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Abstract. The original rough set model cannot be used to deal with the incomplete information systems. 
Nevertheless, by relaxing the indiscernibility relation to more general binary relations, many improved rough 
set models have been successfully applied into the incomplete information systems for knowledge acquisition. 
This article presents an explorative research focusing on the transition from incomplete decision system to a 
more complex system---the incomplete ordered decision system. In such incomplete decision system, all 
attributes have preference-ordered domains. With introduction of the concept of approximate distribution 
reduct into the incomplete ordered decision system, four new notions of approximate distribution reduct are 
proposed. They are the minimal subsets of condition attributes, which preserve lower and upper 
approximations of all upward unions and downward unions of the decision classes respectively. The 
judgment theorems and discernibility matrices associated with these approximate distribution reducts are also 
obtained. For further illustration, an example is analyzed. The research is meaningful both in the theory and 
in applications for the acquisition of rules in complex information systems. 

Keywords: incomplete information system, incomplete ordered decision system, approximate distribution 
reduct, dominance-based rough set. 

1. Introduction  
It is well known that Pawlak’s rough set1-4 generalizes the classical set theory by allowing an alternative 

to formulate set with imprecise boundaries. In recent years, the rough set theory has been widely used in 
various fields, such as machine learning5, data mining6, pattern recognition7 and knowledge discovery, etc. 
An important concept related to rough set is the information system (attribute-value system). It is noticeable 
that the traditional rough set model can only be used in the analysis of data presented in terms of the 
complete information, i.e. every object in the universe has a real and certain value for every attribute. 
However, the incomplete information systems5,8-17

 other than the complete information systems can be seen 
everywhere in real-world applications. By an incomplete information system we mean a system with 
unknown attribute value13. In this paper, we assume that the unknown values are regard as lost8. Incomplete 
information system in which all unknown values are lost, from the viewpoint of rough set theory, was 
studied for the first time in Ref. 9. Subsequently, Kryszkiewicz11 formed her expanded rough set based on 
the tolerance relation (reflexive, symmetric). The tolerance relation is corresponding to the idea that 
unknown value is just “missed”, but it does exist. It is our imperfect knowledge that obliges us to deal with a 
partial information table. Each object potentially has a complete description, but we just miss some 
information for the moment16. Therefore, the unknown value is considered as to be comparable to any one of 
the values in the domain of the corresponding attribute. 

Nevertheless, the tolerance relation is failing at the point where attributes with preference-ordered 
domains (criteria)18-20. Attributes with preference-ordered domains are commonly seen in the Multi-
Criteria Decision Making (MCDM)18,19 problems, like sorting, choice or ranking. In this paper, we call the 
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incomplete information system in which all attributes are criteria the Incomplete Ordered Information 
System (IOIS). In Ref. 14, Shao has made an investigation of the Dominance-based Rough Set Approach 
(DRSA) to the IOIS. He did not only present the new definition of dominance relation in IOIS, but also study 
the approaches to knowledge reductions in IOIS and consistent Incomplete Ordered Decision System (IODS). 
However, Shao’s research is not so all-around because most of the decision systems are inconsistent other 
than consistent for various factors21 such as noise in data, compact representation, prediction capability, etc. 
Therefore, new approach to knowledge reduction in the inconsistent IODS has become a necessity.  

At the present time, without consideration of the preference-ordered domains of attributes, many authors 
have studied different forms of knowledge reduction in complete inconsistent system. For instance, 
Kryszkiewicz investigated and compared five notions of knowledge reduction in Ref. 22. Wang studied the 
relationship of the definitions of rough reduction in algebra view and information view23. Ślęzak proposed 
the concept of approximate entropy reduct in Ref. 24. Zhang proposed the (maximum) distribution reducts21. 
Mi defined the approximate distribution reduct based on variable precision rough set model25. In this paper, 
the approximate distribution reduct will be introduced into our IODS because it has significant advantage: an 
approximate distribution reduct of a decision system is a minimal subset of condition attributes which 
preserves the lower or upper approximation of all decision classes. Therefore, it can keep decision rules 
derived from the approximate distribution consistent set are compatible with the ones derived from original 
system25.  

What should be noticed is that the knowledge approximated in the IODS are collections of upward and 
downward unions of decision classes and the granules of knowledge are sets of objects defined using a 
dominance relation. Therefore, it is required to provide new definitions of approximate distribution reduct in 
the IODS. In this paper, we will present four new notions of approximate distribution reduct. These 
approximate distribution reducts are the minimal subsets of attributes, which preserve the lower and upper 
approximation of all upward and downward unions of classes respectively. The corresponding judgment 
theorems and discernibility matrices associated with these reducts are also obtained. So we provide practical 
approaches to knowledge reductions in the IODS. 

