

Published by World Academic Press, World Academic Union

ISSN 1746-7659, England, UK
Journal of Information and Computing Science

Vol. 4, No. 2, 2009, pp. 093-098

A Process Algebra Approach of BPEL4WS

Hui-yun Long + and Jian-shi Li

School of Computer Science and Technology, Guizhou University, Guiyang, China, 550025

(Received July 12, 2008, accepted December 10, 2008)

Abstract. It is now well-admitted that formal methods are helpful for many issues raised in the Web services
area. It is a feasible method of the design and the verification of Web services using process algebras.
BPEL4WE can correctly combine Web services actions. It is a important part of Web Services. In this paper,
we present a mapping from BPEL4WS code to value-passing CCS, which offer an available way of obtaining a
formal model of BPEL4WS.

Keywords: Web services, BPEL4WS, the value-passing CCS, map.

1. Introduction

Recently, with the quick development of the e-business, Web application widely develop. Web services
(WSs) is a new distributed computing and become the standards of a new web application mode. It is an
active way of Web data and information. In the services of Web, XML describes the Web content and its
standardized: WSDL interfaces abstractly describe the process of exchanging information; SOAP provides a
protocol for exchanging structured information; UDDI is used to publish and discover WSs,
BPEL4WS(BPEL for short) is a notation for describing executable business process behaviors. WSs raise
many theoretical and practical issues which are part of on-going research. Some well-known problems related
to WSs are to specify them in an adequate, formally defined and expressive enough language, to compose
them, to discover them through the Web, to ensure their correctness.

Formal methods provide an adequate framework (many specification language and reasoning tools) to
address most of these issues (description, composition, correctness). Different proposals have emerged
recently of describing WSs abstractly, most of which are grounded on transition system models, for example:
Labelled Transition Systems, Mealy automata, Petri nets, Process Algebra etc. [5,6,7,8,9,10,11]

Process Algebra appeared in the end of 1970s and the beginning of 1980s, including CCS, CSP, ACP and
π -calculus. Process algebra is a algebraic way to solve concurrent communication, and it can describe and

analyze concurrent, asynchronous, non-determined and distributed action. Process algebra is a formal
language creating the model of dynamic entity. It has formal defined rigorously semantics, and it can contact
between service action and operation semantic, what’s more it can automatically validate their attributes. Thus,
it is often used in designing and analyzing work-flowing in concurrent real-time system.

CCS[1,2] is a concurrent computing model built by R.Milner. It can catch algebraic character about
concurrency and communication, and it is a algebraic model which can describe the functions of the
concurrent system. In CCS model, the system is composed by the process. In system, the process can
concurrently evolve, and correspond system action by communication among the processes. Early CCS can
not better describe data transfer. To overcome this deficiencies, R.Milner defined the value-passing calculus.
The value-passing CCS can better abstract and describe the action of the current system, and reflect data
transfer in the current system. Further more, the value-passing calculus provides bisimulation analysis, with
which we can establish whether two processes have equivalent behaviors. Bisimulation analysis[3,4] is useful
to prove that a service can be substituted another one; another use of bisimulation is to check the redundancy
and deadlock of service in a community.

+ Hui-yun Long. Tel.: +86-133 1227 5357; fax: +86-851-362 7649.

 E-mail address: long_huiyun@yahoo.com.cn .

Hui-yun Long, et al: A Process Algebra Approach of BPEL4WS

JIC email for contribution: editor@jic.org.uk

94

Because process algebras support bisimulation analysis, we can apply to WSs, a well-know designed
method that intuitively we start with an abstract description of a process and we refine it iteratively, obtaining
a less abstract one at each step. At each stage, using bisimulation we can verify the correspondence between
the current version and the previous (more abstract) one. We argue that the bisimulation can be part of the
problem of automatic composition of services.

In this paper we focus on the value-passing calculus. We provide a mapping from BPEL to the value-
passing calculus by illustrating BPEL codes, thus we give translation from BPEL to the value-passing calculus.

2. Value-passing CCS

The value-passing CCS�CCS for short in this paper� is a kind of computation model to describe and
analyze concurrent system. In the value-passing, every expression denotes an agent, and express a concurrent
entity which can freely run. The communication between agents implement by exchanging information in

named channel. Now we shall define Σ , the set of agent expressions, and let , , ...E F range over Σ .The agent
can be of the following forms:

• 0: represents the process is inactive and it does not perform any actions.
• .a E : first performs prefix action a , the continues as E . Prefix action has three kinds of form: a)τ

stands for an internal and unobservable action; b) ()a x represents that variable receives values from
input channel a ; c) ()a e denotes that the value of variable send out along output channel a .

• 1E | 2E : means process 1E and 2E which are executing concurrently. 1E and 2E can perform
independently and also communicate each other.

