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Abstract. Runge-Kutta discontinuous Galerkin (RKDG) finite element method for hyperbolic conservation 
laws is a high order method, which can handle complicated geometries flexibly and treat boundary conditions 
easily. In this paper, we propose a new numerical method for treating interface using the advantages of 
RKDG finite element method. We use level set method to track the moving interface. In every time step, a 
Riemann problem at the interface is defined. The two cells adjacent to the interface are computed using the 
Riemann problem solver. If the interface crosses a cell in the next time step, the values of the flow variables 
of the cell crossed are modified through linear interpolation. Othewise, we do nothing.  
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1. Introduction  
The original discontinuous Galerkin (DG) finite element method was introduced by Reed and Hill [15] 

for solving the neutron transport equation. Runge-Kutta discontinuous Galerkin (RKDG) finite element 
method for no-linear hyperbolic conservation laws was proposed by Cockburn et al. [6, 5, 4, 7]. This method 
was constructed by using an explicit high order Runge-Kutta time discretization and piecewise linear DG 
method for space discretization. It can be designed for any order of accuracy in space and time, handle 
flexibly complicated geometries, and treat easily boundary conditions. Above all, the computation of any 
element depends only on the information of itself and its immediate neighbors, so it can be used easily for 
the efficient parrel implementation. RKDG finite element method performed very well for computation of 
the single-medium compressible flow. Various numerical schemes such as the total variation diminishing 
(TVD) schemes, the essentially non-oscillatory (ENO) or the weighted essentially non-oscillatory (WENO) 
schemes have been developed to solve single-medium flow, which can usually achieve high order accuracy 
with sharp and essentially non-oscillatory shock transition. However, when those schemes is directly applied 
to multi-medium flow, nonphysical oscillations usually occur in the vicinity of the material interface. In 
order to prevent oscillations near the interface, many methods were presented to treat the interface. The 
original ghost fluid method proposed by Fedkiw et al [8]. offers a fairly simple and flexible way to treat 
multi-medium interface and is easily extended to multi-dimension. In the GFM, one flow-field with two 
medium is separated into two flow-field by level set method, each of which has a single medium and can be 
computed solely. It was found to be less efficient when applied to gas-water flow or a strong shock wave 
interacting with the interface. This has resulted in many modified GFM [12, 11, 9, 17].  

A Riemann problem based method for the resolution of compressible multi-material flow was proposed 
by Cocchi et al. [3]. The numerical algorithm consist of a predictor step and a correction step. In every time 
step, correction of the diffused nodes is carried out on both sides of the interface.  

Several authors extended RKDG finite element method to multi-medium compressible flow. RKDG 
finite element for two-medium flow simulations in one and two dimension with the original GFM and the 
modified GFM were investigated by Qiu et al. [13]. Another important work of Qiu [14] is to use the RKDG 
finite element method for two-medium flow computation with conservative treatment of the moving material 
interface. R.S.Chen et al. computed multi-medium compressible flow by RKDG finite element with a new 
modified GFM [1, 2]. 

In this paper, we use RKDG finite element method for one dimension multi-medium compressible flow 
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and use level set method to keep track of the interface location. In every time step, a Riemann problem at the 
interface is defined. The two cells adjacent to the interface is computed using the solver of the Riemann 
problem similar to the GFM, the other cells are computed by single-medium method. If the interface crosses 
a cell center at the next time step, the values of the cell crossed are modified by interpolation. Otherwise, we 
do nothing.  

The paper is divided as follows. In section 2, Euler equations, equation of state (EOS),and level set 
equation are provided. In section 3, we first review the RKDG finite element method, and then we describe in 
detail the method of interface treatment. Tests on gas-gas and gas-liquid flow are given in section 4. In 
section 5, a brief conclusion is presented.  

2. Equations  

2.1. Euler Equations 
The Euler equations for one-dimensional compressible flow are written as 
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with ),,( EuU ρρ= , . Here))(,,()( 2 upEpuuUF ++= ρρ ρ  is the density, u is the velocity,  is the 
pressure,  and 

p
E  is the total energy for unit volume. The total energy is given as  

2
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2.2. Equation of State (EOS) 
For closure of the system, the EOS is required. We will use the following equation of state in this work.. 

The stiffened gas equation of state is in the form 

                       ∞−−= pep γργ )1( .                                                                   (2.2) 
For γ -law gas, . 0=∞p

2.3. Level Set Equation  
The level set method used o track the interface can be written as  

                                                   0),(),(),( =Φ+Φ txtxutx xt                                                    (2.3) 

Here  is the velocity of fluid. In general, u ),( txΦ starts out as a distance function. But over several time 
steps, it will not be equal to the distance function. In order to keep it as the signed distance function, the re-
initialization step is necessary. In this work, the Riemann solver at the interface provides the accurate 
velocity of the interface, so we replace the by interface velocity and the re-initialization is not 
implemented. The level set equation is solved by the integral-averaging scheme proposed by Liu et al. [10].  