2. Incomplete Decision System 
A complete decision system is a 4-tuple Ω=<U, AT∪D, V, f >, where U is a non-empty finite set of 

objects called universe and AT is a non-empty finite set of condition attributes, such that ∀a∈AT : U→ Va 
where Va is the domain of single attribute a, D is a non-empty finite set of decision attributes where AT∩D = 
∅, V is regarded as the domain of all attributes and then V= VAT∪VD . Moreover, for ∀x∈U, let us denote 
f (x, a) by the value of x holds on a (a∈AT∪D). 

A decision system is called an incomplete one iff ∃ x∈U and ∃a∈AT such that f (x, a) = *, the special 
value“*” is used to indicate that the value of a condition attribute is unknown for the object. It is assumed 
here that the unknown value is just “missed”, but it does exist. Thus, V= VAT∪VD∪{*}. The incomplete 
decision system is still denoted without confusion by Ω=<U, AT∪D, V, f >. 

Definition 1 11. Let Ω be an incomplete decision system, then for ∀A ⊆ AT, the tolerance relation is 
defined as follows: 

T(A)= {(x, y) ∈U 2 : ∀a ∈A, f (x, a) = f (y, a) ∨ f (x, a) = *∨ f (y, a) = *}. 
It is clear that the tolerance relation T(A) is only reflexive and symmetric, but not necessarily transitive. 

Furthermore, for ∀x∈U, let us denote TA(x) by the set of objects for which T(A) holds, i.e. TA(x)={y∈U : (x, 
y)∈T(A)}. In other words, TA(x) is the maximal set of objects which are possibly indiscernible by A with x, it 
is called the tolerant class of x. 

Derivation of decision rules from decision systems is to examine whether the objects possessing the 
same condition attribute values will posses the same decision attribute values. So the criterion of 
classification is to classify the objects possessing the same attribute values to the same class. Kryszkiewicz 
made use of TA(x) to classify the universe of discourse in the incomplete information systems, but such a 
classification approach has the following two drawbacks10:  

(1) objects in TA(x) may have no one common attribute value, because objects in TA(x) are all tolerant 
with x but may not tolerant with each other;  

(2) for x ≠ y, there may exist inclusion relation between TA(x) and TA(y).  
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To solve the above two problems, Leung made used of the maximal tolerance classification approach to 
classify objects in the incomplete information system. The maximal tolerance class, which is called maximal 
consistent block13, is a well-known concept in discrete mathematics. For more details about knowledge 
reduction based on maximal consistent block, please quote Ref. 10, 13. 

3. Incomplete Ordered Decision System 

3.1.  Ordered Decision System 
Dominance-based Rough Sets Approach (DRSA) was firstly proposed by Greco to take into account the 

ordering properties of criteria. This innovation is mainly based on substitution of the indiscernibility relation 
by a dominance relation20 and as a result, it can be used in multi-criteria decision analysis. A decision system 
is called an Ordered Decision System (ODS) iff condition and decision attributes are all criteria, it is denoted 
by ΩO. 

In an ordered decision system ΩO, let ; a be a weak preference relation on U (often called outranking) 
representing a preference on the set of objects with respect to criterion a ; x; a y means “x is at least as good 
as y with respect to criterion a”. We say that x dominates y with respect to A ⊆ AT, (or, x A-dominates y), 
denoted by x DA y, if x; a y for all a ∈A. Assuming, without loss of generality, that domains of all criteria are 
ordered such that preference increases with the value, x DA y is equivalent to: f (x, a) ≥ f (y, a). Therefore, the 
“granules of knowledge” used in DRSA are20: 

• A set of objects dominating x, called A-dominating set, DA
+(x)={y∈U : y DA x }. 

• A set of objects dominated by x, called A-dominated set, DA
－(x)={y∈U : x DA y }. 

Moreover, we also assume here that the set of decision attributes D makes a partition of U into a finite 
number of classes. Let CL={CLt, t∈T }, T={1, 2, …, n}, be a set of these classes that are ordered, that is, for 
∀ r, s∈T such that r > s, the objects from CLr are preferred to the objects from CLs. The set to be 
approximated is an upward union and a downward union of classes, which are defined respectively as CL≥t 
=∪s≥t CLs , CL≤t = ∪s≤t CLs, t =1, …, n. The statement x∈CL≥t means “x belongs to at least class CL≥t”, 
where x∈CL≤t means “x belongs to at most class CL≥t” 20. 

Definition 2 20. Let ΩO be an ODS in which A ⊆ AT, for ∀CL≥
t (1≤ t ≤ n), the lower and upper 

approximate sets are defined as: 
A (CL≥

t)={x∈U : DA
+(x)⊆CL≥

t
 },   A (CL≥

t)={x∈U : DA
－(x)∩CL≥

t
 ≠∅ }, 

for ∀ CL≤
t (1≤ t ≤ n), the lower and upper approximate sets are defined as: 

A (CL≤
t)={x∈U : DA

－(x)⊆CL≤
t
 },   A (CL≤

t)={x∈U : DA
+(x)∩CL≤

t
 ≠∅ }. 