• 1 2E E+ : represents a non-deterministic choice which either 1E or 2E proceeds.
• ()a E : creates new name a for process E , the name is private and its scope of a is limited in E .

• if b then E : represents that E will execute if Boolean expressions b is ‘true’.
• A (1,..., nx x): represents constant A with arity n. There is a defining equation: A (1,..., nx x)= E

where the right-hand side E may contain no agent variables, and no free value variable except

1,..., nx x .
In giving meaning to the value-passing CCS, we shall give the general notion of a labeled transition system.

Definition 1 (Labeled Transition System (LTS)) LTS is a 3-tuple (E, A, {
a→ : a ∈A}), where E is a set

of agents, A is a set of actions and a→ ⊆ E×E for each a ∈A. According to the LTS, the operational

semantics of the value-passing calculus is denoted as the following:

Act1 .E Eττ →
→ Act2 ()(). a ea e E E→

→

Act3 ()(). a xa x E E→
→ Sum1

'
1 1

'
1 2 1

a

a

E E

E E E

→
+ →

→

 Sum2
'

2 2
'

1 2 2

a

a

E E

E E E

→
+ →

→ Com1
'

1 1
'

1 2 1|

a

a

E E

E E E

→
→

→

 Com2
'

2 2
'

1 2 2|

a

a

E E

E E E

→
→

→ Com3
() ()' '

1 1 2 2
' '

1 2 1 2

,

| | { / }

a e a xE E E E

E E E E e xτ
→ →

→
→

 Res
'

'() ()

a

a

E E

b E b E

→
→

→

We will consider a notion of equivalence between agents. A preliminary definitions are needed.

Definition 2 (t-descendant) We shall assume an infinite set A of names, and denote by A the set of co-

names. L = A AU is the labels, andτ is the silent or perfect action. We define { }Act L τ= U to be the set of

actions. *L and *Act are the transitive reflexive closure of L and Act . If t ∈ *Act , then t$∈ *L is the sequence

gained by deleting all occurrences of τ from t . If *
1... nt a a Act= ∈ , then we write 'tE E→ if

1 '... naaE E→ → . If *
1... nt a a Act= ∈ , then 'tE E⇒ if 1*() aE τ→ →

* * * '() ...() ()na Eτ τ τ→ → → → . If t∈ *Act , then 'E is a t-descendant of E iff 'tE E⇒
$

.

Journal of Information and Computing Science, 4 (2009)2, pp 093-098

JIC email for subscription: publishing@WAU.org.uk

95

So, bearing in mind what we said about matching a τ action by zero or more τ actions, we give a notion of
equibalence.

Definition 3 (Bisimulation) Bisimulation, written ≈ , is a binary relation S on agents. If 1 2(,)E E S∈

implies, for all a Act∈ ,

 (i) Whenever '
1 1

aE E→ then, for some '
2E ,

$ '
2 2

aE E⇒ and ' '
1 2(,)E E S∈

 (ii) Whenever '
2 2

aE E→ then, for some '
1E ,

$ '
1 1

aE E⇒ and ' '
1 2(,)E E S∈

3. Mapping from BPEL To CCS

The translation from BPEL to CCS preserves the BPEL structure. In our presentation, we refer to Table 1
and Table 2, where we show sample code of both languages; The correspondence is the mapping from BPEL
to CCS calculus. An external view of interacting WSs shows services running concurrently. Such system in
CCS is described by using process expressions: it instantiates agents composed in paralleling and
synchronizing on all actions and their interaction is shown by the same way. At the basis of the mapping there
is a correspondence between CCS actions and BPEL interactions. The direction from BPEL to CCS is
straightforward. We simply automatically build a main behavior containing the instantiation of all the agents.
To describe BPEL behaviors, in CCS we have the process definition. In CCS a defined agent can be
instantiated with names passing. From BPEL to CCS, we use the service description to generate both the
agents definition and the agent instantiations.

3.1. Basic Behaviors
The core of BPEL model is the interaction between partners. All BPEL basic activities perform

interactions between WSs. An interaction is characterized by the partner link and the communication between
partners. In parallel, CCS has the concept of agent to describe synchronizations among agents by names.
When process or services are instantiated, CCS synchronizing agents are equivalent to BPEL interactions.
When the agent representing a service is defined, a name is simply an emission or a reception. In the emission
case, the parter link and operation in BPEL are stored on the receiver, on the sender in the reception case.
This name can contain the information of the interaction, as shown in Table 1.

