q'-l} \left(\int_{0}^{s} \mu \tau^{(N-1)} g(u_{1}) d\tau\right)^{q'-l} ds \geq \int_{T}^{l} & \left(\frac{1}{s^{(N-1)}}\right)^{q'-l} \left(\int_{0}^{T} \mu \tau^{(N-1)} g(u_{1}) d\tau\right)^{q'-l} \\ & \geq & \left(\frac{\mu T^{N} \left(1-T\right)}{N}\right)^{q'-l} \left(g\left(u_{1}\left(T\right)\right)\right)^{q'-l} \\ & \geq & \left(\frac{\mu T^{N} \left(1-T\right)}{N}\right)^{q'-l} \left(K_{2}\right)^{q'-l} \left(u_{1}\left(T\right)\right)^{n(q'-l)} \\ & \geq & c_{1}\left(T\right) \left(\lambda \mu^{m(q'-l)}\right)^{\frac{p'-l}{l-mn(q'-l)(p'-l)}} >> 1 \end{split}$$

where
$$c_1(T) = \left(\frac{\mu T^N K_2}{N}\right)^{q'-1} M_1^{n(q'-1)} (1-T)^{(n+1)(q'-1)}$$
. Since $\frac{f(x)}{x^{m_1}}$ is nonincreasing for $x >> 1$,
$$f(\alpha^{n_1} x) \ge \alpha^{n_1 m_1} f(x) \text{ for } x >> 1$$

and therefore

$$B(\alpha, r) \ge r^{N-1} \left(\alpha^{n_1 m_1(q'-1)} - \alpha \right) f \left(\int_r^1 \left(\frac{1}{s^{(N-1)}} \right)^{q'-1} \left(\int_0^s \mu \tau^{(N-1)} g(u_1) d\tau \right)^{q'-1} ds \right)$$

$$\ge c_2 \left(T \right) r^{N-1} \left(\lambda \mu^{m(q'-1)} \right)^{\frac{m(p'-1)}{1 - mm(q'-1)(p'-1)}} \left(1 - \alpha \right) > 0, r \le T$$

$$(24)$$

where $c_2(T) = K_1(c_1(T))^m k_0$ and k_0 is a positive constant such that

$$\alpha^{n_1 m_1 (q'-1)} - \alpha \ge k_0 (1-\alpha)$$
 for $\alpha_0 \le \alpha \le 1$.

This shows that

$$z^{N-1} (\phi_p(u') - \phi_p(\alpha u'_1))(z) < 0, \quad 0 < z \le T.$$

For z > T, we have by lemma 3 and (24) that

$$\begin{split} & \int_{0}^{z} B(\alpha,r) dr \geq \int_{0}^{\frac{1}{2}} B(\alpha,r) dr + \int_{T}^{z} B(\alpha,r) dr \\ & \geq \frac{c_{2} \left(\frac{1}{2}\right)}{N2^{N}} \left(\lambda \mu^{m(q'-1)}\right)^{\frac{m(p'-1)}{l-mn(q'-1)(p'-1)}} (1-\alpha) - \left(C(1-T)(1-\alpha)\right)^{(q'-1)} > 0 \end{split}$$

for large $\lambda \mu^{m(q'-1)}$ and $\mu \lambda^{n(p'-1)}$ and T sufficiently close to 1. Hence

$$(\phi_p(u') - \phi_p(\alpha u_1'))(z) < 0$$
, $0 < z \le 1$,

from which it follows that there exists $\tilde{\alpha} > \alpha$ such that $u \ge \tilde{\alpha} u_1$ in (0,1), a contradiction.

Thus $\alpha \ge 1$ and so $u = u_1$ in (0,1). Using the formulas for v and v_1 it follows that $v = v_1$ in (0,1), completing the proof of Theorem1.

2. References

- [1] R. Dalmasso. Existence and uniquness of positive radial solutions for the Land-Emden System, *Nonlinear Anal.* 2004, **57**: 341-348.
- [2] R. Dalmasso, Existence and uniquness of positive solutions of semilinear elliptic systems, *Nonlinear Anal.* 2000, **39**: 559-568.
- [3] D. D. Hai. Uniqueness of positive solutions for a class of semilinear elliptic systems, *Nonlinear Anal.* 2003, **52**: 595-603.
- [4] D. D. Hai, R. Shivaji. Uniqueness of positive solutions for a class of semipositone elliptic systems, *Nonlinear Anal.* 2007, **62**(2): 369-408.
- [5] M. Chhetri, P. Girg. Nonexistence of nonnegative solutions for a class of (p-1)-superhomogeneous semipositone problems, *J. Math. Anal. Appl.* 2006, **322**: 957-963.
- [6] Yulian An, Uniqueness of positive solutions for a class of elliptic systems, J. Math. Anal. Appl. 2006, 322: 1071-1082
- [7] W. C. Ttoy. Symmetry properties in systems of semilinear elliptic equations, *J. Differential equations*. 1981, **42**: 400-413.