3.2.  DRSA in Incomplete Ordered Decision System 
Similar to Section 2, an ordered decision system is called an incomplete one iff ∃ x∈U and ∃a∈AT such 

that f (x, a) = *. The Incomplete Ordered Decision System (IODS) is still denoted without confusion by ΩO. 
By considering the unknown values “*”, the definition of dominance relation should be improved. 

Definition 3 14. Let ΩO be an IODS in which A ⊆ AT, then the dominance relation in terms of A is 
defined as follows: 

R≥(A)= {(x, y) ∈U 2 : ∀a ∈A, f (x, a) ≥ f (y, a) ∨ f (x, a) = *∨ f (y, a) = *} 
It is clear that dominance relation R≥(A) is only reflexive, but not necessarily symmetric and transitive.  
Therefore, let us denote by 
• [x]≥A={y∈U : (y, x)∈R≥(A) } is the set of objects that may dominating x in terms of A, 
• [x]≤A={y∈U : (x, y)∈R≥(A) } is the set of objects that may be dominated by x in terms of A.  

     Theorem 1.  Let ΩO be an IODS in which A ⊆ AT, then we have R≥(A)=∩a∈A R≥(a), R≥(AT) ⊆ 
R≥(A). 

Definition 4.Let ΩO be an IODS in which A ⊆ AT, for ∀CL≥
t (1≤ t ≤ n), the lower and upper 

approximate sets are defined as: 
A~(CL≥

t)={x∈U : [x]≥A ⊆CL≥
t
 },   A~(CL≥

t)={x∈U : [x]≤A∩CL≥
t
 ≠∅ }, 
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for ∀ CL≤

t (1≤ t ≤ n), the lower and upper approximate sets are defined as: 
A~(CL≤

t)={x∈U : [x]≤A ⊆CL≤
t
 },   A~(CL≤

t)={x∈U : [x]≥A∩CL≤
t
 ≠∅ }. 

Theorem 2.  Let Ω  be an IODS in which A ⊆ AT, then we have O

A~(CL≥
t)= ,   A≥

∈ ≥
A

CLx
x

t

][∪ ~(CL≤
t)= . ≤

∈ ≤
A

CLx
x

t

][∪

Proof: By Def. 4, for ∀x∈A~(CL≥t), we have [x]≤A∩CL≥t ≠∅, it follows that there must be y∈U such 

that y∈[x]≤A and y∈CL≥t , that is, x∈[y]≥A , x∈ . Conversely, for ∀y∈ , we have 
y∈[x]≥A and x∈CL≥t , then x∈[y]≤A , that is, [y]≤A∩CL≥t ≠∅, i.e. y∈A~(CL≥t). From discussion above, 

A~(CL≥t)== . Similarity, it is not difficult to prove that A~(CL≤t)= . 

≥

∈ ≥
A

CLy
y

t

][∪ ≥

∈ ≥
A

CLx
x

t

][∪

≥

∈ ≥
A

CLx
x

t

][∪ ≤

∈ ≤
A

CLx
x

t

][∪

Theorem 3.  Let Ω  be an IODS in which A ⊆ AT, then we have the following: O

A～(CL≥
t) =U－A～(CL≤

t-1), t =2, …n ,  A～(CL≤
t) = U－A～(CL≥

t+1), t =1, …n－1, 
A～(CL≥

t) =U－A～(CL≤
t-1), t =2, …n ,  A～(CL≤

t) = U－A～(CL≥
t+1), t =1, …n－1. 

The dominance-based rough approximations of upward and downward unions of classes can serve to 
induce a generalized description of objects contained in the data table in terms of if--then decision rules. 
Intuitively, this is linked to the interpretation of the rough approximations in terms of implications20: 

• A~(CL≥
t)={x∈U : (y, x)∈R≥(A)⇒y∈CL≥

t}, for t =2,…, n . 
• A~(CL≥

t)={x∈U : if (y, x)∈R≥(A), then y could belong CL≥
t }, for t =2,…, n . 

• A~(CL≤
t)={x∈U : (x, y)∈R≥(A)⇒y∈CL≤

t }, for t =1,…, n-1. 
• A~(CL≤

t)={x∈U : if (x, y)∈R≥(A), then y could belong CL≤
t }, for t =1,…, n-1. 

     Definition 5. Let ΩO be an IODS, then ΩO is called a consistent one iff R≥(AT)⊆ R≥(D) where D is 
the set of decision attributes and R≥(D)= {(x, y) ∈U 2 : ∀d ∈D, f (x, d) ≥ f (y, d) }. 
     Definition 6. Let ΩO be a consistent IODS in which A ⊆ AT, then we say that A is a reduct of ΩO if 
the following two conditions hold: 

•  R≥(A)⊆ R≥(D), 
•  R≥(B)⊄R≥(D) for ∀B⊂A. 
In Def. 6, the reduct is the minimal subset of the condition attributes that preserves the consistent 

characteristic of the incomplete ordered decision system. Therefore, this kind of knowledge reduction can be 
only used in the analysis of consistent IODS.  