Table.1: The mapping: examples for basic behaviors from BPEL to CCS

 Let us go forward in more details. In CCS, ordinal structure of behaviors and the transfer of information

 BPEL Codes CCS Processes
 < …act1>
 < /act1 >
 < assign … >
 < copy >
 <from expression=”5”/ >
 < to var=”x”/ >
 < /copy >
 < /assign >
 < act2 …>
 < /act2 >

(a)(… act1 . a (5) | a (x) .act2 …)

 < receive … variable=”m” >
 < /receive >

 a (m)

 < reply … variable=”m” >
 < /reply >

a (m)
 < invoke … invar=”mS”
 Outvar=”mR” >
 < /invoke >

 a (mS) . c(mR)

Hui-yun Long, et al: A Process Algebra Approach of BPEL4WS

JIC email for contribution: editor@jic.org.uk

96

are reflected by prefix operator. ()a illuminate that a is a private channel, which guarantees that the

channel is used in specified fields. (a)(…act1 . a (5) | a (x) .act2…) denotes that it passed the value to the
variable x by channel a after act1 is executed, and then enable act2. ‘…’ specify that it is considered. In order
to guarantee act1 and act2 to be executed, we tolerate that channel a don’t appear in which.

 In BPEL, receiving a message is expressed by receive activity and a prefixing operator with an input in
CCS. The emission is written with the reply or the asynchronous invoke activity in BPEL whereas in CCS we
use a prefixing operator with an output. The BPEL synchronous invoke, performing two interaction, sending a
request and receiving a response, corresponds in CCS to an output followed by an input. In CCS we use two
different names, because we have two interactions in BPEL.

3.2. Structured Behaviors

Table.2: The mapping: examples for structured behaviors from BPEL to CCS

 BPEL Codes CCS Processes
 < pick … >
 < onMessage … variable=”m1” >
 < act1 >
 < /onMessage >
 < onMessage ... variable=”m2” >
 < act2 >
 < /onMessage >
 < /pick >

a (m1).act1 + c(m2).act2

 < sequence ... >
 < …act1 >
 < act2 …>
 < /sequence >

(a)(…act1. a (0) | a (x).act2…)

 < flow ... >
 < …act1 >
 < source linkname=”link”
 Condition=”cond”/ >
 < /act1 >
 < …act2… >
 < target linkname=”link”/ >
 < /act2 >
 < /flow >

(a)(link)(…act1. a (0) |
 (a (y). if (cond) then link (1)
 + a (y).if (¬ cond) then link (0))
 | link (x). if (x=1) …act2…)

 < switch >
 < case condition=
 “bpws:getVariableData(x)>=0” >
 < … act1… >
 < / act1 >
 < /case >
 < otherwise >
 < …act2… >
 < / act2 >
 < /otherwise >
 < /switch >

 if (x>=0) then …act1…
 +
 if (x<0) then …act2…

 < while condition =
 “bpws:getVariableData(x)>=0” >
 <… act1 >
 < / act1 >

 A(x)

(A(x):= if(x>=0) then …act1.A(x))

Journal of Information and Computing Science, 4 (2009)2, pp 093-098

JIC email for subscription: publishing@WAU.org.uk

97

 < /while>
There is a relevant structure in CCS, Corresponding to the BPEL structured activities. As shown in Table

2, the pick BPEL activity is executed when it receives one message defined in one of its onMessage tag. In CCS,
the equivalent construct is obtained by using the non deterministic choice ‘+’, in which the action of each
branch is an input prefix. It is chosen when an output prefix appears.

The sequence activity in BPEL matches with the CCS operator ‘.’, which represents the ordinal operation.
The action of channel a is which enable act2 after act1 was over. The variable x do not appear in act2 because

the value is not passed. In BPEL we have the flow activity, in CCS the simulation is implemented by using the
operator ‘|’. The mapping of the link tag is more complicated, because CCS does not have an explicit
construct of dependence relation. In BPEL we specify with the source tag the activity that has to occur first,
and with the target tag, the dependent activity. In CCS we have a name for each link. These names are put
after the end of the source behavior, and before the beginning of the target one; the two behaviors
synchronizes on these actions. In Table 2, in the flow sample, activity act2 can be executed only both after
executing activity act1 and the condition cond1 is true. In CCS after executing act1, we execute the output

prefix a which enable the name link and carry the value 1 if the condition cond is true, 0 otherwise; act2 can
be executed only if the condition is true and after act1, because it can be executed only after the operator link
enabled.

The switch tag defines an ordered list of case tag in BPEL. A case corresponds to a possible activity which
may be executed. The condition of a case is a Boolean expression on variables. In our process algebra we have
an agent expression and non deterministic choice. In BPEL, the while tag correspond to the process A(x) in
CCS. We define that A(x) is ‘if(x>=0) then …act1.A(x)’. A(x) is a recursion, and it means a circulation.

4. Example

In this section, we give an example about the agent services of travel agency, to model the Web service
composition by CCS and verify that deadlock do not appear in this service.

Fig. 1: An agent services of the travel agency.