),( txu

3. RKDG finite element method 
3.1 Description RKDG finite element method  
 

The computational domain R is divided into N  cells, ii IR ∪= , where , 

. Denote the cell centers by 
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Where  is solution space,  is test function space, and is the space of polynomials of degree 

on . We use a local orthogonal basis over , . We choose for example  
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The approximate solution can be written as  hU

                      ，for ∑
=

=
k

l

i
l

l
ih xvtUtxU

0
)()(),( iIx∈ .                                                          (3.2) 

Where  are the degrees of freedom.  { }k
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We substitute (3.2) into (2.1), multiply by , integrate over a cell  and integrate by parts:  )(xvi
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The flux  is usually replaced by a monotone numerical flux , where 

, resulting in the scheme: 
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We use the local Lax-Friedrichs flux  
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At last, the semi-discrete scheme can be written as  

                                      )( hhh ULU
dt
d

= .                                                                  (3.5) 

We discrete (3.5) by Runge-Kutta method. In order to achieve variation stability, a slope limiter is used 
after each Runge-Kutta stage. For a complete discussion of the method, the reader is referred to [6].  

3.2 Treatment of interface 
The cell sizes are uniform, we denote the cell centers by  , denote  by the level set function value 

of  at  , denote  by the interface location at 
ix n

iΦ

ix ntt = n
Ix ntt = . Assuming the interface  is between  and 

 , the left of interface is fluid 1, and the right of interface is fluid 2. At instance ,  three instance 

may occur: (1)  is between  and , as shown Fig.1 (a); (2)  is between and , as shown 

Fig.1 (b); (3)  is between  and , as shown Fig.1 (c). Supposed that the flow states at 

n
Ix ix

1+ix 1+= ntt
1+n

Ix ix 1+ix 1+n
Ix 1−ix ix

1+n
Ix 1+ix 2+ix ntt =  have 

been known, the following steps are taken to obtain the respective quantities at the next step:  
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1. Define Riemann problem  
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Solve the Riemann problem, we can get  (the velocity of interface),  (the pressure of interface),Iu Ip ILρ  
(the density of the left of interface), IRρ  (the density of the right of interface), (the entropy of the left of 
interface), (the entropy of the right of interface). We denote 

ILS

IRS

),,( ILIILILIL EuU ρρ= , ),,( IRIIRIRIR EuU ρρ=  . 

2. The isobaric fix technique can be used to reduced the “overheating” errors [7]. This is done by  

ILi SS = , IRi SS =+1  

3. For the cells  , use EOS of Fluid 1; For the cells , use EOS of Fluid 2. We 
can compute the flow at as for single-medium flow. But the cells and  must 
be treated specially. When we compute flow at cell , we can’t use the flow state at  directly because 
they belong to different fluids. So we modify it as below: if we compute at  

, . If we compute at  , similar as at 

,  
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The solution can be advanced from to  . nU 1+nU

4. Numerical results  

 
Fig.2 Example 1, 100 cells                                 Fig.3 Example 1, 400 cells 
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In this section, five numerical experiments are presented. For the computations, CFL is set to 0.2, 
computational domain is [0, 1], the solid line is the exact solution and the points are the computed solution. 
A third order accurate RKDG finite element method is used to solve the Euler equation.  

Example 4.1 This is a gaseous shock tube problem taken from [17] and the initial conditions are  

⎩
⎨
⎧

≤<
<≤

=
.15.0),0,2.1,1.0,0,125.0(
,5.00),0,4.1,1,0,1(

),,,(
xif

xif
pu γρ  

The computational time is  . Fig.2 shows the result of 100 mesh points, and Fig.3 shows the 
result of 400 mesh points. From the Figs. 2-3, we see that there are no-physical oscillation near the interface 
and the computed solutions concur with the exact solutions.  

21.0=t

Example 4.2 We consider a two-phase gas-liquid Riemann problem which is taken from [16].The initial 
states are defined as  

⎩
⎨
⎧

≤<×

<≤
=

− .15.0),505.1,5.5,10059.3,0,991.0(
,5.00),0,4.1,753.2,0,241.1(

),,,(
4 xif

xif
pu γρ  

 
Fig.4 Example 2, 100 cells                                     Fig.5 Example 2, 400 cells 
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The results of 100 mesh points and 400 mesh points at 1.0=t  are shown in Figs.4-5. The computational 
solutions are convergent to physical solutions as the mesh refined. 

Example 4.3 A gas-liquid shock tube problem is taken from [9]. The initial conditions are  

⎩
⎨
⎧

≤<
<≤

=
.15.0),3309,15.7,1,0,1(

,5.00),0,5.2,20000,100,5.0(
),,,(

xif
xif

pu γρ  

Shown in Figs.6-7 are the respective results obtained by 100 mesh points and 400 mesh points at time 
 that agree with the exact solutions. 001.0=t

 
Fig.6 Example 3, 100 cells                                 Fig.7 Example 3, 400 cells 

Example 4.4 We consider strong shock impacting on a gas-water interface which is taken from [17]. The 
initial position of shock and interface are the same at . The initial condition are as follows: 

⎩
⎨
⎧

≤<
<≤

=
.15.0),3309,15.7,1,0,1(
,5.00),0,4.1,1000,8821.911,00596521.0(

),,,(
xif

xif
pu γρ  

The results at  are presented in Figs.6-7. The position of shock and interface are predicted 
accurately. 