As an example, Tab.1 show us an inconsistent incomplete ordered decision system. The director of a 
school must give a global evaluation to some students. This evaluation should be based on the level in 
Mathematics, Physics, History and Literature. However, some of evaluations are missing for some students. 
As we notice that (x7, x14)∈R≥(AT) while (x7, x14)∉R≥(e), this situation is the same to the pair of (x4, x9), 
in other words, R≥(AT)⊄R≥(D) holds in Tab.1. The approach to knowledge reduction in Def. 6 cannot be 
used in it for acquiring reduct. It is required to provide new definitions of knowledge reduction in the IODS. 
This is what will be discussed in the following. 
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Table.1.  Student evaluations with missing values 

U Mathematics (a) Physics (b) History (c) Literature (d) Global evaluation (e) 
x1 Medium Medium Bad Bad Bad 
x2 Bad Good Bad Bad Bad 
x3 Bad Bad Medium Bad Bad 
x4 Medium Medium Good * Bad 
x5 Good Medium Bad Medium Medium 
x6 Medium Good Bad Medium Medium 
x7 Good Medium Medium Good Medium 
x8 Good * Medium Bad Medium 
x9 Medium Medium Medium Good Medium 
x10 Good Bad Good Bad Medium 
x11 Medium * Good Bad Medium 
x12 Good Bad Medium Good Good 
x13 Medium Good Medium Good Good 
x14 Good Medium * Good Good 
x15 Medium Good Good Good Good 

4. Approximate distribution Reduct 
In this section, we will make a further investigation of the approach to knowledge reduction in the IODS. 

In classical complete decision system, the concept of approximate distribution reduct25 was firstly proposed 
by Mi. Approximate distribution reduct is based on the fundamental concept of Pawlak’s rough set theory, i.e. 
lower and upper approximations. It is the minimal subset of condition attributes, which preserves the lower 
or upper approximate sets of all decision class. An important characteristic of approximate distribution 
reduct is that it can keep decision rules derived from the approximate distribution consistent set are 
compatible with the ones derived from original system.  

In our IODS, attribute values are missing in some cases while the set that will be approximated is the 
upward or downward union of the decision classes. Therefore, how to expand the concept of approximate 
distribution reduct in the IODS is what will be discussed in the following.  
     Definition 7. Let ΩO be an IODS in which A ⊆ AT, let us denote by  

L≥
A ={A～(CL≥

1), A～(CL≥
2),…, A～(CL≥

n)},  L≤
A={A～(CL≤

1), A～(CL≤
2), …, A～(CL≤

n)}, 
H≥

A={A～(CL≥
1), A～(CL≥

2),…, A～(CL≥
n)},  H≤

A={A～(CL≤
1), A～(CL≤

2), …, A～(CL≤
n)}, 

then  
1. If L≥

A = L≥
AT , then A is referred to as the ≥-lower approximate distribution consistent set. If L≥

A = 
L≥

AT and L≥
B ≠ L≥

A for ∀B⊂A, then A is referred to as a ≥-lower approximate distribution reduct of ΩO. 
2. If L≤

A = L≤
AT , then A is referred to as the ≤-lower approximate distribution consistent set. If L≤

A = 
L≤

AT and L≤
B ≠ L≤

A for ∀B⊂A, then A is referred to as a ≤-lower approximate distribution reduct of ΩO. 
3. If H≥

A = H≥
AT , then A is referred to as the ≥-upper approximate distribution consistent set. If H≥

A = 
H≥

AT and H≥
B ≠ H≥

A for ∀B⊂A, then A is referred to as a ≥-upper approximate distribution reduct of 
ΩO. 

4. If H≤
A = H≤

AT , then A is referred to as the ≤-upper approximate distribution consistent set. If H≤
A = 

H≤
AT and H≤

B ≠ H≤
A for ∀B⊂A, then A is referred to as a ≤-upper approximate distribution reduct of 

ΩO. 
According to the above definition, we can see that a ≥-lower(upper) approximate distribution reduct is 

the minimal subset of condition attributes preserves lower(upper) approximations of all upward unions of 
decision classes.  