A typical Web service composition of travel agency’s agent is as follows: the customer send a request of
the order form by the channel order; the travel agency will order aircrews and rooms for the airline and the
hotel after receiving the order form; the airline and the hotel will return a reply to the travel agency; the travel
agency give a result to the customer in the end. As shown in Fig.1, we describe the business process by CCS.
In Fig.1, the ellipses represent the processes; the real lines stand for the fixed communication channels
between processes. From the customer’s angle, the service is a single composition service. The channel are
order and ack between the services and the customer. Travel is a main coordinator, and is responsible for
transferring and composing sub-service Air and Hotel. Travel services is described by BPEL4WS is as follows:

<process name="Travel"...>
 <sequence>
 <receive partnerLink="order", variable="orderreq".../>
 <flow>
 <sequence>
 <invoke partnerLink="air", outputVariable="resulta", inputVariable="orderreq".../>

Custome

Air

Travel

Hote

order

ack

hotel
hotelre

airairresp

Hui-yun Long, et al: A Process Algebra Approach of BPEL4WS

JIC email for contribution: editor@jic.org.uk

98

 <reply partnerLink="order", variable="resulta".../>
 </sequence>
 <sequence>
 <invoke partnerLink="hotel", outputVariable="resulth", inputVariable="orderreq".../>
 <reply partnerLink="order", variable="resulth".../>
 </sequence>
 </flow>
 </sequence>
 </process>
 Here, we omit the BPEL4WS description of the Air, Customer and Hotel. About these description, we can

obtain the translation concerning CCS:
• Travel (order, air, hotel, ack)=(airresp) order(orderreq). (air .(orderreq). airresp(resulta). ack (resulta).

0 | hotel (orderreq). hotelresp(resulth). ack (resulth). 0)
• Customer(order, orderreq, ack)= order (orderreq). (ack(resulta). 0 | ack(resulth). 0)

• Air(air, resulta)=(airresp) air(orderreq). airresp (resulta). 0
• Hotel(hotel, resulth)=(hotelresp) hotel(orderreq). hotelresp (resulth). 0

It is easy to prove that the bisimulation is obtained between the whole system Customer|Travel | Air|
Hotel and 0, that is Customer|Travel | Air| Hotel≈0. It specifies that the system can achieve end. Thus, the
deadlock do not appear in this system.

5. Conclusion

We gave a mapping from BPEL codes to the value-passing CCS, and we can make the BPEL activities
model by using the value-passing CCS. We can verify and research BPEL reliability and correctness and at
the same time apply model analysis to BPEL’s design because the formal method can supply not only model
checking but also bisimulating. We do not consider dynamic process interaction about the given mapping. It is
the next job in our research.

6. References

[1] R.Milner. A Calculus of Communicating systems. Lecture notes in Computer Science 92, Springer-Verlag, 1980.

[2] R.Milner. Communication and Concurrency. New York, Prentice Hall, 1989.

[3] R.D.Nicola and M.Hennessy. Testing equivalences for processes. Theoretical Computer Science. 1984, 34(1-2): 83-

133.

[4] S.Abramsky. Observation equivalences as a testing equivalence. Theoretical Computer Science. 1987, 53(2-3):225-

241.

[5] S.Narayanan and S.McIlraith. Analysis and Simulation of Web Services. Computer Networks.2003,42(5): 675-693.

[6] R.Hamadi and B.Benatallah. A Petri Net-based Model for Web Service Composition. In K.-D. Scheme and

X.zhou,editor, Proc.of ADC’03,volume 17 of CRPIT. Australia, Australia Computer Society, 2003.

[7] X.Fu,T.Bultan,and J.Su. Analysis of Interacting BPEL Web Services. In Proc.of www’04. USA, ACM Press, 2004.

[8] A.Lazovik, M.Aiello, and M.P.Papazoglou. Planning and Monitoring the Execution of Web Service Requests. In

M.E.Orlowska, S.Weerawarana, M.P.Papazoglou, and J.Yang, editors, Proc. of ICSOC'03, volume 2910 of LNCS.

Italy, pp.330-350, 2003.

[9] D.Berardi, D.Calvanese, G.De Giacomo, M.Lenzerini, and M.Mecella. Automatic Composition of E-services That

Export Their Behavior. In M.E.Orlowska, S.Weerawarana, M.P.Papazoglou, and J.Yang, editors Proc. of ICSOL’03,

volume 2910 of LNCS. Italy, pp.45-58, 2003.

[10] R.Hull, M.Benedikt, V.Christophicles, and J.Su. E-Services: a Look Behind the Curtain. In ACM, editor, Proc. of

PODS’03. USA, pp.1-14, 2003.

[11] Ferrara A. Web Services: A Process Algebra Approach. Proc of the Int'l Conf on Service Oriented Computing. 2004,

pp.1-18.