0007.0=t
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Example 4.5 Jet impact on the gas-water interface is considered. This is taken from [17]. The initial 
condition are given as  

⎩
⎨
⎧

≤<
<≤

=
.15.0),3309,15.7,1,0,1000(

,5.00),0,4.1,1,90,1(
),,,(

xif
xif

pu γρ  

This is a very difficult problem. The results of 100 mesh points and 400 mesh points at  are 
obtained, shown in Figs.7-8. The results show that the shock wave and the interface are well located. 

015.0=t

 

 
Fig.8 Example 4, 100 cells                                  Fig.9 Example 4, 400 cells 
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Fig.10 Example 5, 100 cells                             Fig.11 Example 5, 400 cells 

5. Conclusions  
In this paper, RKDG finite element methods with a new treatment of the moving interface have been 

developed to simulate one-dimensional multi-medium compressible flow. At every time step, a Riemann 
problem at the interface is defined, the two cells near interface are computed using the solver of Riemann 
problem. If the interface crosses a cell, we modify the values of the cell crossed by interpolation. This 
method is very simple. Compared with GFM method, it cost less. Numerical results for gas-gas and gas-
liquid flow in one dimension show the present method is robust. Ongoing work is to extend these methods 
for two dimension. 

6. References 
[1] R. S. Chen, X. J. Yu, A high order accurate RKDG finite element method for one dimensional compressible 

multicomponent Euler equation. Chinese J. Comput. Phys. 2006, 23: 43–49.  
[2] R. S. Chen, X. J. Yu, An RKDG finite element method for two dimensional compressible multimedia fluids. 

Chinese J. Comput. Phys. 2006, 23 : 699–705.  
[3] J.-P. Cocchi, R. Saurel, A Riemann problem based method for the resolution of compressible multimaterial flows. 

J. Comput. Phys. 1997, 137: 265–298.  

JIC email for subscription: publishing@WAU.org.uk 



      R. Chen, et al: Runge-Kutta discontinuous Galerkin finite element method  224
 
[4] B. Cockburn, S. Hou, C.-W. Shu, TVB Runge-Kutta local projecting discontinuous Galerkin finite element 

methods for conservation laws IV: the multidimensional case. J. Comput. Math. Comp. 1990, 54: 541–581. 
[5] B. Cockburn, S.-Y. Lin, C.-W. Shu, TVB Runge-Kutta local projecting discontinuous Galerkin finite element 

methods for conservation laws III: one dimensional systems. J. Comput. Phys. 1989, 84: 90–113.  
[6] B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for 

conservation laws II: general framework. Math. Comp. 1989, 52: 411–435.  
[7] B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for 

conservation laws V: multidimensional systems. J. Comput. Phys. 1998, 141: 199–224.  
[8] R. P. Fedkiw, B. T. Aslam, S.osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the 

ghost fluid method), J. Comput. Phys. 1999, 152: 457–492.  
[9] X. Y. Hu, B. C. Khoo, An interface interaction method for compressible multifluids. J. Comput. Phys. 2004, 198: 

35–64.  
[10] R. X. Liu, X. P. Liu, L. Zhang, Z. F. Wang, Tracking and rescontruction methods for moving-interface. Appl. 

Math. Mech. 2004, 25: 307–321.  
[11] T. G. Liu, B. C. Khoo, C. Wang, The ghost fluid method for compressible gas-water simulation. J. Comput. Phys. 

2005, 204: 193–221.  
[12] T. G. Liu, B. C. Khoo, K. S. Yeo, Ghost fluid method for strong shock impacting on material interface. J. Comput. 

Phys. 2003, 190: 651–681.  
[13] J. X. Qiu, T. Liu, B.C.khoo, Simulations of compressible two-medium flow by Runge-Kutta discontinuous 

Galerkin methods with the ghost fluid method. Commun. Comput. Phys. 2008, 3: 479–504.  
[14] J. X. Qiu, T. G. Liu, B. C. Khoo, Runge-Kutta Discontinuous Galerkin methods for compressible two-medium 

flow simulations: one-dimensional case. J. Comput. Phys. 2007, 222: 353–373.  
[15] W. H. Reed, T. R. Hill, Triangular mesh methods for the neutron transport equation. Tech. rep. Los Alamos 

Scienfic Laboratory Report LA-UR-(1973).  
[16] K. M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 

1998, 142: 208–242.  
[17] C. W. Wang, T. G. Liu, B. C. Khoo, A real-ghost fluid method for the simulation of multi-medium compressible 

flow. SIAM J. Sci. Comput. 2006, 28: 278–302.  

 

 

JIC email for contribution: editor@jic.org.uk 