On the other hand, a ≤-lower(upper) approximate distribution reduct is the minimal subset of condition 
attributes preserves lower(upper) approximations of all downward unions of decision classes. 
     Theorem 4. Let ΩO be an IODS in which A ⊆ AT, then  

1.  A is ≥-lower approximate distribution reduct ⇔ A is ≤-upper approximate distribution reduct ; 
2. A is ≤-lower approximate distribution reduct ⇔ A is ≥-upper approximate distribution reduct . 
Proof: 1. “⇒” : If A is ≥-lower approximate distribution reduct, then we have L≥A = L≥AT and L≥B ≠ 

L≥A for ∀B⊂A, i.e., A～(CL≥ t)= AT～(CL≥t) for 1≤ t ≤ n. Moreover, by Theorem 3, we have A～(CL≥t) 
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=U－A～(CL≤t-1), t =2, …n , then A～(CL≤t-1)=      AT～(CL≤t-1) holds for t =2, …n. Since CL≤n=U, 
then A～(CL≤n)= AT～(CL≤n)= U. Thus, H≤A = H≤AT and H≤B ≠ H≤A for ∀B⊂A hold, A is ≤-upper 
approximate distribution reduct. 

“⇐” : If A is ≤-upper approximate distribution reduct, then we have H≤A = H≤AT and H≤B ≠ H≤A for 
∀B⊂A, i.e., A~(CL≤t)= AT~(CL≤t) for 1≤ t ≤ n. Moreover, by Theorem 3, we have A～(CL≤t) = U－A～
(CL≥t+1), t =1, …n－1, then A～(CL≥t+1)= AT～(CL≥t+1) holds for t =1, …n－1. Since CL≥1=U, then 
A～(CL≥1)= AT～(CL≥1) =U. Thus, L≥A = L≥AT and L≥B ≠ L≥A for ∀B⊂A hold, A is ≥-lower 
approximate distribution reduct. 

Proof 2. The proof of 2 is similar to the proof of 1. 
     Definition 8. Let ΩO be an IODS in which A ⊆ AT, denote by 

D1
≥ = {(x, y) : ∀CL≥

t, ∀x∈AT～(CL≥
t), ∀y∈U－CL≥

t}, 
D1

≤ = {(x, y) : ∀CL≤
t, ∀x∈AT～(CL≤

t), ∀y∈U－CL≤
t }, 

D2
≥ = {(x, y) : ∀CL≥

t, ∀x∈U－AT～(CL≥
t), ∀y∈CL≥

t }, 
D2

≤ = {(x, y) : ∀CL≥
t, ∀x∈U－AT～(CL≤

t), ∀y∈CL≤
t }, 

Where 

⎪⎩

⎪
⎨
⎧

∉

∈>∈
=

≥

≥
≥

1

1
1

),(,

),( }, ),(),(:{
),(

DyxAT

DyxayfaxfATa
yxD  

⎪⎩

⎪
⎨
⎧

∉

∈<∈
=

≤

≤
≤

1

1
1

),(,

),( }, ),(),(:{
),(

DyxAT

DyxayfaxfATa
yxD  

⎪⎩

⎪
⎨
⎧

∉

∈<∈
=

≥

≥
≥

2

2
2

),(,

),( }, ),(),(:{
),(

DyxAT

DyxayfaxfATa
yxD  

⎪⎩

⎪
⎨
⎧

∉

∈>∈
=

≤

≤
≤

2

2
2

),(,

),( }, ),(),(:{
),(

DyxAT

DyxayfaxfATa
yxD  

then Dl 
≥(x, y) are called ≥-lower(upper) approximate distribution discernibility attributes sets respectively, 

where l = 1, 2, Dl 
≤ (x, y) are called ≤-lower(upper) approximate distribution discernibility attributes sets, 

respectively, Dl 
≥ are called ≥-lower(upper) approximate distribution discernibility matrices respectively and 

Dl 
≤ are called ≤-lower(upper) approximate distribution discernibility matrices respectively. 

     Theorem 5. Let ΩO be an IODS in which A ⊆ AT, then 
1. A is ≥-lower approximate distribution consistent set ⇔ for ∀(x, y)∈D1

≥, A∩D1
≥ (x, y) ≠ ∅ holds; 

2. A is ≤-lower approximate distribution consistent set ⇔ for ∀(x, y)∈D1
≤, A∩D1

≤ (x, y) ≠ ∅ holds; 
3. A is ≥-upper approximate distribution consistent set ⇔ for ∀(x, y)∈D2

≥, A∩D2
≥ (x, y) ≠ ∅ holds; 

4. A is ≤-upper approximate distribution consistent set ⇔ for ∀(x, y)∈D2
≤, A∩D2

≤ (x, y) ≠ ∅ holds. 
Proof 1: “⇒”: Suppose that x∈AT～(CL≥t), y∈U－CL≥t such that A∩D1≥ (x, y) = ∅, then there must 

be (y, x)∈R≥(A), y∈[x]≥A .  Since A is ≥-lower approximate distribution consistent set, then for ∀CL≥t,  
A～(CL≥ t)= AT～(CL≥t) holds, i.e. [x]≥A ⊆CL≥t ⇔ [x]≥AT ⊆CL≥t , y∈CL≥t , this is contrary to the 
assumption that y∈U－CL≥t .  

“⇐”: Suppose that A is not the ≥-lower approximate distribution consistent set, then L≥A ≠ L≥AT holds. 
Since A ⊆ AT, then there must be CL≥t such that [x]≥AT ⊆CL≥t and [x]≥A ⊄CL≥t . Here, [x]≥AT ⊆CL≥t 
⇒ x∈ AT～(CL≥t). On the other hand, [x]≥A ⊄CL≥t , then there must be y∈U such that (y, x)∈ R≥(A) and 
y∈U－CL≥t , that is, A∩D1≥ (x, y)=∅. From discussion above, we have the following : for ∀CL≥t, 
∀x∈AT～(CL≥t), ∀y∈U－CL≥t , if A∩D1≥ (x, y) ≠ ∅, then A is ≥-lower approximate distribution 
consistent set. 

Proof 2: The proof of 2 is similar to the proof of 1. 
Proof 3: “⇒”: Suppose that x∈U－AT～(CL≥t), y∈CL≥t such that A∩D2≥ (x, y) = ∅, then there must 

JIC email for contribution: editor@jic.org.uk 



Journal of Information and Computing Science, 3 (2008) 3, pp 189-198 
 

195

be (x, y)∈R≥(A), y∈[x]≤A . Since A is ≥-upper approximate distribution consistent set, then for ∀CL≥t, A～
(CL≥ t) = AT～(CL≥t) holds, i.e. [x]≤A∩CL≥t =∅ ⇔  [x] ≤AT∩CL≥t =∅, y∉CL≥t , this is contrary to the 
assumption that y∈CL≥t .  

“⇐”: Suppose that A is not the ≥-upper approximate distribution consistent set, then H≥A ≠ H≥AT holds. 
Since A ⊆ AT, then there must be CL≥t such that [x]≤AT∩CL≥t = ∅ and [x]≤A∩CL≥t ≠∅. Here, [x]≤AT
∩CL≥t = ∅ ⇒ x∈U－AT～(CL≥t). On the other hand, [x]≤A∩CL≥t ≠∅ , then there must be y∈U such 
that (x, y)∈R≥(A)and y∈CL≥t , that is, A∩D2≥ (x, y)=∅. From discussion above, we have the following : 
for ∀CL≥t, ∀x∈U－AT～(CL≥t), ∀y∈CL≥t , if A∩D2≥ (x, y) ≠ ∅, then A is ≥-upper approximate 
distribution consistent set. 

Proof 4: The proof of 4 is similar to the proof of 3. 
     Definition 9. Let ΩO be an IODS, denote by 

F1
≥ =∨{∧{a: a∈D1

≥ (x, y)}}, F1
≤ =∨{∧{a: a∈D1

≤ (x, y)}}, 
F2

≥ =∨{∧{a: a∈D2
≥ (x, y)}}, F2

≤ =∨{∧{a: a∈D2
≤ (x, y)}}, 

then Fl 
≥ are called the ≥-lower(upper) distribution discernibility functions where l = 1, 2, Fl 

≤ are called the ≤-
lower(upper) distribution discernibility functions. 

Theorem 6.  Let ΩO  be an IODS,  the minimal disjunctive normal form of each discernibility function 
Fl 

≥, Fl 
≤ (l = 1, 2) is 

Fl
≥ = , F) )(

11

≥

==
∧∨ ls

q

s

t

k
a

k

l 
≤ = , (

11

≤

==
∧∨ ls

q

s

t

k
a

k

denoted by Blk
≥ ={ : s = 1, 2, …, q≥

lsa k}, Blk
≤ ={ : s = 1, 2, …, q≤

lsa k}, then {Blk
≥: k=1, 2, …, t} are, 

respectively, the set of all the ≥-lower(upper) distribution reducts, {Blk
≤: k=1, 2, …, t} are, respectively, the 

set of all the ≤-lower(upper) distribution reducts. 
Proof: It follows directly from Theorem 5 and the definition of minimal disjunctive normal forms of the 

discernibility functions. 

5. An Illustrative Example 
Let us employ the inconsistent incomplete ordered decision system showed in Tab.1 to illustrate the 

approach to knowledge reduction. 
In Tab.1, U={x1, x2, …, x15} is the universe; AT={a, b, c, d} is the set of condition attributes where a = 

Mathematics, b= Physics, c= History, d=Literature; D={e} is the decision attribute such that e = Global 
evaluation; Va= Vb = Vc = Vd = Ve ={Bad, Medium, Good} is the domain of all attributes. 

Suppose that the decision attribute e partitions the universe into the set such that CL={CL1, CL2, 
CL3}={{Bad}, {Medium}, {Good}}={{x1, x2, x3, x4}, {x5, x6, x7, x8, x9, x10, x11}, {x12, x13, x14, x15}}. 
Therefore, 

• CL≤
1= CL1, i.e. the class of (at most) bad students, 

• CL≤
2= CL1∪CL2, i.e. the class of at most medium students, 

• CL≥
2= CL2∪CL3, i.e. the class of at least medium students, 

• CL≥
3= CL3, the class of (at least) good students. 

By Def. 3, we have  
[x1]≥AT ={x1, x4, x5, x6, x7, x8, x9, x11, x13, x14, x15}, [x2]≥AT ={x2, x6, x7, x8, x11, x13, x15}, 

[x3]≥AT ={x3, x4, x8, x10, x11, x12, x13, x14, x15}, [x4]≥AT ={x4, x11, x14, x15}, [x5]≥AT ={x5, x7, 
x14}, [x6]≥AT ={x6, x13, x15}, [x7]≥AT ={x7, x14}, [x8]≥AT ={x7, x8, x10, x12, x14}, [x9]≥AT ={x4, x7, 
x9, x13, x14, x15}, [x10]≥AT ={x10, x14}, [x11]≥AT ={x4, x10, x11, x14, x15}, [x12]≥AT ={x7, x12, 
x14}, [x13]≥AT ={x13, x15}, [x14]≥AT ={x7, x14}, [x15]≥AT ={x15}. 

[x1]≤AT ={x1}, [x2]≤AT ={x2}, [x3]≤AT ={x3}, [x4]≤AT ={x1, x3, x4, x9, x11}, [x5]≤AT ={x1, x5}, 
[x6]≤AT ={x1, x2, x6}, [x7]≤AT ={x1, x2, x5, x7, x8, x9, x12, x14}, [x8]≤AT ={x1, x2, x13, x8}, [x9]≤AT 
={x1, x3, x9}, [x10]≤AT ={x3, x8, x10, x11}, [x11]≤AT ={x1, x2, x3, x4, x11}, [x12]≤AT ={x3, x8, x12}, 
[x13]≤AT ={x1, x2, x3, x6, x9, x13}, [x14]≤AT ={x1, x3, x4, x5, x7, x8, x9, x10, x11, x12, x14}, [x15]≤AT 
={x1, x2, x3, x4, x6, x9, x11, x13, x15}. 
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By computation, we have 
A～(CL≥1) =U, A～(CL≥2) ={x5, x6, x7, x8, x10, x12, x13, x14, x15}, A～(CL≥3) ={x13, x15}, 
A～(CL≤1) ={x1, x2, x3}, A～(CL≤2) ={x1, x2, x3, x4, x5, x6, x9, x10, x11}, A～(CL≤3) =U, 
A～(CL≥1) =U, A～(CL≥2) ={x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15}, A～(CL≥3) ={x7, x8, 
x12, x13, x14, x15}, 
A～(CL≤1) ={x1, x2, x3, x4, x9}, A～(CL≤2) ={x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x14}, 
A～(CL≤3) =U. 

According to the above results, we have  
D1≥ = D2≤ ={{x5, x1},{x5, x2},{x5, x3},{x5, x4},{x6, x1},{x6, x2},{x6, x3},{x6, x4},{x7, x1},{x7, 
x2},{x7, x3},{x7, x4},{x8, x1},{x8, x2},{x8, x3},{x8, x4},{x10, x1},{x10, x2},{x10, x3},{x10, x4},{x12, 
x1},{x12, x2},{x12, x3},{x12, x4},{x13, x1},{x13, x2},{x13, x3},{x13, x4},{x14, x1},{x14, x2},{x14, 
x3},{x14, x4},{x15, x1},{x15, x2},{x15, x3},{x15, x4},{x13, x5},{x13, x6},{x13, x7},{x13, x8},{x13, 
x9},{x13, x10},{x13, x11}, {x15, x5},{x15, x6},{x15, x7},{x15, x8},{x15, x9},{x15, x10},{x15, x11}}. 
D1≤ = D2≥ ={{x1, x5},{x1, x6},{x1, x7},{x1, x8},{x1, x9},{x1, x10},{x1, x11},{x1, x12},{x1, x13},{x1, 
x14},{x1, x15},{x2, x5},{x2, x6},{x2, x7},{x2, x8},{x2, x9},{x2, x10},{x2, x11},{x2, x12},{x2, x13},{x2, 
x14},{x2, x15},{x3, x5},{x3, x6},{x3, x7},{x3, x8},{x3, x9},{x3, x10},{x3, x11},{x3, x12},{x3, x13},{x3, 
x14},{x3, x15},{x4, x12},{x4, x13},{x4, x14},{x4, x15},{x5, x12},{x5, x13},{x5, x14},{x5, x15},{x6, 
x12},{x6, x13},{x6, x14},{x6, x15},{x9, x12},{x9, x13},{x9, x14},{x9, x15},{x10, x12},{x10, x13},{x10, 
x14},{x10, x15},{x11, x12},{x11, x13},{x11, x14},{x11, x15}}. 

Therefore, we can get the ≥-lower approximate distribution discernibility matrix of Tab.1 such as Tab.2 
shows. What should be noticed is that only pairs in D1≥ are presented in Tab.2. 

Based on Def. 9, we have F1≥ = F2≤ = a∧b∧(a∨d)∧(a∨b)∧(a∨c)∧(b∨d)∧ (b∨c) ∧(c∨d) ∧(a∨b∨d) 
∧(a∨c∨d)∧(b∨c∨d)= a∧b∧d, that is, {a, b, d} is the ≥-lower approximate distribution reduct and ≤-upper 
approximate distribution reduct of Tab.1.  

Similarly, it is not difficult to work out that {a, b, c, d} is the ≤-lower approximate distribution reduct 
and ≥-upper approximate distribution reduct of Tab.1. In other words, no attribute can be omitted in order to 
keep the invariability of the lower approximate sets of all downward unions of decision classes and the upper 
approximate sets of all upward unions of decision classes. 

Based on the ≥-lower approximate distribution reduct, we can get the following certain rules: 
• If Mathematics is good, both Physics and Literature are medium or better, then Global evaluation is 

medium or better.    / / Supported by the objects x5 and x7 in A～(CL≥
2). 

• If both Mathematics and Literature are medium or better, Physics is good, then Global evaluation is 
medium or better.    / / Supported by the objects x6, x13, x15 in A～(CL≥

2). 
• If Mathematics is good, both Physics and Literature are bad or better, then Global evaluation is 

medium or better.    / / Supported by the objects x8, x10, x12, x14 in A～(CL≥
2). 

• If Mathematics is medium or better, both Physics and Literature are good, then Global evaluation is 
good.    / / Supported by the objects x13, x15 in A～(CL≥

3). 
• Based on the ≤-lower approximate distribution reduct, we can get the following certain rules: 
• If both Mathematics and Physics are medium or worse, both History and Literature are bad, then 

Global evaluation is bad.     / / Supported by the object x1 in A～(CL≤
1). 

• If Mathematics, History and Literature are all bad, Physics is bad or worse, then Global evaluation is 
bad.     / / Supported by the object x2 in A～(CL≤

1). 
• If Mathematics, Physics and Literature are all bad, History is medium or worse, then Global 

evaluation is bad.     / / Supported by the object x3 in A～(CL≤
1). 

• If both Mathematics and Physics are medium or worse, both History and Literature are good or worse, 
then Global evaluation is medium or worse.     / / Supported by the objects x1, x3, x9, x4 in A～(CL≤

2). 
• If both Mathematics and Literature are medium or worse, Physics is good or worse and History is bad, 

then Global evaluation is medium or worse.     / / Supported by the objects x2, x6 in A～(CL≤
2). 
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• If Mathematics is good or worse, both Physics and Literature are medium or worse and History is bad, 
then Global evaluation is medium or worse.     / / Supported by the object x5 in A～(CL≤

2). 
• If both Mathematics and Physics are good or worse, History is medium or worse and Literature is bad, 

then Global evaluation is medium or worse.     / / Supported by the object x8 in A～(CL≤
2). 

• If both mathematics and History are good or worse, both Physics and Literature are bad, then Global 
evaluation is medium or worse.     / / Supported by the object x10 in A～(CL≤

2). 
• If Mathematics is medium or worse, both Physics and History are good or worse, Literature is bad, 

then Global evaluation is medium or worse.     / / Supported by the object x11 in A～(CL≤
2). 

Table 2. ≥-lower approximate distribution discernibility matrix of Table 1 

      y 
x x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x1                
x2                
x3                
x4                
x5 a,d a,d a,b,d a            
x6 b,d a,d a,b,d b            
x7 a,c,d a,c,d a,b,d a            
x8 a a,b a a            
x9                
x10 a,c a,c a,c a            
x11                
x12 a,c,d a,c,d a,d a            
x13 b,c,d a,c,d a,b,d b b,c,d b,d b d b b,d d     
x14 a,d a,d a,b,d a            
x15 b,c,d a,c,d AT b b,c,d c,d b,c c,d b,c b,d d     

6. Conclusions 
To deal with the incomplete information system by rough set theory, many researchers have generalized 

the indiscernibility relation to more general relations. It is noticeable that the attributes in the incomplete 
information system have not been considered as the criteria in most recent research literatures. Based on the 
expanded dominance relation that was proposed in Ref. 14, this paper presents an explorative research 
focusing on the approach to knowledge reduction in the incomplete decision system in which all attributes 
are regarded as criteria. Four new notions of approximate distribution reduct are proposed in the IODS. 
These approximate distribution reducts are the minimal sets of attributes, which preserve lower and upper 
approximations of all the downward and upward unions of decision classes respectively. From discussion 
above, this paper provides a qualitative theoretical framework that may be important for analysis of rules’ 
acquisition in incomplete information system with the ordering properties of criteria.  

In our further research, we will develop the proposed approaches to knowledge reduction to the 
incomplete ordered decision system in which unknown values have some other semantic explanations, e.g. 
the unknown values are “do not care” conditions 8.  
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